
УДК 535.372, 546.05

## Новые керамические люминофоры на основе гранатов Ca<sub>2</sub>YSc<sub>2</sub>GaSi<sub>2</sub>O<sub>12</sub>, активированных ионами Eu<sup>3+</sup>

<sup>1</sup>Лойко П.А., <sup>2</sup>Хайдуков Н.М., <sup>3</sup>Юмашев К.В. <sup>1</sup>Университет ИТМО, Санкт-Петербург, Россия <sup>2</sup>Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук, Москва <sup>3</sup>Белорусский национальный технический университет

Керамические люминофоры, активированные ионами  $Eu^{3+}$  на основе редкоземельных гранатов характеризуются широкой температурной структурной устойчивостью и высокой эффективностью возбуждения люминесценции в видимой области спектра. В настоящей работе исследованы структурные и люминесцентные свойства люминофоров на основе гранатов  $\{Ca_2Y_{1-x}Eu_x\}[Sc_2](GaSi_2)O_{12}$ . На рис. 1 приведены спектры люминесценции образцов при возбуждении на длине волны 488 нм. В спектре наблюдаются полосы при 575 ( $^5D_0 \rightarrow ^7F_0$ ), 587 ( $^5D_0 \rightarrow ^7F_1$ ), 611 ( $^5D_0 \rightarrow ^7F_2$ ), 650 ( $^5D_0 \rightarrow ^7F_3$ ), 690 нм ( $^5D_0 \rightarrow ^7F_4$ ).

Электрический дипольный (ED) переход  $^5D_0 \rightarrow ^7F_2$  ионов Eu $^{3+}$  является гиперчувствительным к симметрии локального окружения, в отличии от магнитного дипольного (MD)  $^5D_0 \rightarrow ^7F_1$ . В зависимости от симметрии локального окружения и степени ее искажения, отношение интенсивностей  $R = I_{\rm ED}/I_{\rm MD}$  различно. Параметр R = 0.36 < 1 согласуется с симметрийными представлениями о координации ионов Eu $^{3+}$  в позициях симметрии  $D_2$ .



Спектры люминесценции радкоземельных гранатов  ${Ca_2Y_{l-x}Eu_x}[Sc_2](GaSi_2)O_{l2}$ , активированных ионами  $Eu^{3+}$ 

Для всех образцов цвет люминесценции – красно-оранжевый с высокой чистотой цвета (р >99 %), цветовые координаты: (x = 0.625, y = 0.374), доминантная длина волны  $\lambda_{\rm d}$  = 598.1 нм. Синтезированные материалы перспективны для разработки керамических люминофоров красной области спектра.