Интенсификация процесса хромирования в порошковых средах

Протасевич В.Ф. Белорусский национальный технический университет Минск, Беларусь

Существенное ускорение процесса химико-термической обработки может быть достигнуто предварительным нанесением металлических покрытий. В Проблемной лаборатории упрочнения стальных изделий БНТУ разработан и исследован процесс хромирования сталей с предварительным диффузионным цинкованием [1]. При всех исследованных температурах (900 - 1100 °C) и выдержках (2 - 8 ч) предварительно нанесенное цинковое покрытие ускоряет процесс хромирования в два - шесть раз. Установлено, что ускорение процесса насыщения происходит благодаря интенсивному массопереносу хрома через участки жидкометаллической фазы, образовавшейся при температуре хромирования.

В настоящей работе представлены результаты, подтверждающие, что эффект жидкометаллической фазы может быть

достигнут насыщением в порошковых средах, содержащих легкоплавкие компоненты.

Диффузионное хромирование проводили в порошковых алюмотермических смесях с введением в состав среды олова и меди. Эксперимент был проведен с использованием методов математического планирования - дробной реплики 2^{4-1} и симплексной решетки из 24 экспериментальных точек. Это позволило сократить продолжительность эксперимента и исследовать структуру и свойства хромированных сталей, обработанных в порошковой среде с варьированием всех компонентов смеси - окиси хрома, окиси алюминия, алюминия, олова и меди. Процесс хромирования осуществляли в интервале температур $900-1100^{0}$ С в течение 2-6 ч. Структуру и фазовый состав диффузионных слоев на сталях 45, У8 и 08кп исследовали с помощью микроструктурного, дюрометрического, рентгеноструктурного и микрорентгеноспектрального анализов.

Анализ структур диффузионных слоев на сталях показал, что в зависимости от соотношений компонентов смеси на углеродистых сталях могут формироваться карбидные слои двух типов:

- сплошные карбидные слои толщиной до 15 мкм, состоящие из карбидов хрома $\mathrm{Cr_{23}C_6}$ и $\mathrm{Cr_7C_3}$;
- гетерогенные карбидные слои, резко отличающиеся по строению и фазовому составу от традиционных слоев.

Введение в состав для хромирования порошков олова или меди приводит к уменьшению толщины карбидного слоя при сохранении его строения и фазового состава (таблица).

Таблица. Толщина карбидного слоя на стали У8 в зависимости от содержания Sn или Cu

	Толщина слоя, мкм Содержание, %					
Компо-						
нент	0	10	20	30	40	50
Sn	15	15	12	6	6	6
Cu	15	11	10	6	6	6

При совместной добавке в смесь олова и меди в слое на углеродистых сталях формируется карбид хрома - Cr_7C_3 , который на поверхности имеет плотное строение, а затем разветвляется и про-

никает вглубь до 70 мкм (температура- 1000^{0} C, время - 4 часа) (Рис. 1). Микротвердость карбидной зоны составляет $H_{\Box 0,490}$ =1200. Между карбидными участками формируются зоны соединения $Cu_{6}Sn_{5}$. На стали О8кп образуются вытянутые зерна твердого раствора хрома в α -железе, по границам которых происходит диффузия олова и меди с образованием соединения $Cu_{6}Sn_{5}$ (Рис.1). Концентрация хрома на глубине до 80 мкм составляет 15%, а затем постепенно снижается. Распределение элементов в диффузионном хромированном слое на стали 08кп представлено на рисунке 2. Микротвердость твердого раствора составляет $H_{\Box 0,490}$ =300. Общая толщина слоя на стали 08кп достигает 170-460 мкм, тогда как в традиционной смеси слой растет до 35 мкм.

Обработанные по оптимальным режимам образцы сталей 08кп и У8 исследовали на коррозионную стойкость в 10% водных растворах серной и азотной кислот гравиметрическим методом.

Диффузионные слои на стали У8, полученные в средах, содержащих олово и медь, отличаются более высокой коррозионной стойкостью, по сравнению со слоями, полученными в традиционной смеси. В 10% водных растворах серной и азотной кислот карбидные хромированные слои, легированные оловом и медью, не только не уступают по стойкости хромоникелевой стали X18H10T, но и превосходят ее в 2-3 раза [2].

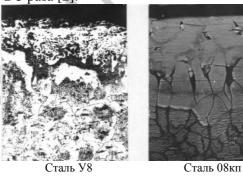


Рис. 1. Микроструктуры хромированных сталей, х200.

В результате испытаний установлено, что стойкость хромированных сталей 08кп и У8 в 10% растворе серной кислоты выше, чем в 10%-ной азотной кислоте. За 100 часов испытаний в 10% растворественных растромителя в 10% растромит

творе серной кислоты удельная потеря массы образцов из стали У8 (карбидные слои) и стали 08кп (слой твердого раствора) составляет 20 г/m^2 .

Полученные покрытия имеют низкую износостойкость и жаростойкость вследствие образования в слое мягких и легкоплавких соединений.

C, %

L, мкм

Рис. 2. Распределение элементов в хромированном слое на стали 08кп

Литература

- 1. Ляхович Л.С. Диффузионное упрочнение металлов с предварительно нанесенными металлическими покрытиями.-В кн.: Защитные покрытия на металлах, Киев, Наукова думка, 1977, вып.11, С. 18-20.
- 2. Ворошнин Л.Г., Кухарева Н.Г., Ловшенко Ф.Г. Повышение коррозионной стойкости сталей. Минск :Беларусь, 1978.