- 3. Железобетонные конструкции. Основы теории, расчёта и конструирования. Учебное пособие/Т.М. Пецольд [и др.]; под ред. Т.М. Пецольда, В.В.Тура. Брест: БГТУ, 2003. 380с.: ил.
- 4. FIB. Structural connections for precast concrete buildings. Guide to good practice prepared by Task Group 6.2. 2008 360c.

УДК 691.87

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОЧНОСТИ СЦЕПЛЕНИЯ С БЕТОНОМ СТЕКЛОПЛАСТИКОВОЙ АРМАТУРЫ ПРОИЗВОДИТЕЛЕЙ РЕСПУБЛИКИ БЕЛАРУСЬ

ХОТЬКО А.А., САДИН ЭБРАИМ ЯГУБ Белорусский национальный технический университет Минск, Беларусь

Одним из решений, позволяющих экономить стальную арматуру в железобетонных конструкциях, является использование в качестве армирования композитной (стеклопластиковой и базальтопластиковой) арматуры в предварительно напряжённых изгибаемых несущих композитобетонных конструкциях /1, 2, 3, 4, 5/.

При этом является очевидным тот факт, что обладая различными параметрами периодического профиля, стеклопластиковая арматура различных производителей будет иметь и различные характеристики сцепления с бетоном. Следует отметить, что согласно исследованиям различных авторов, именно зацепление за бетон выступов профиля и микронеровностей поверхности арматуры (по сравнению с остальными факторами) оказывают решающее влияние на совместную работу арматуры и бетона. Учитывая то, что при армировании бетонных конструкций, эффективное использование стеклопластиковой арматуры возможно только при выполнении предварительного напряжения последней, периодический профиль арматуры, обеспечивающий совместную работу арматурных стержней и бетона приобретает особое значение, оказывая влияние на ширину раскрытия трещин и прогибы элементов /1/.

С целью разработки предложений по расчету анкеровки в бетоне композитной стержневой арматуры производителей Республики

Беларусь предполагалось исследовать влияние диаметра и длины заделки арматурных стержней на прочность сцепления с бетоном композитной арматуры различных производителей в изгибаемых элементах:

Исследования выполняли для композитной арматуры трех различных производителей Республик Беларусь (ЧП «Минпласт» г. Минск, ОАО «Стройкомпозит, г. Гомель и ООО «Научнопроизводственная компания «Бизнес-Континент» (г.Брест).

Исследования предусматривали сравнительные испытания балок на свободных опорах, армированных стержнями стеклопластиковой арматуры диаметром от 4мм до 10 мм, производства ООО «Строй-Композит» (г.Гомель), ООО «Научно-производственная компания «Бизнес-Континент» (г.Брест) и ЧП «МИНПЛАСТ» (г.Минск) с различными длинами контакта арматуры с бетоном (10d, 20d и 30d)

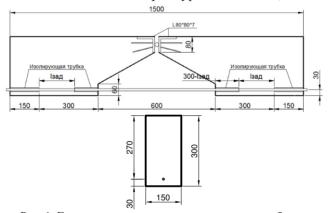


Рис. 1. Геометрические характеристики опытных балок

Поперечное сечение опытных образцов принято прямоугольным с размерами сторон $b \times h = 150 \times 300$ мм. Длина образцов L=1500мм. Опытная балка в середине разделена на две части. Эффективная высота бетона (высота сжатой зоны бетона) зафиксирована путем установки стальных уголков в пределах высоты x_{eff} =80мм с шарниром между ними (рис. 1). В нижней части в пределах зоны чистого изгиба (в пределах 600мм) бетон отсутствует. При этом в одной части заделки (l_{3ao}) композитная арматура находилась в контакте с бетоном, а в другой части (150мм и 300- l_{3ao}) сцепление искусственно исключалось (стержень помещался в изолирующую трубку). Попе-

речная и сжатая арматура отсутствует. Величина относительного пролета среза принята постоянной и равной 450мм.

Контроль геометрических параметров профиля арматуры производился при помощи штангельглубиномера до формования образцов (табл. 1).

Таблица 1 Параметры профилей арматуры опытных образцов

Производитель СПА	Диаметр тела c тержня $d_{\scriptscriptstyle HOM}$, мм	Диаметр с профилем $D_{npo\varphi}$, мм	Шаг навив- ки профиля t, мм	Угол навивки профиля α, гра- дусов
ООО «СтройКом- позит»	4	5.1	11.5	60
	6	7.0	11.5	60
	7.7	8.8	11.5	60
	8	9.0	11.5	60
	10	11	11	60
ЧП	5.5	5.5	2	80
«МИНПЛАСТ»	7.5	7.5	2	80
ООО «Научно-	5	7	11	25-30
производственная компания «Биз- нес-Континент»	9,0	10.0	11	25-30
	9.5	10.5	11	25-30

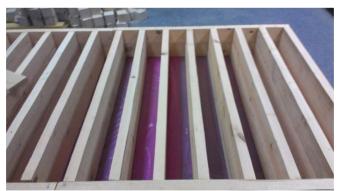


Рис. 2. Деревянная опалубка для изготовления опытных образцов

Опытные образцы-балки изготовливали в разборной деревянной опалубке (рис.2) с формованием в горизонтальном положении (для арматуры). Бетонная смесь для опытных образцов изготавливалась

на растворобетонном узле строительной компании ИООО «Бел-Парс». Проектируемый класс бетона С30/37. Бетонирование производилось с уплотнением бетонной смеси штыкованием. После формования предусматривалась выдержка их в опалубке в течении двух недель для набора прочности, достаточной для разупалубливания.

Для повышения точности испытаний и для установления равных условий для всех образцов, все образцы изготавливали из одного замеса и испытывали с минимальной разницей во времени. Опытные образцы-балки в процессе твердения находились под слоем регулярно увлажняемого слоя опилок, покрытого полиэтиленовой плёнкой для предотвращения испарения влаги.

Внешний вид опытного образца балки для испытания на сцепление с бетоном композитной арматуры представлен на рисунке 3.

Рис. 3 – Внешний вид опытного образца ББ8-20

Испытания проводились на гидравлическом прессе кафедры ЖБК с расстоянием между двумя точками приложения нагрузки на балку 500 мм, расположенными симметрично относительно центра пролета. Расстояние от опоры до места приложения нагрузки принято 450мм.

Для изучения влияния диаметра и длины контакта с бетоном стеклопластиковых арматурных стержней на прочность сцепления с бетоном композитной арматуры различных производителей относительно бетона изгибаемых железобетонных элементов, контролировали характер разрушения опытных образцов и максимальную нагрузку, при котором сцепление стеклопластиковой арматуры с бетоном не нарушено (P_{max}) ; Внешний вид установки для проведения испытаний представлен на рисунке 4.

Рис. 4. Внешний вид установки для испытаний

Разрушение опытных образцов происходило в результате возникновения одного из трех случаев: проскальзывания арматуры относительно бетона, скалывания защитного слоя бетона (фото слайда) или разрыва композитной арматуры (рис. 5, 6, 7).

Рис. 5. Опытный образец после разрушения в результате разрыва арматуры

Рис. 6. Место разрыва арматуры

Рис. 7. Опытный образец после разрушения в результате скола защитного слоя бетона

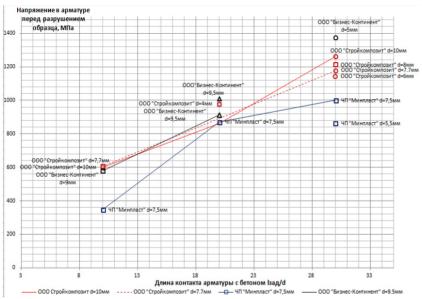


Рис. 8. График зависимости предельных напряжений в арматуре в момент разрушения образцов от длины контакта арматуры с бетоном

Предельная нагрузка перед разрушением образцов, зависела от величины заделки арматуры в бетон и диаметра стеклопластиковой арматуры. На представленном графике рисунка 8 красным цветом помечены образцы с арматурой производства ООО «Стройкомпозит», черным цветом — образцы с арматурой производства ООО»Бизнес-континент» и синим цветом — образцы с арматурой

частного предприятия «Минпласт». Маркер в виде квадратика обозначает разрушение образца по причине нарушения анкеровки арматуры в бетоне вследствие ее проскальзывания, маркер в виде кружочка обозначает, что образец разрушился по причине разрыва стеклопластиковой арматуры, и маркер в виде треугольника показывает на графике образцы, в которых разрушению предшествовал скол защитного слоя бетона арматуры.

Четыре опытных образца с длиной заделки арматуры в бетон равной 30d разрушались по причине разрыва стеклопластиковой арматуры. Причем три образца из разрушившихся по причине разрыва арматуры были со стержнями производства ООО «Стройкомпозит» (Ø6мм, Ø7,7мм и Ø10мм), и один образец с арматурой производства ООО «Бизнес-континент» (Ø5мм). Стоит отметить, что один образец с длиной заделки 30d и с арматурой производства ООО «Стройкомпозит» (Ø8мм), который разрушился вследствие проскальзывания арматуры относительно бетона, достиг предельной нагрузки перед разрушением, соответствующей напряжениям в арматуре σ=1213МПа. Учитывая, что данное значение соответствует декларируемому производителем временному сопротивлению разрыва стеклопластиковой арматуры, можно сделать вывод, что арматура в предельном состоянии перед разрушением образца, была близка к разрыву.

Наиболее низкие показатели сцепления арматуры с бетоном показали образцы с арматурой производства частного предприятия «Минпласт», в которых разрушение балок со всеми длинами контакта стержней с бетоном сопровождалось проскальзыванием арматуры относительно бетона.

Так, с увеличением длины контакта арматуры с бетоном с 10d до 30d предельное усилие на загруженном конце арматуры (N_{max}) для образцов со стержнями производства ЧП «Минпласт» увеличилось от значения, соответствующего напряжениям 347МПа до значений, соответствующим напряжениям 1000МПа. Для сравнения, максимальные напряжения в арматуре перед разрушением образцов со стержнями производства ООО «Стройкомпозит» и ООО «Бизнесконтинент» увеличивались с увеличением длины контакта от 10d до 30d от значений \approx 600МПа до 1150...1350МПа.

Диаметр арматуры образцов не оказывал значительного влияния на величину предельной нагрузки перед разрушением.

Анализируя данные испытаний, можно сделать вывод, что для обеспечения работы стеклопластбетонных конструкций с полным расчетным сопротивлением в арматуре, требуемая длина анкеровки стеклопластиковой арматуры производства ООО «Стройкомпозит» и ООО «Бизнес-Континент» составляет ≈30d. Для случая с арматурой производства частного предприятия «Минпласт», длина заделки 30d не достаточна для обеспечения работы стеклопластбетонных конструкций с полным расчетным сопротивлением в арматуре. С целью разработки предложений по расчетной оценке длины анкеровки стеклопластиковой арматуры, ведется анализ данных измерения перемещений арматуры относительно бетона.

ЛИТЕРАТУРА

- 1. Тур В.В., Малыха В.В. Сопротивление изгибаемых железобетонных элементов с комбинированным армированием стеклопластиковыми и стальными стержнями // Ресурсоекономні матеріали, конструкції, будовлі та споруди.— Збірнік наукових праць, Вип. 24, 2012.— Рівне.— с. 271–281.
 - ModelCode 2010.
- 3. Фролов, Н.П. Стеклопластиковая арматура и стеклопластбетонные конструкции / Н.П. Фролов. Москва: Стройиздат, 1980. 104с.
- 4. Николаев, Е. Применение композитных материалов в строительстве в мире. Потенциал роста в России / Е. Николаев // ООО «Гален» [Электронный ресурс] 2011. –
- 5. Неметаллическая арматура: опыт разработки и применения неметаллической арматуры в СССР и за рубежом // Технологической группы «ЭКИПАЖ» (Украина, Харьков) [Электронный ресурс] 2009.