СПЕКТРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ LaInO₃:Er³⁺

<u>Н. Миронова-Улмане</u>, ¹ В. Скворцова¹, А. Шараковский¹, Г. Чикваидзе, ¹ Е.К., $Oxho^2$, Л.А. Башкиров²

¹Институт физики твердого тела Латвийского университета e-mail: nina@cfi.lu.lv

²Белорусский государственный технологический университет e-mail: bashkirov@belstu.by

В настоящее время большое внимание было обращено на изучение оптических свойств перовскита LaInO₃, легированного ионами редкоземельных редкоземельных Иодаты, легированные ионами считаются хорошими фото- и катодолюминесцентными люминофорами [1, 2] и могут быть использованы в производстве светодиодов. Среди преимуществ этих люминофоров можно считать возможность возбуждения люминесцении в ближней УФ или видимой области спектра и стабильность в влажной атмосфере [2, 3]. В настоящей работе LaInO₃: Er³⁺ с различным содержанием ионов Er³⁺ были синтезированы с использованием соосаждения и последующей термообработки гидроксидов. измерения ап-конверсионной люминесценции проводились на Андор SR-303i-В-спектрометра, соединенного с камерой и ICCD и с помощью инфракрасного лазера 980 nm, исспользуемого в качестве возбуждения. Рентгеновская дифракция (XRD) Измерения источника проводились на дифрактометре Pro PANalytical X'Pert использованием Си Ка

LaInO3: Er³²

Рентгенограмма образцов LaInO₃: Er^{3+} , которые подвергались термообработке при 1250° C, показана на рис.1. Присутствует только LaInO₃ фаза и не наблюдаются дифракционные пики In_2O_3 , La_2O_3 и Er_2O_3 при данных концетрациях легирования. Это указывает на то, что ионы эрбия полностью растворяются в кристаллической решетки $LaInO_3$.

трубку напряжение 40 кВ и ток 30 мА.

При возбуждении LaInO₃: Er³⁺ инфракрасным лазером с длиной волны 980 нм

наблюдается сильное зеленое свечение образцов до концентрации эрбия 2 мол. % и от оранжевого до красного свечения при концентрациях эрбия более 2 мол. %.

Исследована кинетика затухания люминесценции эрбия, в зависимости от его концентрации в $LaInO_3$. В образцах $LaInO_3$: Er^{3+} с низкой концентрацией эрбия наблюдается одна компонента экспоненциального затухания люминесценци. При увеличении концентрации эрбия в $LaInO_3$ наблюдается дополнительная компонента более быстрого затухания, что соответствует процессу передачи энергии.

При высоких концентрациях ионов эрбия кинетики затухания становятся короче благодаря эффективному процессу кросс релаксации между соседними ионами Er^{3+} .

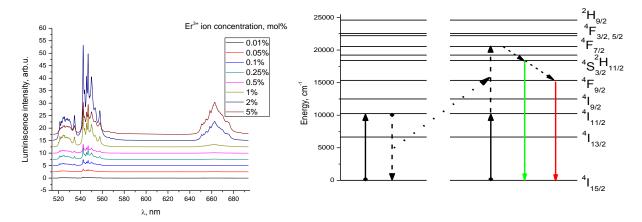


Рис. 2. Зависимости ап-конверсионных спектров люминесцеиции LaInO₃: Er^{3+} от концентрации ионов эрбия (слева), диаграмма энергетических уровней ионов Er^{3+} и возможные электронные переходы при ап-конверсионной люминесценции (справа)

Анализ спектров люминесценции $LaInO_3$: Er^{3+} в зависимости от концентрации ионов Er^{3+} показал наличие концентрационного тушения (начиная с 2 моль%).

Измерены спектры комбинационного рассеяния (Рамана спектры). Наблюдалась зависимость Рамана спектров от длины волны возбуждения, что связано с люминесценцией редкоземельных элементов.

Литература

- 1. I. N. Kandidatova, L. A. Bashkirov, G. S. Petrov, Proceedings of BSTU. 2012. Issue 3. Chemistry and Technology of Inorganic Substances
- 2. New opportunities for lanthanide luminescence J.-C. G. Bünzli [et al.], Journal of rare earths. 2007. Vol. 25, Issue 5, P. 257–274.
- 3. Электрические свойства двойных оксидов индия и РЗЭ / Н. Б. Гориловская [и др.] Журнал неорганической химии. 1982. Т. 27, вып. 3. С. 592–594.