УДК 621.43.013

РЕЗУЛЬТАТЫ СРАВНИТЕЛЬНЫХ ИСПЫТАНИЙ ДВИГАТЕЛЯ С ИСКРОВЫМ ЗАЖИГАНИЕМ ПРИ РАБОТЕ НА СМЕСЯХ БЕНЗИНА С ЭТАНОЛОМ

RESULTS OF THE COMPARATIVE TESTS OF THE ENGINE WITH SPARK IGNITION WHEN WORKING ON THE MIXTURES OF GASOLINE WITH ETHANOL

А.Н. Петрученко, канд. тех.наук, доц. Белорусский национальный технический университет, г. Минск, Беларусь

A. Petruchenka, Ph.D. in Engineering, Associate Professor Belarusian national technical University, Minsk, Belarus

Приведены результаты экспериментальных и выполнен анализ показателей работы двигателя с искровым зажиганием при применении бензина с 5% этанола.

The results of the experimental results are presented and the analysis of the performance of the spark ignition engine with the use of gasoline with 5% ethanol.

ВВЕДЕНИЕ

Развитие мирового научно-технического прогресса, рост численности населения и улучшение его благосостояния привели к резкому увеличению энергопотребления, обратной стороной которого является истощение углеводородных сырьевых ресурсов.

Одним из путей решения сформировавшейся проблемы является развитие альтернативной энергетики. В двигателях с искровым зажиганием в качестве топлива перспективным считается использование спиртов. Широкое применение получил в качестве моторного топлива этанол.

Выбор рационального количества этанола в смеси требует проведения исследований. Задача имеет два пути решения: экспериментальный и расчетный. Менее затратным является расчетный путь, реализация которого при использовании математической модели, адекватно описывающей процессы, протекающие в цилиндре двигателя, позволяет провести исследования по определению допустимого со-

держания этанола в смеси с бензином. Поэтому задача по поиску рационального состава бензино-этанольной смеси является важной научно-технической задачей.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Объект исследования - бензиновый двигатель с искровым зажиганием ВАЗ–2110. Двигатель смонтирован на тормозном стенде, оборудованном согласно ГОСТ 14846–81.

Сравнительные исследования мощностных и экономических показателей двигателя проводились на бензине и смесях бензина с биоэтанолом, содержащих 5% спирта [1]. Перед началом испытаний определялась стабильность и плотность бензиноэтанольных смесей.

Программа испытаний включала получение частичных скоростных характеристик в диапазоне изменения частоты вращения коленчатого вала от 2000 до 4000 мин $^{-1}$.

На рисунке представлена частичная скоростная характеристика при угле поворота дроссельной заслонки 23°.

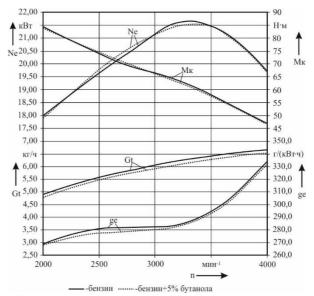


Рисунок — Зависимости мощностных, топливно-экономических показателей бензинового двигателя от частоты вращения коленчатого вала при постоянном положении дроссельной заслонки (23°)

Как видно из приведенных зависимостей наличие этанола в смесевом топливе практически не оказывает влияние на характер протекания кривых момента, мощности, часового и удельного эффективного расходов топлива.

По мере увеличения частоты вращения коленчатого вала возрастает часовой расход топлива, что при постоянном положении дроссельной заслонки связано с ростом количества циклов в единицу времени.

Минимальное значение удельного эффективного расхода топлива соответствует работе на минимальной частоте вращения коленчатого вала (2000 мин⁻¹). Этому скоростному режиму соответствует минимум механических потерь и максимум механического КПД. При дальнейшем увеличении частоты вращения коленчатого вала механические потери растут, кпд снижается.

Аналогичный характер носите изменение мощностных и топливно-экономических показателей для положений дроссельной заслонки, соответствующих углам открытия 20° и 9° (таблицы 1, 2).

Таблица 1 — Зависимость мощностных и топливно-экономических показателей бензинового двигателя от частоты вращения коленчатого вала при положении дроссельной заслонки 20°

Показа-	Топливо	Частота вращения коленчатого вала, мин-1							
тель	Топливо	2000	2400	2800	3200	3600	4000		
Мк, Н∙м	бензин	78,5	74	67,5	58	52	46		
	5% этанола	77	72	64,5	57,5	50,5	44		
Ne , кВ т	бензин	16,44	18,60	19,79	19,43	19,40	19,27		
	5% этанола	16,13	18,09	18,91	19,27	19,04	18,43		
Gt, кг/ч	бензин	5,13	5,87	6,26	6,37	6,69	6,89		
	5% этанола	5,16	5,76	6,08	6,49	6,80	7,11		
де, г/(кВт·ч)	бензин	312	315,5	316	328	336	378		
	5% этанола	316,5	318,5	319	330	357	386		

Полученные результаты исследований на бензине и его смесях с этанолом отличаются незначительно друг от друга (табл. 1). Максимальные значения мощности двигателя достигаются при отмеченном выше диапазоне частот вращения коленчатого вала (3000...3500 мин⁻¹). Различие мощностей не превышает 1%, удельного эффективного расхода топлива менее 1,5%.

Меньший угол поворота дроссельной заслонки приводит к снижению расхода топливно-воздушной смеси и, как следствие, падению мощности двигателя (таблица 2). Оцениваемая характеристика отличается высокими удельными эффективными расходами топлива, что обусловлено малыми значениями механического КПД.

Таблица 2 — Зависимость мощностных и топливно-экономических показателей бензинового двигателя от частоты вращения коленчатого вала при положении дроссельной заслонки 9°

Показа-	Топливо	Частота вращения коленчатого вала, мин-1						
тель		2000	2400	2800	3200	3600	4000	
Мк, Н∙м	бензин	55,5	45,5	36,5	26	21	16	
	5% этанола	54,5	44,5	35,5	25,5	20,5	15	
Ne, кВ т	бензин	11,62	11, 43	10,70	8,71	7,92	6,70	
	5% этанола	11,41	11,18	10,41	8,54	7,73	6,58	
Gt, кг/ч	бензин	6,95	7,35	7,72	7,76	8,03	8,20	
	5% этанола	6,94	7,25	7,55	7,70	7,95	8,0	
ge,	бензин	600	643	722	891	1014	1223	
г/(кВт·ч)	5% этанола	608	649	726	901	1030	1220	

Характер изменения результатов, приведенных в таблице 2, несколько отличается от отмеченных выше тенденций. Отсутствует выраженный экстремум мощности, наибольшее значение этого показателя достигается при \cap равном 2000 мин⁻¹. Мощность двигателя при переходе с бензина к смесевому топливу незначительно снижается, увеличение расхода топлива менее 2%.

ЗАКЛЮЧЕНИЕ

На безоэтанольных смесях, содержащих до 5% этанола, двигатель работает устойчиво.

Мощностные и экономические показатели работы дизеля при неизменном положении дроссельной заслонки на смесях, содержащих 5% этанола, практически не изменяются по сравнению с работой на бензине. Для малых углов открытия дроссельной заслонки и низких нагрузок получено снижение показателей в среднем на 1...1,5%.