СЕКЦИЯ «Промышленная теплоэнергетика и теплотехника»

УДК 541.128

О применении каталитических процессов в синтезе моторных топлив

Краецкая О.Ф.

Белорусский национальный технический университет

Проблема получения высокооктановых компонентов моторных топлив и других химических продуктов из ненефтяного сырья (угля, природного газа, торфа, биомассы) становится все более актуальной в связи с многочисленными прогнозами о скором исчерпании разведанных нефтяных запасов на фоне все возрастающего потребления нефти и ростом цен на нее.

Одним из процессов получения жидких углеводородов из альтернативного сырья является синтез углеводородов из CO и H_2 – синтез Фишера-Тропша ($C\Phi T$), основную реакцию которого можно записать как:

$$(2n+2)~{\rm H_2}+n{
m CO}
ightarrow {\rm C_nH_{2n+2}}+n{
m H_2O};~\Delta{
m H_{500}}=-165,0~{
m кДж/моль}.$$
 Сопутствующей реакцией является превращение водяного газа:

$$CO + H_2O \rightarrow CO_2 + H_2$$
; $\Delta H_{298} = -39,8$ кДж/моль.

Основными способами получения синтез-газа (смеси CO и H_2) являются газификация угля или конверсия природного газа, запасы которых значительно превышают запасы нефти, а также газификация любого углеродсодержащего сырья (древесина, торф, сапропель и любая биомасса).

При полном превращении синтез-газа, содержащего компоненты в мольном соотношении $CO/H_2 = 1/2$ и приведенного к нормальным условиям, максимальный выход жидких углеводородов (в расчете на одну CH_2 -группу) составляет 208,5 г/м³.

Показатели СФТ определяются индивидуальными свойствами применяемого катализатора, способом проведения процесса и его параметрами.

На сегодняшний день мировое производство жидких углеводородов оценивается величиной около 7 млн. т/год.

Важной задачей развития этого синтеза является разработка катализаторов, обладающих высокой активностью, селективностью и стабильностью. Для создания научных основ их получения следует установить связь между физико-химическими свойствами и химическими характеристиками катализаторов, их активностью и селективностью в рассматриваемом процессе. Всестороннее исследование катализаторов дает возможность прогнозирования их каталитических свойств и целенаправленного создания новых каталитических систем.