Секция «ТРАКТОРЫ, МОБИЛЬНЫЕ МАШИНЫ И КОМПЛЕКСЫ» УДК 629.114

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ СВОБОДНОЙ ВЕТВИ ГУСЕНИЧНОГО ДВИЖИТЕЛЯ ТРАКТОРА

THE STUDY OF FREE OSCILLATIONS OF THE BRANCHES
THE CATERPILLAR DRIVE OF THE TRACTOR

В.Н. Плищ

Белорусский национальный технический университет, г. Минск, Беларусь

V. Plishch

Belarusian national technical University, Minsk, Belarus

На основе анализа колебательного процесса в свободной ветви гусеничного движителя приведена методика по выбору количества поддерживающих катков и предложена конструкция гусеничного движителя сельскохозяйственного трактора класса 5

Based on the analysis of the oscillatory process in the free branch of the caterpillar mover, a technique for selecting the number of supporting rollers is presented and a design of the caterpillar mover of the agricultural tractor of class 5 is proposed

ВВЕДЕНИЕ

В настоящее время на сельскохозяйственных гусеничных тракторах широко применяются резиноармированные гусеницы (РАГ). Для тракторов с РАГ, зубчатым ведущим колесом и индивидуальной подвеской опорных катков предварительное натяжение выросло до 16 кН, максимальная скорость движения до 30 км/ч. Это привело к тому, что некоторые существующие подходы по выбору параметров гусеничного движителя требуют уточнения. Так, например, в литературе отсутствуют методики и рекомендации по выбору количества поддерживающих катков с учетом натяжения РАГ и скорости движения трактора. Поэтому, основной целью данной работы является разработка методики по выбору количества поддерживающих катков в гусеничном движителе сельскохозяйственного трактора с РАГ с учетом указанных факторов.

Секция «ТРАКТОРЫ, МОБИЛЬНЫЕ МАШИНЫ И КОМПЛЕКСЫ» ОПРЕДЕЛЕНИЕ АМПЛИТУДЫ КОЛЕБАНИЙ СВОБОДНОЙ ВЕТВИ ГУСЕНИЧНОГО ДВИЖИТЕЛЯ ТРАКТОРА приведено в работе [1]. Очевидно, что резонансный режим колебаний наступит, когда выражение (1), находящееся в знаменателе, будет равно нулю

$$\omega - \frac{k\pi \partial_{\mathsf{F}}}{I} = 0 \,, \tag{1}$$

где $\partial_F = \sqrt{gF/q}$; ω - частота вынужденных колебаний; /- длина пролета ветви; g - ускорение свободного падения; F - усилие в ветви обвода; q - вес единицы длины гусеницы, k - форма колебаний.

Выражение $\frac{k\pi a_{F}}{/}$ представляет собой частоту собственных колебаний ветви гусеницы. Обозначим ее ω_{Bk}

В работе [2] установлено, что при совпадении собственных частот вертикальных или угловых колебаний корпуса ω_m и ветвей ω_{Bk} амплитуда перемещений последних может быть значительной, поэтому необходимым условием обеспечения стабилизации кинематики ветвей обвода является $\omega_m < \omega_{Bk}$. Эффект от возмущения исчезает почти полностью, когда разница между значениями этих частот составляет 20%.

В качестве критерия выбора параметров примем вывод резонансного режима за эксплуатационный режим работы трактора.

Допустив, что частота колебаний корпуса ω_m совпадает с частотой вынужденных колебаний ω и с учетом рекомендаций [2], запишем условие для выбора параметров гусеничного движителя:

$$1,2\omega \le \omega_{\mathbf{B}k} \,, \tag{2}$$

Частоту вынужденных колебаний определим по известному выражению [2]:

$$\omega = \frac{2\pi \upsilon}{\hbar} \,, \tag{3}$$

Секция «ТРАКТОРЫ, МОБИЛЬНЫЕ МАШИНЫ И КОМПЛЕКСЫ»

где υ – скорость движения трактора; $l_{\rm H}$ – длина неровности.

Частоту собственных колебаний гусеницы определим из выражения (1):

$$\omega_{_{\mathbf{B}k}} = \frac{k\pi}{/\sqrt{\frac{gF}{q}}}\,,\tag{4}$$

Объектом исследования являлся гусеничный движитель сельскохозяйственного трактора класса 5 с резиноармированной гусеницей включающий 2 поддерживающих катка (ПК) (рис. 1).

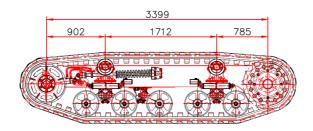
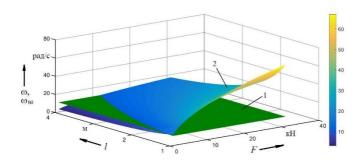



Рисунок 1 – Гусеничный движитель с двумя ПК

1 — частота вынужденных колебаний ω ; 2 — частота собственных колебаний ω_{Bk} Рисунок 2 — Зависимость частот колебаний ω и ω_{Bk} от длины пролета / и усилия в гусенице F

Используя зависимости (3) и (4) проведены исследования для агрофона «стерня» при следующих исходных данных: $I_{\rm H}=5~{\rm M},$

Секция «ТРАКТОРЫ, МОБИЛЬНЫЕ МАШИНЫ И КОМПЛЕКСЫ»

 υ = 30 км/ч; k = 1; q = 666,53 H/м; l = 1 – 4 м; F = 1 – 31 кH. Результаты расчета приведены на рис. 2.

Установлено, что при F = 16 кH, I = 1,712м и 2,614м условие выражения (2) выполняется. В связи с этим целесообразно в конструкции гусеничного движителя трактора класса 5 с РАГ использовать один ПК, размещенный ближе к ведущему колесу. Конструктивная схема такого движителя приведена на рис. 3.

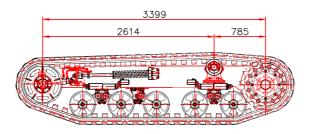


Рисунок 3 – Гусеничный движитель с одним ПК

ЗАКЛЮЧЕНИЕ

Проведенные теоретические исследования позволили упростить конструкцию гусеничного движителя и увеличить его надежность. При этом снижается вес движителя за счет уменьшения количества ПК, длины гусеничного обвода и кронштейнов, соединяющих ПК с рамой. Также увеличивается КПД движителя и снижаются стоимость и вес трактора в целом. Предложенные усовершенствования позволят сделать трактор более конкурентоспособным на рынке.

ЛИТЕРАТУРА

- 1. Плищ, В. Н. Определение амплитуды колебаний свободной ветви гусеницы трактора / В. Н. Плищ // Наука образованию, про-изводству, экономике : материалы 15 й междунар. науч.-техн. конф., Минск, 24—26 янв. 2017 г. : в 4 т. / Белорус. нац. техн. ун-т ; редкол.: Б. М. Хрусталев, Ф. А. Романюк, А. С. Калиниченко. Минск, 2017. Т. 2. С. 34.
- 2. Платонов, В. Ф. Динамика и надежность гусеничного движителя / В. Ф. Платонов. М.: Машиностроение, 1973. 232 с.