МОДЕЛИРОВАНИЕ ЗАТРАТ РАСХОДА ЭНЕРГОРЕСУРСОВ ПРИ ТЕПЛОВОЙ ОБРАБОТКЕ МОНОЛИТНОГО БЕТОНА ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ

МИНЕЕВ Р. А., ПИКУС Д. М.

Белорусский национальный технический университет Минск, Беларусь

Аннотация. Производство монолитных бетонных работ при отрицательных температурах всегда связано с большими трудозатратами, чем в обычных, нормальных условиях. При возведении монолитных конструкций дополнительные капитальные вложения и затраты труда связанные с необходимостью термообработки бетона существенно повышают себестоимость и продолжительность работ по сооружению конструкций, в том числе в период набора прочности.

Описание системы. Системный подход к монолитному бетонированию в зимних условиях. Процесс расхода энергоресурсов при возведении монолитных бетонных и железобетонных конструкций в условиях отрицательных температур можно рассматривать как функционирование большой сложной вероятностной системы «Возведение монолитных бетонных и железобетонных конструкций при отрицательных температурах». Система состоит из ряда функциональных подсистем, основными из которых являются:

- подсистема приготовления бетонной смеси;
- подсистема транспортировки и укладки бетонной смеси;
- подсистема подготовки и установки опалубки;
- подсистема подготовки и установки арматуры;
- подсистема теплоизоляции прогреваемого бетона;
- подсистема обогрева бетона;
- подсистема организации и контроля тепловой обработки и остывания.

Критерии затрат энергоресурсов. Цель системы — обеспечение получения бетона с заданными параметрами в установленные сроки в условиях монолитного бетонирования в зимнее время.

В качестве критерия цели принимается величина затрат энергоресурсов, расходуемых на технологические нужды при возведении монолитных конструкций. Целевая функция системы может быть представлена в следующем виде:

$$C = 3_{n6c} + 3_r + 3_v + 3_{r6c} + 3_{n0} + 3_{na} + 3_{och} + 3_{nr} + 3_{ro} \rightarrow min,$$
 (1)

где $3_{n\delta c}$ — затраты энергоресурсов на подогрев воды и заполнителей для приготовления бетонной смеси;

 3_m – потери тепла при транспортировке бетонной смеси;

 3_y – потери тепла при укладке бетонной смеси;

 $3_{m\delta c}$ — затраты энергоресурсов на предварительный подогрев бетонной смеси;

 3_{no} — затраты энергоресурсов на подготовку опалубки (очистка от наледи);

 3_{na} — затраты энергоресурсов на подготовку арматуры (очистка от наледи);

 3_{ocn} — затраты энергоресурсов на подготовку (отогрев) основания, на которое укладывается бетонная смесь;

 3_{nm} – затраты энергоресурсов на подъем температуры бетонной смеси;

3_{то} — затраты энергоресурсов на компенсацию теплопотерь в процессе тепловой обработки.

Каждая подсистема имеет свою локальную цель, подчиненную общей цели системы. Критерии цели каждой подсистемы могут совпадать с общим критерием цели или же выступать в виде ограничений.

Управляемость системы и зависимость критерия эффективности от величины управляемых и неуправляемых параметров. Управляемость системы возведения монолитных бетонных и железобетонных конструкций заключается в возможности изменения величины критерия эффективности при целенаправленном изменении ее отдельных управляемых параметров. Управляемыми называют параметры, которые в определенных пределах по желанию субъекта управления могут изменять свои значения, например скорость подъема температуры, термическое сопротивление теплоизоляции, продолжительность тепловой обработки, сокращение количества передаваемого бетону тепла и т. д. Неуправляемые параметры изменяют свои значения независимо от желания субъекта управления и путем воздействия на те или другие части системы изменяют

величину критерия эффективности, т. е. количество затрат энергоресурсов. Теоретически сущность управления режимом тепловой обработки и другими технологическими процессами заключается в целенаправленном изменении управляемых параметров с учетом воздействия неуправляемых для достижения поставленной цели — получения монолитных бетонных и железобетонных конструкций требуемого качества в установленные сроки с минимальными затратами энергоресурсов.

Задачей работников, занятых возведением монолитных конструкций при отрицательных температурах, является поиск резервов снижения затрат энергоресурсов в конкретных производственных условиях в разрезе каждой подсистемы.

Для более полного использования имеющихся возможностей целесообразно с этой точки зрения последовательно проанализировать подсистемы, непосредственно связанные с расходом тепла.

Подсистема приготовления бетонной смеси. Цель подсистемы – приготовление бетонной смеси, соответствующей требуемым качественным характеристикам. В качестве критерия эффективности принимается величина расхода энергоресурсов, необходимая для обеспечения требуемой температуры бетонной смеси на выходе из бетоносмесительной установки.

Целевая функция подсистемы

$$C_{n\delta c} = \mathcal{G}_{k3} + \mathcal{G}_{M3} + \mathcal{G}_{B} \rightarrow min, \tag{2}$$

где 9_{κ_3} – затраты энергоресурсов на подогрев крупного заполнителя;

 $Э_{\text{мз}}$ – затраты энергоресурсов на подогрев мелкого заполнителя;

Э_в – затраты энергоресурсов на подогрев воды.

В качестве основного ограничения принимается температура бетонной смеси на выходе из бетоносмесителя, обеспечивающая нормальные условия ее транспортировки и укладки.

$$t_{\delta cs} \ge \frac{t_{\delta n} - t_n \sum_{i=1}^{m} \Delta t_i}{1 - \sum_{i=1}^{m} \Delta t_i}$$
(3)

где $t_{\delta cs}$ – температура бетонной смеси на выходе из бетономешалки;

 $t_{\it бн}$ — нормируемая температура бетонной смеси перед укладкой в опалубку или предварительным электроразогревом;

 t_{H} — температура наружного воздуха;

 $\sum\limits_{j=1}^{m} \Delta t_j$ – снижение температуры бетонной смеси на протяжении

технологического цикла, включающего все операции от ее получения из смесителя и заканчивая укладкой и изоляцией, а при предварительном электроразогреве — загрузкой в бункер для разогрева;

 Δt_i — снижение температуры бетонной смеси на i-й операции технологического цикла.

Основные потери тепла в этой подсистеме происходят в период загрузки бетонной смесью транспортных средств. Величина этих потерь зависит от многих факторов, основными из которых являются:

- продолжительность загрузки транспортного средства;
- разность температур бетонной смеси и наружного воздуха;
- тип транспортного средства.

Для определения величины снижения температуры бетонной смеси в зависимости от комплексного воздействия указанных факторов в работе предусматривается представить при выполнении следующего этапа в виде таблиц и графиков, отражающих этот процесс в нормальных производственных условиях. В случаях значительного отличия фактических данных от приведенных в таблице и на графиках необходимо принять меры по ликвидации или уменьшению полученного разрыва.

Для этой цели могут быть приняты различные технологические и организационные решения, в т.ч.:

- сокращение времени приготовления бетонной смеси, в том числе за счет увеличения производительности бетоносмесительных устройств;
- повышение теплозащитных свойств загружаемых транспортных средств;
- принятие мер по уменьшению ветровой нагрузки на загружаемые транспортные средства;
- четкой организации процесса приготовления бетонной смеси и ее загрузки в транспортные средства.

Подсистема транспортировки и укладки бетонной смеси. Цель подсистемы — транспортировка и укладка бетонной смеси в опалубку. Критерий цели — потери тепла в процессе транспортировки, укладки бетонной смеси и ее изоляции. Целевая функция системы:

$$\sum_{i=1}^{m} \Delta t_i \to \min \tag{4}$$

Основное ограничение — потери тепла в процессе транспортировки и укладки бетонной смеси должны быть минимальными и обеспечить ее температуру не ниже расчетной (t_p) , которая для конструкций с дальнейшей тепловой обработкой должна быть не ниже чем 0 °C, т. е.,

$$\frac{t_{\tilde{o}_H} - t_{_H} \sum_{i=1}^{m} \Delta t_i}{1 - \sum_{i=1}^{m} \Delta t_i} - \sum_{i=1}^{m} \Delta t_i \ge t_{_{\mathcal{P}}}.$$
(5)

Подсистема включает ряд технологических операций, в процессе которых происходят затраты энергоресурсов. К таким операциям относятся:

- транспортировка бетонной смеси;
- выгрузка бетонной смеси и подача к месту укладки;
- укладка и уплотнение бетонной смеси;
- заглаживание, гидро- и теплоизоляция и (при необходимости) установка электродов.

Снижение температуры бетонной смеси в процессе ее транспортировки зависит от многих факторов, основными из которых являются:

- вид транспортного средства и степень теплоизоляции перевозимой бетонной смеси;
- величина разности температуры бетонной смеси и наружного воздуха;
 - продолжительность транспортировки смеси.

В зависимости от вида используемого транспортного средства потери тепла колеблются в значительных пределах. Продолжительность транспортировки смеси принимается с учетом ее скоростного

режима. В соответствии с нормативными данными для транспортировки бетонной смеси при расчетах принимается следующий режим: средняя скорость транспортирования для дорог с жестким покрытием —30 км/ч для дорог с мягким покрытием — 15 км/ч. Наблюдения за работами по монолитному бетонированию показали, что фактическая продолжительность транспортирования бетонной смеси в условиях г. Минска отличается от расчетной. В дневное время на отдельных направлениях были случаи превышения расчетного времени транспортирования смеси на 75 %, а в вечернее и ночное время — значительное сокращение.

Подача смеси после выгрузки к месту укладки может осуществляться различными способами: нагнетательным методом по утепленному или неутепленному бетоноводу, шахтным подъемником или краном. Укладка бетонной смеси в опалубку и ее уплотнение производится послойно в соответствии с действующими нормативами. После укладки в опалубку и уплотнения бетонной смеси выполняется ряд операций, при выполнении которых также снижается температура — это заглаживание поверхности, гидро- и теплоизоляция, и установка (при необходимости) электродов.

Величину снижения температуры бетонной смеси в процессе ее транспортирования, подачи к месту укладки, укладке и уплотнению, а также заглаживанию поверхности и гидротеплоизоляции и т. д. предусматривается рассчитывать в автоматизированном режиме, для чего при выполнении следующего этапа будет разработано соответствующее программное обеспечение. В случаях значительного отличия фактических данных от расчетных, необходимо принять меры по ликвидации или уменьшению полученного разрыва. Для этой цели могут быть приняты различные технологические и организационные решения, в том числе:

- рациональный выбор и повышение теплозащитных свойств транспортных средств;
- выбор и проверка маршрута и времени транспортирования бетонной смеси;
- четкая организация работы по транспортированию и укладке бетонной смеси, исключающая простой загруженных транспортных средств.

СПИСОК ИСПОЛЬЗОВАНОЙ ЛИТЕРАТУРЫ

- 1. Бетонные работы при отрицательных температурах воздуха. Правила производства (02250): ТКП 45-5.03-21–2006.
- 2. Лысов, В.П. Организационно-технологическое совершенствование возведения монолитных конструкций в зимний период, обеспечивающее сокращение сроков строительства и снижение затрат / В.П. Лысов, Н.М. Голубев [и др.] // Строительная наука и техника. − 2007. № 1. С. 48–54.
- 3. Лысов В.П., Голубев Н.М., Пикус Д.М., Кривицкая Т.В. Организационно-технологическое совершенствование возведения монолитных конструкций в зимний период, обеспечивающее сокращение сроков строительства и снижение затрат // Строительная наука и техника. $-2007. N \cdot 1. C.48 54.$
- 4. Руководство по прогреву бетона в монолитных конструкциях / Под редакцией Б.А. Крылова, С.А. Амбарцумяна [и др.] // М.: РААСН, НИИЖБ. 2005. 275 с.
- 5. Минеев Р.А., Пикус Д.М. Системный подход к проблеме затрат энергоресурсов при возведении монолитных конструкций в зимних условиях // Минск: БНТУ, 2013. Сборник научнотехнических статей (материалы научно методического семинара), 22–23 мая 2013 г. «Вопросы внедрения норм проектирования и стандартов Европейского союза в области строительства». Часть 1. С. 240–249.
- 6. Минеев Р.А., Пикус Д.М., Баранов С.П. Моделирование расхода энергоресурсов при тепловой обработке монолитного бетона в зимних условиях // Минск: БНТУ, 2014. Сборник международных научно технических статей (материалы научно методической конференции), 27 28 мая 2014 г. «Современные проблемы внедрения европейских стандартов в области строительства». Часть 1. С. 213–218.