Использование комплексного анализа в операторном методе

Акимов В.А.

Белорусский национальный технический университет

Рассмотрим символический оператор дифференцирования бесконечного высокого порядка, содержащий мнимую единицу:

$$T_l = \sin ld_x = -ish(ild_x) = -\frac{i}{2}(e^{ild_x} - e^{-ild_x})$$
, где обозначено $d_x = \frac{d}{dx}$ —

операция дифференцирования, а $i = \sqrt{-1}$ – мнимая единица. Теперь введем еще один прямой $V_n = 1 + (id_x)^2 / \delta_n^2 = 1 - d_x^2 / \delta_n^2$ и обратный ему

оператор
$$V_n^{-1}[f(x)] = \frac{f(x)}{1 + (id_x)^2} = \frac{f(x)}{1 - d_x^2/\delta_n^2}$$

На основе принципа суперпозиций устанавливаем свойства операторов $D_0 = T_l / ld_x$ и $D_1 = T_l V_n^{-1}$ в основном классе гиперболических функций:

1.
$$D_0 = \frac{\sin(ld_x)}{ld_x}$$
:

 $D_0 [sh\delta_m x] = 0$, $D_0 [ch\delta_m x] = 0$, $D_0 [C] = C$.

2.
$$D_1 = \frac{\sin(ld_x)}{1 - d_x^2 / \delta_n^2}$$
:

$$D_1 [sh\delta_m x] = \begin{cases} \frac{(-1)^{n+1}l\delta_n}{2} ch\delta_n x & \text{при } m \neq n \\ 0 & \text{при } m = n \end{cases}$$

$$D_1 [ch\delta_m x] = \begin{cases} \frac{(-1)^{n+1}l\delta_n}{2} sh\delta_n x & \text{при } m \neq n \\ 0 & \text{при } m = n \end{cases}$$

$$D_1[C] = 0$$
 независимо от m и n

при m=n

Аналогичным образом устанавливаются свойства оператора $D_2 = ld_x D_1$

Используя предложенный комплексный подход, теперь произвольную гладкую функцию онжом разложить В гиперболический ряд. Отличительной особенностью полученного результата логическая непротиворечивость проведения математических выкладок при переходе в операторных формулах от вещественного переменного к комплексному.