- 2. «О внесении изменений и дополнения в постановление Совета министров Республики Беларусь от 12.12.2011 № Ј672» [Электронный ресурс]: постановление Совета министров Республики Беларусь, 22 янв. 2016 г. № 48. // ЭТАЛОН. Законодательство Республики Беларусь / Нац. центр правовой информ. Респ. Беларусь. Минск, 2017.
- 3. Водоносова Т. Н. Анализ моделей прогнозирования банкротства на строительных предприятиях Республики Беларусь / Т. Н. Водоносова // Наука и техника: международный научно-технический журнал. -2012. $\mathbb{N}2$. С. 73-78.
- 4. Коэффициенты платежеспособности (структуры капитала) [Электронный ресурс]/ Режим доступа: http://finance-place.ru/finmenedzhment/fin-instrumenty/finansoviy-analiz/koef-platejesposobnosti.html

УДК 338

Экономическая эффективность повышения энергоэффективности жилых зданий

Голубова О.С., Голёнко Ю.Н., Манюк А.Н. Белорусский национальный технический университет Минск, Беларусь

В настоящее время показатели теплозащиты многоэтажных жилых зданий достигли достаточно высоких значений. Поэтому поиск резервов экономии тепловой энергии находится в области повышения энергоэффективности инженерных систем. Энергоэффективность — эффективное (рациональное) использование энергетических ресурсов. Использование меньшего количества энергии для обеспечения того же уровня энергетического обеспечения зданий или технологических процессов на производстве. [1]

Согласно 12-й статьи 261-го Федерального закона "Об энергосбережении и о повышении энергетической эффективности", в настоящее время существуют определенные классы энергоэффективности.[2]

«Специалисты нашего института по заказу Института энергетики НАН Беларуси разработали собственную упрощенную систему

классификации, составленную на основе европейского и российского опыта. «С ее помощью можно будет оценить фонд в целом и каждое здание конкретно», — говорит младший научный сотрудник лаборатории терморегулирования Института тепло- и массообмена им. Лыкова НАН Беларуси Елена Шумская. — Параметры оценки административных зданий по возможному потенциалу использования устройств нетрадиционной энергетики мы свели в одну таблицу» [3].

Таблица 1 – Система группировки зданий по классам энергоэффективности, предлагаемая Институтом тепло- и массообмена им. Лыкова НАН Беларуси

Класс	Баллов	Рекомендации
A	390-300	Применение устройств нестандартной энерге-
		тики, вплоть до полного покрытия электриче-
		ской и тепловой нагрузки.
В	300-230	Применение устройств нетрадиционной энер-
		гетики с учетом экономической целесообраз-
		ности.
C	230-160	Применение устройств нестандартной энерге-
		тики, однако первоначальный этап тепловой
		модернизации зданий потребителей энергии
		не завершен.
D	160-40	Предлагается провести первоначальный этап
		реконструкции системы энергосбережения, в
		основе которого будут малозатратные меро-
		приятия по повышению эффективности ис-
		пользования энергии.
E	40-0	Введение системы учета параметров и расхо-
		да подачи энергоносителей, тепловая модер-
		низация здания, создание нормативных усло-
		вий обитания, при необходимости изменения
		архитектурно-планировочных решений зда-
		ния и внутренних помещений.

Тема энергосбережения при эксплуатации зданий и сооружений не теряет своей актуальности, и требования по энергоэффективно-

сти к вновь проектируемым и строящимся зданиям постоянно ужесточаются. В свете данных тенденций интересен опыт возведения в Гродно, Минске и Могилеве жилых зданий с применением различных технологий, обеспечивающих повышение их энергоэффективности.

Разработка мероприятий повышения энергоэффективности и финансирование их реализации проводилось в рамках Проекта международной технической помощи ПРООН/ГЭФ «Повышение энергетической эффективности жилых зданий в Республике Беларусь».[4]

Целью проекта, который реализовывался 4 года, является снижение потребления энергии при строительстве и эксплуатации жилых зданий и соответствующее сокращение выбросов парниковых газов.

Основное внимание в проекте уделяется проектировании и строительству энергоэффективных жилых зданий. Технические решения, реализуемые в рамках проекта повышения энергоэффективности в каждом из зданий и их экономические показатели, приведены в таблице 3.[5]

Таблица 2 – Экономические показатели эффективности реализации мероприятий, обеспечивающих повышение энергоэффективности на основании данных проекта ПРООН [5], долларов США

Поличение померения	Жилые дома в городе						
Наименование показателя	Гродно	Минск	Могилев				
Система приточно-вытяжной вентиляции							
Единовременные затраты первоначальные	471 998,97	563 622,95	943 822,51				
Сумма годовой экономии, рассчитанная по субсидированным тарифам	-2423,16	-1171,52	-1597,53				
Система солнечной фотоэлектрической станции							
Единовременные затраты первоначальные	110 787,33						
Сумма годовой экономии, рассчитанная по субсидированным тарифам	3791,06						

Окончание таблицы 2.

Okon idinic Tuosingbi 2								
Система те	Система теплового насоса на коллекторе							
Единовременные затраты первоначальные	235 005,87							
Сумма годовой экономии, рассчитанная по субсидированным тарифам	-2123,78							
Система утилизации серых стоков								
Единовременные затраты первоначальные	27 371,15	87 446,34	71 516,95					
Сумма годовой экономии, рассчитанная по субсидированным тарифам	905,26	905,26	1251,69					
Система гелиоколлекторов								
Единовременные затраты первоначальные			300 171,00					
Сумма годовой экономии, рассчитанная по субсидированным тарифам			1456,04					
Система теплового насоса на сваях								
Единовременные затраты первоначальные	58 204,96							
Сумма годовой экономии, рассчитанная по субсидированным тарифам	-317,35							

Анализ данных проведенных исследований позволяет сделать вывод о том, что затраты на возведение энергоэффективных домов экономически не окупаются. Для выхода на окупаемость технические решения, обеспечивающие повышение энергоэффективности, нуждаются в оптимизации, как с точки зрения сокращения единовременных затрат, так и с очки зрения повышения их производительности и сокращения эксплуатационных затрат.

Реализованные проекты строительства энергоэффективных зданий, обеспечивающие сокращение энергопотребления на отопление и кондиционирование, должны послужить основой для развития энергоэффективности в сфере жилищного строительства Республики Беларусь.

Список использованных источников

- 1. Википедия. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org Дата доступа: 20.11.2017
- 2. Городское хозяйство и ЖКХ. [Электронный ресурс]. Режим доступа: https://www.gkh.ru/ Дата доступа: 20.11.2017
- 3. Bellis. [Электронный ресурс]. Режим доступа: http://www.bellis.by Дата доступа: 20.11.2017.
- 4. UNDT. [Электронный ресурс]. Режим доступа: http://www.by.undp.org х— Дата доступа: 20.11.2017
- 5. Голубова О. С.: Отчет эксперта проекта ПРООН / ГЭФ «Повышение энергетической эффективности жилых зданий в Республике Беларусь», г. Минск, 2017 [Электронный ресурс]. Режим доступа: http://www.effbuild.by/about/staff/— Дата доступа: 20.11.2017

УДК 338

Байесовские сети в определении надежности строительной организации

Щитова Н.С., Голёнко Ю.Н., Манюк А.Н. Белорусский национальный технический университет, Минск, Беларусь

Экономико-математические модели находят широкое применение в современном анализе состояния строительных организаций. Одним из интересных методов, с которым мы хотим вас познакомить, является байесовский классификатор. Применение ЭММ способствует повышению объективности экономического анализа.

Цель данной работы – рассмотреть особенности факторов, влияющих на надежность строительной организации.

Надежность – выполнение взятых на себя обязательств, обеспечивающих при этом достижение поставленных целей.

О формуле, с которой начинается путь к оптимальному обучению, многие слышали: это теорема Байеса. Но посмотрим на нее в совершенно другом свете и увидим, что она намного мощнее, чем может показаться, если судить по ее повседневному применению. Теорема Байеса названа в честь её автора Томаса Байеса