ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ

УДК 519.210

М.А. Гундина, В.В. Мамчиц

МЕТОД ПОСТРОЕНИЯ АНТИМАГИЧЕСКОГО КВАДРАТА ЧЕТВЕРТОГО ПОРЯДКА

Белорусский национальный технический университет

Антимагическим квадратом индекса n называется такая матрица размерности nxn, что суммы элементов любой строки, столбца, диагонали различны.

Рассмотрим нетрадиционный подход к построению антимагического квадрата 4 и 8 порядка. Все антимагические квадраты могут быть отнесены к двум классам, называемым, как правило, положительным и отрицательным[1]. Для каждого класса квадрата последовательность сумм определяется исходя из порядка антимагического квадрата.

Пусть А есть магический квадрат порядка n. Обозначим r_i суммы n чисел в i строке для квадрата A, тогда пусть c_j -- это сумма j-ого столбца, d_1 и d_2 суммы главных диагоналей. Пусть s_0 есть среднее значение всех сумм по строкам(столбцам), тогда $s_0 = \frac{1}{2} \left(n \cdot (n^2 + 1) \right)$.

Пусть A — это антимагический квадрат порядка п. Тогда во множестве d_1 , d_2 , r_i , c_j существует множество сумм, состоящее из $s_0, s_0 \pm 1, s_0 \pm 2, ... s_0 \pm n$, кроме этого присутствует член $s_0 - (n+1)$ или $s_0 + (n+1)$. По этому признаку все антимагические квадраты делятся на два класса. Один класс, каждый квадрат которого содержит сумму $s_0 - (n+1)$, называется отрицательным, а второй класс соответственно — положительным.

Рассмотрим квадраты 4-ого порядка. Существуют как положительные, так и отрицательные анимагические квадраты четвертого порядка.

Построим матрицу специального вида. Эта матрица имеет порядок 4x4:

$$A = \begin{pmatrix} a_{11} & 17 - a_{11} & b_{11} & b_{12} \\ a_{21} & 17 - a_{21} & b_{21} & b_{22} \\ 17 - b_{11} & 17 - b_{21} & d_{11} & d_{12} \\ 17 - b_{12} & 17 - b_{22} & 17 - d_{11} & 17 - d_{12} \end{pmatrix}$$

Берем произвольный набор, неповторяющихся целых числе от 1 до 16, тогда антимагический квадрат примет вид:

Если в матрице A поменять строки со столбцами матрицы D, получится положительный антимагический квадрат.

Теперь рассмотрим построение антимагического квадрата порядка кратного 4. Процедура построения составляет 3 этапа (рассмотрим на примере антимагического квадрата 8-ого порядка)

Шаг 1: Вычтем из каждого элемента матрицы P^- число, равное $\frac{1}{2}((n-4)^2+1)=\frac{17}{2}$ И обозначим полученную матрицу P_*^- .

Шаг 2: Строится конструкция следующего вида:

$$P_{8} = \begin{pmatrix} A^{*} & E & B^{*} \\ F & P_{*}^{-} & G \\ C^{*} & H & D^{*} \end{pmatrix},$$

где элементы матриц $A^*=(a_{\alpha\beta}^*)$, $B^*=(b_{\alpha\beta}^*)$, $C^*=(c_{\alpha\beta}^*)$ и $D^*=(d_{\alpha\beta}^*)$ удовлетворяют следующим соотношениям: $a_{\alpha 1}^*=-a_{\alpha 2}^*, d_{1\beta}^*=-d_{2\beta}^*, b_{\alpha\beta}^*=-c_{\beta\alpha}^*$, $(\alpha,\beta=1,2)$. А элементы матриц $E=(e_{\alpha x})$, $H=(h_{\alpha x})$, $F=(f_{x\alpha})$ и $G=(g_{\alpha x})$ удовлетворяют следующим соотношениям: $e_{1x}=-e_{2x}$, $f_{x1}=-f_{x2}$, $g_{x1}=-g_{x2}$, $f_{1x}=-h_{2x}$, (x=1,2,3,4).

Шаг 3: Добавим к каждому элементу матрицы $\frac{(n^2+1)}{2}$, тем самым получается искомый антимагический квадрат 8-ого порядка.

Элементы вспомогательных матриц можно найти по следущим

$$A = \begin{pmatrix} 2 + \frac{1}{2}(1 - n^2) & -2 + \frac{1}{2}(-1 + n^2) \\ -3 + \frac{1}{2}(-1 + n^2) & 3 + \frac{1}{2}(1 - n^2) \end{pmatrix},$$

$$B = \begin{pmatrix} -n + \frac{1}{2}(-1 + n^2) & \frac{1}{2}(1 - n^2) \\ 1 + \frac{1}{2}(1 - n^2) & 2 - n + \frac{1}{2}(-1 + n^2) \end{pmatrix},$$

$$C = \begin{pmatrix} n + \frac{1}{2}(1 - n^2) & -1 + \frac{1}{2}(-1 + n^2) \\ \frac{1}{2}(-1 + n^2) & -2 + n + \frac{1}{2}(1 - n^2) \end{pmatrix},$$

$$D = \begin{pmatrix} -4 + \frac{1}{2}(-1 + n^2) & 5 + \frac{1}{2}(1 - n^2) \\ 4 + \frac{1}{2}(1 - n^2) & -5 + \frac{1}{2}(-1 + n^2) \end{pmatrix}$$

соотношениям:

Заметим, что при построении квадрата выполняется допущение, что сумма четырех чисел, содержащихся в соответствующих строках(столбцах для F) матриц E,H,F, равна 0, а для G равна 1 или -1.

Список использованных источников:

1. Abe G., Unsolved problems on magic squares, Discrete Math., 127,1994. – P.3-13.

Hundzina M.A., Mamchits V.V.

THE METHOD OF THE CONSTRUCTING OF THE ANTIMAGIC SQUARE FOR FOURTH ORDER

Belarusian National Technical University

Summary

The article includes the general scheme of construction of the all kinds of the antimagic squares. The scheme for negative and positive squares of the fourth order is described.