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We consider the normalized Ricci flow on generalized Wallach spaces that could be 

reduced to a system of nonlinear ODEs. As a main result we get the classification of degenerate 

singular points of the system under consideration in the important partial case  ji аa  , 

}3,2,1{, ji , ji  . In general the problem can also be considered as two-parametric bifurcations 

of solutions of abstract dynamical systems. Thus the problem under investigation is interesting not 

only in geometrical sense.  
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In the present work we continue investigations started in [1-7]. Consider the autonomous 

system of nonlinear ODEs obtained in [6]:   
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Recall that system (1) arises at investigations of Ricci flows ([8], [9]) on generalized 

Wallach spaces (see details in [3-5]).  As it was proved in [6], system (1) could be equivalently 

reduced to a system of two differential equations of the type 
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In Theorems 1-3 of [2] we investigated the case   bаa  21 , сa 3 , important from a 

geometrical point of view, where ]2/1,0(, сb , and determined all possible values of the 
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parameters b  and с  ensuring the system (2) degenerate singular points with 21 xx   (see [1] for 

detail).  Denote ))(21(41: cbcD  . In the present work these investigations are continued. 

More precisely, we offer a qualitative classification of such singular points. Our main results are 

contained in Theorems 1-3 (see [6,7]). 

Тheorem 1. Let  0D . Then for the singular point ))(2,)(2(),( 0
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system (2) only the following types of singularities are possible:  
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1 xx  could be a nilpotent singular point. 

Тheorem 2. Let  10  D , D1 . Then for the singular point (7) of the system (2) 

only the following types of singularities are possible:  
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Тheorem 3. Let  0D , D1 . Then for the singular point (7) of the system (2) only 

the following types of singularities are possible:  
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