Литература

- **1. Импульсно-плазменное** модифицирование поверхности изделия из сплава WC-20%Co / Ю.Н. Тюрин [и др.] // ФИП. 2009. Т. 7. N 3. С. 262—267.
- **2. Тюрин, Ю.Н.** Плазменные упрочняющие технологии / Ю.Н. Тюрин, М.Л. Жданкевич. Киев: Наук. думка, 2008. 215 с.
- **3.** Фазовый состав, структура и упрочнение стали У10 при плазменной поверхностной закалке / А.А. Бердников [и др.] // Упрочняющие технологии и покрытия. М.: Машиностроение. 2016. № 2. С. 31—34.
- **4.** [Электронный ресурс] / Режим доступа: http://www.plasmacentre.ru/FPS/equipment.php.
- **5.** Самотугина, Ю.С. Плазменное модифицирование сталей и инструмента из высокоуглеродистых сплавов / Ю.С. Самотугина. Монография. Мариуполь: Приазовский ГТУ, 2015. 185 с.
- **6. Модификация** материалов компрессионными плазменными потоками / В.В. Углов [и др.]. Минск: БГУ, 2013. 248 с.
- **7. Структурно-фазовые** состояния титана при воздействии компрессионными плазменными потоками / В.М. Асташинский [и др.]. Минск: Беларус. навука, 2016. 180 с.

УДК 621.794.61: 621.747.02

Ю.В. СОКОЛОВ, д-р. техн. наук (БНТУ), А.А. ПАРШУТО, канд. техн. наук, Е.А. СТЕПАНОВА-ПАРШУТО (ФТИ)

ИССЛЕДОВАНИЕ ПРОЦЕССА ВЫСОКОВОЛЬТНОГО ЭЛЕКТРОХИМИЧЕСКОГО ОКСИДИРОВАНИЯ ПРИМЕНИТЕЛЬНО К ПОЛУЧЕНИЮ ОКСИДНЫХ ПЛЕНОК ДЕКОРАТИВНОГО НАЗНАЧЕНИЯ НА АЛЮМИНИЕВЫХ СПЛАВАХ

Привлекательный товарный вид и способность оксидных пленок противостоять внешним тепловым, механическим и коррозионным воздействиям со стороны окружающей среды являются необходи-

мыми требованиями к декоративным покрытиям. Так, для получения пленок различной тональности применяют органические красители [1], электрохимическое окрашивание [2] или окрашивание непосредственно в процессе формирования оксидной пленки [3]. Для придания цветовой гаммы в процессе оксидирования широкое применение нашли электролиты на основе щавелевой кислоты, позволяющие получать пленки от темного до светло-желтого оттенков [4, 5].

Предварительную подготовку поверхности образцов осуществляли методом электролитно-плазменной обработки (ЭПО) с целью очистки поверхности от различного рода загрязнений, снижения шероховатости и придания блеска поверхности [6]. В качестве электролита для ЭПО использовали водный раствор хлорида натрия и щавелевой кислоты с концентрацией 2,0–3,0 мас.% и 1,0–3,0 мас.%, соответственно. В раствор дополнительно вводили поверхностноактивное вещество — динатриевую соль этилендиамин-N-N-N-тетрауксусной кислоты (Трилон Б) в количестве 0,1–0,2 мас. [7].

Оксидированию подвергали образцы алюминия АД1 и сплава АМг2 (ГОСТ 4784-97) размерами $100 \times 50 \times 2$ мм, химический состав которых приведен в таблице 1.

Таблица 1 — Химический состав алюминиевых сплавов АД1; АМг2 (ГОСТ 4784-97)

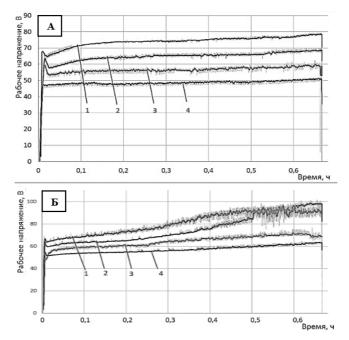
Monro	Массовая доля элементов, %									
Марка сплава	Al	Fe	Cu	Mn	Mg	Zn	Cr	Ti	Si	При- меси
АД1	99,3	0,3	0,05	0,025	0,05	0,1	_	0,15	0,3	> 0,05; Bcero 0,15
АМг2	95,7– 98,2	0,50	0,15	0,1-0,6	1,8-2,6	0,15	0,05	0,15	0,4	> 0,05; Всего 0,15

Для проведения процесса высоковольтного электрохимического оксидирования (ВВЭО) использовали водный раствор щавелевой кислоты ($C_2O_4H_2$) с концентрацией 40 г/л [8]. Интервал температур анодирования составлял от 5 до 35 °C, продолжительность процесса – 2400 с при плотности тока обработки от 0,5 до 4,5 A/дм² с интервалом 0,5 A/дм².

Для фиксации вольтамперных характеристик в процессе формирования оксидных пленок использовался цифровой мультиметр MAS345, предназначенный для использования в исследовательских лабораториях и производственных цехах. Особенностью этого мультиметра является наличие интерфейса RS 232 для связи с персональным компьютером. Запись данных о параметрах процесса осуществляется с интервалом 1 с в автоматическом режиме. В прилагаемом программном обеспечении осуществляется построение графиков в заданном диапазоне измерений, относительная погрешность измерений составляет $\pm 1,5$ %.

Оценку цветовой гаммы покрытий определяли по методике RAL, заключающейся в установлении визуального соответствия цвета по сравнению с таблицей RAL K-7, разработанной German RAL gGmbH [9].

Для измерения толщины оксидной пленки применяли толщиномер UNIT UT342, принцип работы которого основан на использовании ультразвукового датчика, посылающего импульс через анализируемый слой покрытия. Эхо сигнала оцифровывается и анализируется для определения толщины оксида.


Измерения параметра шероховатости (Ra) проводили с помощью измерителя шероховатости MarSurf PS1 в соответствии с DIN EN ISO 11562.

Метод ускоренных коррозионных испытаний образцов осуществляли в испытательной камере CORROCOMACT 613 в соответствии с ГОСТ 9.308-85. Сущность метода заключается в ускорении коррозионного процесса путем повышения температуры в испытательной камере до 35 °C и введении в атмосферу камеры 5-ти процентного раствора хлористого натрия, который впрыскивается форсункой, где образуется соляной туман (соляной туман должен обладать дисперсностью 1-10мкм (95 % капель) и водностью 2-3 г/м³).

В процессе оксидирования могут быть получены оксидные пленки от светло-желтого до черного цветов. На цвет формируемых оксидных пленок влияние оказывает температура электролита и плотность тока обработки (таблица 2). Так, при обработке образцов (сплав АМг2) повышение температуры приводит к снижению величины среднего значения рабочего напряжения с 80 до 50 В (при плотности тока обработки 1 $A/дм^2$) и с 90 до 60 В (при плотности тока 4,5 $A/дм^2$) соответственно (рисунок 1).

Таблица 2 – Влияние режимов оксидирования на цвет оксидной пленки

	АД	1	АМг2		
Темпера- тура, °С	Плотность тока 1 A/дм^2	Плотность тока 4,5 А/дм ²	Плотность тока 1 А/дм ²	Плотность тока 4,5 А/дм ²	
5	RAL7002	RAL 8017	RAL 9004	RAL 9017	
15	RAL 7008	RAL 8014	RAL 8016	RAL 8019	
25	RAL 1027	RAL 8007	RAL 1018	RAL 8008	
35	RAL 1014	RAL 1016	RAL 1000	RAL 1032	

Температура электролита: 1-5 °C; 2-15 °C; 3-25 °C; 4-35 °C

Рисунок 1 — Зависимости изменения рабочего напряжения с течением времени от температуры электролита для сплава АМг2 при плотности тока обработки 1 (A) и 3 (Б) $A/дм^2$

Аналогичная зависимость наблюдается для образцов алюминия АД1. Чем выше рабочее напряжение процесса, тем плотнее формируемая оксидная пленка [10]. Повышение температуры приводит к увеличению химической активности электролита, доля химических реакций вблизи оксидной пленки возрастает. Последнее приводит к увеличению диаметра пор пленок и снижению их плотности (рисунок 2).

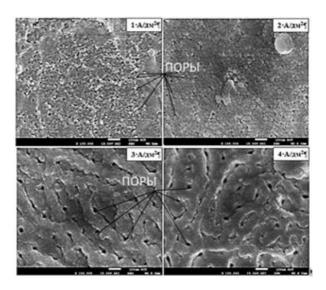


Рисунок 2 — Морфология поверхности оксидной пленки, полученной методом ВВЭО при различных плотностях тока обработки [11]

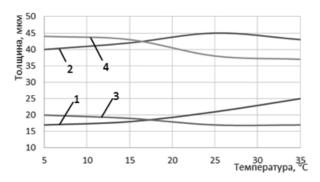

На рисунке 3 представлены изменения цвета оксидных пленок при различных плотностях тока обработки сплава АМг2. Видно, что с увеличением плотности тока цвет оксидных пленок становится более темным. Результаты ранее проведенных исследований [10] показали, что с увеличением плотности тока высоковольтного электрохимического оксидирования доля аморфной фазы на поверхности сплава возрастает. Об этом свидетельствует увеличение отношения $\sum I_{\text{аморф}}/\sum I_{\text{Al}}$, характеризующего соотношение интегральных интенсивностей линий аморфной фазы и дифракционных линий алюминиевой матрицы [11, 12].

Рисунок 3 — Изменение цвета оксидной пленки при различных плотностях тока обработки на сплаве AMr2

Было установлено, что для сплава АД1 при плотности тока 1 A/дм^2 толщина оксидной пленки изменяется от 19 мкм до 25 мкм (рисунок 4, линия 1), увеличиваясь по мере возрастания температуры процесса. При увеличении плотности тока до 4,5 A/дм^2 толщина оксидной пленки также возрастает и изменяется от 43 мкм до 46 мкм (рисунок 4, линия 2) увеличиваясь по мере возрастания температуры обработки.

Для сплава АМг2 при плотности тока 1 А/дм² толщина оксидной пленки изменяется от 17 мкм до 22 мкм (рисунок 4, линия 3), при этом она уменьшается по мере возрастания температуры обработки. При увеличении плотности тока до 4,5 А/дм² толщина оксидной пленки возрастает и изменяется от 37 мкм до 43 мкм (рисунок 4, линия 4), увеличиваясь по мере уменьшения температуры процесса.

1 - AД1, плотность тока $1 A/дм^2$; 2 - AД1, плотность тока $4,5 A/дм^2$; 3 - AMr2, плотность тока $1 A/дм^2$; 4 - AMr2, плотность тока $4,5 A/дм^2$

Рисунок 4 – Зависимость толщины оксидной пленки от температуры и плотности тока обработки

Такой характер кривой объясняется повышением температуры на границе электролит – оксидный слой и химической активностью электролита. Скорость травления оксида алюминия травящим компонентом электролита (щавелевой кислотой) возрастает – толщина оксидной пленки снижается.

Первоначальное состояние поверхности обрабатываемого образца, и предварительная обработка поверхности в значительной степени влияют на шероховатость оксидного слоя. Обработка поверхности алюминия перед оксидированием позволяет снизить шероховатость поверхности оксидной пленки.

В таблице 3 приведены результаты исследования параметра шероховатости Ra оксидных пленок, сформированных на сплавах алюминия АД1 и АМг2 с предварительной ЭПО поверхности перед ВВЭО. В результате получаются глянцевые поверхности с достаточно низким параметром шероховатости. Глянец сохраняется даже при толщинах оксидных слоев выше 40 мкм.

Образовавшаяся пленка состоит из двух слоев: плотного барьерного слоя, расположенного непосредственно на поверхности металла, и внешнего пористого слоя толщиной не менее 90 % от общей толщины всего оксидного слоя [11].

Таблица 3 — Зависимость параметров шероховатости оксидной пленки от температуры оксидирования и плотности тока обработки для сплавов АД1 и АМг2

	Параметр шероховатости Ra, мкм						
Темпера- тура, °С	АД	1	АМг2				
	Плотность тока 1 A/дм^2	Плотность	Плотность тока	Плотность			
		тока	1 A/дм ²	тока			
		4,5 A/дм ²	т л/ди	4,5 A/дм ²			
5	0,224	0,212	0,147	0,197			
15	0,144	0,145	0,180	0,228			
25	0,125	0,154	0,158	0,184			
35	0,110	0,129	0,125	0,120			

Результаты измерения коррозионной стойкости представлены в таблице 4. Изменения в массе образцов после испытаний на коррозионную стойкость показали, что формируемые оксидные слои об-

ладают повышенной коррозионной стойкостью к воздействию агрессивной среды.

Таблица 4 – Изменение массы образцов при коррозионных испытаниях

Режимы оксидирования	Исходная масса образца	Масса образца после 96 ч в камере	Показатель изменения массы, Γ/M^2 ч				
5 °C, 1 А/дм ²	2,4995	2,5004	0,0009				
5 °C, 4,5 А/дм ²	2,5589	2,5617	0,0029				
15 °C, 1 А/дм ²	2,3731	2,3732	0,0001				
15 °C, 4,5 А/дм ²	2,4355	2,4378	0,0024				
25 °C, 1 А/дм ²	2,3811	2,3819	0,0008				
25 °C, 4,5 А/дм ²	2,2667	2,2696	0,0030				
35 °C, 1 А/дм ²	2,3398	2,3413	0,0016				
35 °C, 4,5 А/дм ²	2,3821	2,3863	0,0044				
	АМг2						
5°C, 1 А/дм ²	2,3465	2,3467	0,0002				
5 °C, 4,5 А/дм ²	2,5153	2,5174	0,0022				
15 °C, 1 А/дм ²	2,3102	2,3118	0,0017				
15 °C, 4,5 А/дм ²	2,3214	2,3248	0,0035				
25 °C, 1 А/дм ²	2,1507	2,1520	0,0014				
25 °C, 4,5 А/дм ²	2,6313	2,6348	0,0036				
35 °C, 1 А/дм ²	2,5254	2,5274	0,0021				
35 °C, 4,5 А/дм ²	2,4921	2,5000	0,0082				

Таким образом, для каждого алюминиевого сплава характерно формирование анодного оксида различной тональности. Так, сплавы алюминия с низким содержанием примесей и легирующих элементов оксидируются с образованием от темно-желтых (RAL 8017) до золотистого (RAL 1000) цвета оксидных пленок, сплавы алюминия с содержанием магния — от черного (RAL 9017) до светло-

желтого цвета (RAL 1014). Цвета можно регулировать, изменяя плотность тока, состав электролита и температуру процесса.

Формируемые оксидные покрытия обладают низкой шероховатостью и высокой коррозионной стойкостью, что позволяет использовать метод ВВЭО для изделий декоративного назначения применяемых в агрессивных средах.

Литература

- **1. Хенли, В.Ф.** Анодное оксидирование алюминия и его сплавов / В.Ф. Хенли Пер. с анг. / Под ред. Синявского В.С. М.: Металлургия, 1986. 152 с.
- **2.** Синявский, В.С. Защитно-декоративные свойства цветных светостойких анодных покрытий на алюминиевых сплавах / В.С. Синявский, К.И. Макарова // Защита металлов. 1987. Т. 23. N_2 . 1. С. 23—32.
- **3.** Синявский, В.С. Исследование характеристик твёрдого цветного анодирования алюминиевых сплавов для строительства и бытовой техники / В.С. Синявский, Т.В. Александрова // Технология легких сплавов. -2007. №. 4. C. 133-137.
- **4. Аверьянов, Е.Е.** Справочник по анодированию / Е.Е. Аверьянов. М.: Машиностроение, 1988. 224 с.
- **5. Томашов, Н.Д.** Толстослойное анодирование алюминия и его сплавов / Н.Д. Томашов, М.Н. Тюкина, Ф.П. Заливалов // М.: Машиностроение. -1968.-157 с.
- **6. Куликов, И.С.** Электролитно-плазменная обработка материалов / И.С. Куликов, С.В. Ващенко, А.Я. Каменев. Минск: Беларуская навука, 2010. 232 с.
- **7.** Способ электролитно-плазменной обработки поверхности изделий из алюминия или алюминиевых сплавов: заявка, МПК C25F 3/20 / Ю.В. Соколов, И.Л. Поболь, А.А. Паршуто, В.А. Томило, А.Э. Паршуто, В.А. Хлебцевич; заявитель БНТУ. № а 20150376; заявл. 14.07.2015.
- **8.** Соколов, Ю.В. Получение глянцевых покрытий алюмооксидной керамики на сплаве Д16 / Ю.В. Соколов, И.П. Смягликов, А.А. Паршуто // Наука образованию, производству, экономике: материалы 11-й Междунар. науч.-техн. конф., Минск, январь, 2013; в 2 т. / Белорус. нац. техн. ун-т; редкол. Минск, 2013. Т. 1. С. 367—368.

- 9. Шкала цвета Ral [Электронный ресурс]. Режим доступа: URL: http://vseokraskah.net/shkala-ral.
- **10.** Соколов, Ю.В. Исследование оксидных пленок, полученных методом высоковольтного электрохимического оксидирования / Ю.В. Соколов, В.А. Кукареко, А.А. Паршуто // Металлургия: Республ. межведом. сб. науч. тр. Минск: БНТУ, 2014. Вып. 35. С. 199–207.
- **11. Технология** получения многофункциональных оксидных покрытий на деталях из алюминиевых сплавов : автореф. дис. ... канд. техн. наук : 05.02.07 / A.A. Паршуто ; Гос. науч. учр-е «ФТИ НАН Беларуси». Минск, 2016. 23 с.
- **12.** Соколов, Ю.В. Исследование влияния режимов оксидирования на цветовую гамму оксидных пленок / Ю.В. Соколов, А.А. Паршуто, А.А. Марышева // Наука образованию, производству, экономике: материалы 11-й Междунар. науч.-техн. конф., Минск, январь, 2016; в 2 т. / Белорус. нац. техн. ун-т; редкол. Минск, 2016. Т. 1. С. 408.

УДК 626.791

Н.И. УРБАНОВИЧ, канд. техн. наук, К.Э. БАРАНОВСКИЙ, канд. техн. наук, И.Б. ПРОВОРОВА, канд. техн. наук, Е.В. РОЗЕНБЕРГ (БНТУ), А.А. РАДЧЕНКО, канд. техн. наук, З.В. ИГНАТОВИЧ (ОХП «Институт сварки и защитных покрытий НАН Б»)

ОЦЕНКА ВЛИЯНИЯ МОДИФИЦИРУЮЩИХ ДОБАВОК В ПОКРЫТИИ ЭЛЕКТРОДОВ МАРКИ УОНИ-13/55 НА ГЛУБИНУ ПРОПЛАВЛЕНИЯ СТАЛИ МАРКИ СТ. 3 И МИКРОСТРУКТУРУ НАПЛАВЛЕННОГО МЕТАЛЛА

Сварка электродами с покрытиями в настоящее время является ведущим технологическим процессом при монтаже и ремонте оборудования промышленных предприятий.