## Трение в подкладных катках

Василенок В. Д., Бирич В.В., Зенькович А.А. Белорусский национальный технический университет

Ставится задача рассмотреть способы уменьшения трения в соответствии с рекомендацией Жуковского Н.Е., в подкладных катках, а также определить коэффициент трения качения от угла наклона поверхности к горизонту разных соприкасающихся поверхностей.

Подкладные катки применяются при перемещении грузов по горизонтальной и наклонной плоскостям и представляют собой прообраз современных роликовых и шариковых подшипников.

Общая нагрузка Q распределяется по отдельным каткам. Полагаем коэффициенты трения качения для всех катков одинаковыми. Это позволяет при определении приведенного коэффициента трения рассматривать один каток и считать, что к нему приложена вся нагрузка Q. Однако качение катков 1 происходит как по неподвижному звену 3, так и по перемещенному звену 2 и коэффициенты трения качения k и k' будут разными, если материалы звеньев 3 и 2 различны.

Пренебрегая собственным весом катка 1, считаем, что на него действуют всего две реакции R в точках B и B', сдвинутых относительно точек A и A' на расстояния k и k'. Точка B', сдвинута влево, так как качение катка 1 по звену 2 происходит в эту сторону.

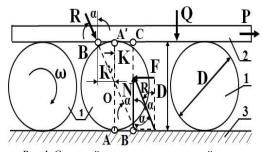
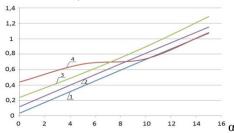



Рис. 1. Силы, действующие на подкладной каток.

При равномерном движении силы R должны быть противоположны одна другой и, значит, должны быть направлены по линии ВВ', составляющей некоторый угол α с вертикальной осью.

Рассмотрим силы, действующие на подкладной каток. Из рис. 1 находим  $tg\alpha = \frac{\mathcal{B}^{*}\mathcal{C}}{\mathcal{B}\mathcal{C}} = \frac{k+kr}{\mathcal{D}}$ 


Реакцию R можно разложить на составляющие N и F и определить приведенный коэффициент трения f' из уравнения  $f' = \frac{F}{N} = tg\alpha = \frac{k + kr}{D}$ .

Если задана нагрузка Q и требуется определить силу P, необходимую для перемещения звена 2, то, определив приведенный коэффициент трения f', находим: P = F = f'N = f'Q.

При перемещении оборудования на катках по горизонтальной поверхности тяговое усилие, необходимое для его перемещения, определяется по выражению P=Q  $\frac{k+kr}{D}$ . Исходя из полученной формулы  $f=tg\alpha=\frac{k+kr}{D}$ , найдем коэффициент трения качения для разных материалов соприкасающихся поверхностей таких как: сталь по стали, сталь по камню, сталь по бетону, сталь по дереву с углами наклона поверхности к горизонту  $\alpha=0^\circ, 5^\circ, 10^\circ, 15^\circ$ .

| Материал<br>соприкаса<br>ющихся<br>поверхност<br>ей | Угол<br>наклона<br>поверхно<br>сти к<br>горизонту<br>, град | Материал катков: сталь Диаметр катков: 150 мм | Материал<br>соприкасаю<br>щихся<br>поверхносте<br>й | Угол<br>наклона<br>поверхност<br>и к<br>горизонту,<br>град | Материал<br>катков: сталь<br>Диаметр<br>катков: 150<br>мм |
|-----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Сталь по стали                                      | 0                                                           | 0,009                                         | Сталь по<br>бетону                                  | 0                                                          | 0,060                                                     |
|                                                     | 5                                                           | 0,096                                         |                                                     | 5                                                          | 0,138                                                     |
|                                                     | 10                                                          | 0,183                                         |                                                     | 10                                                         | 0,224                                                     |
|                                                     | 15                                                          | 0,268                                         |                                                     | 15                                                         | 0,322                                                     |
| Сталь по<br>камню                                   | 0                                                           | 0,110                                         | Сталь по<br>дереву                                  | 0                                                          | 0,030                                                     |
|                                                     | 5                                                           | 0,168                                         |                                                     | 5                                                          | 0,117                                                     |
|                                                     | 10                                                          | 0,185                                         |                                                     | 10                                                         | 0,203                                                     |
|                                                     | 15                                                          | 0,270                                         |                                                     | 15                                                         | 0,288                                                     |

Построим графики зависимости силы трения от угла наклона (рис. 2, значения приведены в таблице)



1-сталь по стали, 2 – сталь по дереву, 3 – сталь по бетону, 4 – сталь по камню. Рис. 2 Графики зависимости силы трения от угла наклона

Проанализировав график можно сделать вывод, что чем тверже материал соприкасающихся поверхностей, тем меньше трение качения. Именно поэтому перемещать груз по стали намного легче, чем по камню.

Трение качения возникает при качении одного твердого тела по поверхности другого. Существенное значение имеет характер распределения деформации поверхности, по которой катится тело, и, соответственно, сил реакции поверхности. При отсутствии трения качения подкладные катки не смогли бы ездить и перевозить грузы. В гололедицу, когда трение между соприкасающимися поверхностями становится малым, катки начинают

буксовать на месте. Именно трение останавливает катки при торможении, иначе их невозможно было бы остановить. В этом – положительная роль трения. Но оно часто играет отрицательную роль, вызывая изнашивание движущихся частей различных механизмов. Тогда его стараются уменьшить, и для этого существуют разные способы.

Рассмотрим, как достигается уменьшение силы трения при перемещении тела в направлении, перпендикулярном основному движению. Пусть тело массы m прижато силой Rn к шероховатой плоскости П и совершает движение с постоянной скоростью  $v_x$  под действием силы  $P_x$ . Представим теперь, что движущемуся телу силой  $P_y$  сообщается дополнительное движение с постоянной скоростью  $v_y$  в перпендикулярном направлении.

Уравнения движения тела в предположении, что  $\ddot{x}=0$ ,  $\ddot{y}=0$ , имеют вид  $fR_n=\frac{x}{\sqrt{x^2+y^2}}=P_x$ ;  $fR_n=\frac{y}{\sqrt{x^2+y^2}}=P_y$  (рис. a), где f – коэффициент трения скольжения;  $F=f\overline{R}_m$  — сила трения, направленная противоположно скорости результирующего перемещения  $v=\sqrt{\dot{x}^2+\dot{y}^2}$  (рис. 3).

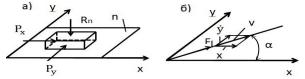



Рис. З Воздействие силы трения

Обозначив через  $\alpha$  угол, образуемый скоростью v результирующего перемещения с осью x, получим  $\alpha = arctg(\frac{1}{x})$ . Если у мало по отношению к x, можно принять, что  $\alpha = \frac{x}{x}$ . Следовательно  $P_x = fR_n cos\alpha = F$ ;  $P_y = fR_n sin\alpha = F_\alpha$ .

Если, как это было принято,  $\dot{y}$  << x, перемещение тела в направлении оси у (в направлении, перпендикулярном основному движению) будет совершаться под действием незначительной по величине силы  $P_y$ . Выражению для  $P_y$  можно придать такую форму:  $P_y = -F_y = k\dot{y}$ , где  $k = \frac{fR_n}{x}$  (x = const).

Следовательно, сила трения  $F_y$  подобна силе вязкого трения, связана линейной зависимостью со скоростью  $\dot{y}$ . В начале движения в направлении у и не приходится преодолевать силу трения покоя, так как при  $\dot{y}=0$   $P_y=0$ . В результате анализа выяснилось, что чем тверже материал соприкасающихся поверхностей, тем меньше трение качения, существенное значение имеет характер распределения деформации поверхности, по которой катится тело, и, соответственно, сил реакции поверхности.