МЕТОДИКА ВЕРОЯТНОСТНОЙ ОЦЕНКИ ПРЕВЫШЕНИЯ ПРЕДЕЛЬНЫХ ДЕФОРМАЦИЙ СИСТЕМЫ «ЗДАНИЕ – ОСНОВАНИЕ»

Кичаева О.В., канд. техн. наук, доцент (Харьковский национальный университет городского хозяйства, г. Харьков, Украина)

В статье предложена методика и разработан алгоритм решения задачи по определению вероятности (риска) превышения предельных деформаций системы «здание — основание» в рамках параметрической теории надежности. При расчетах использован метод статистических испытаний (Монте-Карло). Разработана компьютерная программа с использованием комплекса Mathcad.

In this paper a method is proposed and an algorithm for solving the problem of determining the probability (risk) of exceeding the boundary deformations of the system "building – foundation" in the framework of the parametric theory of reliability; using the method of statistical tests (Monte-Carlo). The computer program, which implements the proposed method of calculation, is developed.

В настоящее время расчеты оснований фундаментов в соответствии с нормативными документами выполняются по методу предельных состояний. Для оценки надежности используется детерминистический подход, основанный на применении частных коэффициентов надежности, что не во всех случаях дает объективную оценку. Все параметры, входящие в систему «основание — сооружение» являются случайными, и поэтому разработка методик расчета, связанных с применением вероятностных методов для оценки надежности такой системы является актуальной задачей.

Оценке надежности системы «основание — сооружение» посвящены работы таких ученых, как Ю.Л. Винников [1], Б.А. Гарагаш [2], Н.Н. Ермолаев и В.В. Михеев [3], А.П. Пшеничкин [4], В.А. Пшеничкина [5], А.Н. Трофимчук [6]. Комплексная оценка надежности и безопасности гидротехнических сооружений предложена

А.И. Вайнбергом [7]. Зарубежными исследователями — Beacher G.B [8], Honjo Y. [9], Shahin M.A. [10], Cherubini C. [11] — также рассматривались некоторые геотехнические задачи, решаемые с привлечением вероятностных методов.

Величина деформации основания является случайной величиной, которая зависит от целого ряда случайных величин: характеристик строительных материалов, действующих нагрузок и воздействий, деформационных характеристик основания и т. пр. Использование вероятностных методов для оценки надежности основания по нормативной методике представляет собой недостаточно изученную проблему.

Расчет по деформациям оснований, в соответствии с нормами Украины — ДБН В.2.1-10-2009 [12] выполняется с целью ограничения абсолютных или относительных перемещений объекта (фундамента) совместно с основанием такими границами, при которых обеспечивается эксплуатационные качества и долговечность объекта, становятся невозможными проявления недопустимых осадок, подъемов, кренов и т.пр. Для того, чтобы оценить риск (вероятность) наступления предельного состояния того или иного вида, необходимо решить задачу параметрической теории надежности с привлечением аппарата теории вероятности. В результате решения такой задачи может быть найдено значение вероятности превышения предельного значения деформаций системы «основание — сооружение». При этом выделим следующие этапы расчета.

- 1. Составление уравнений связи между входными параметрами (нагрузки и воздействия, свойства материалов и грунтов и пр.) и выходными (результаты расчета) параметрами для рассматриваемого элемента системы. Такое уравнение может быть составлено на основе анализа расчетных зависимостей, которые регламентируются нормами проектирования.
- 2. Подготовка исходных данных для расчета, заключающаяся в выделении входных параметров на случайные и неслучайные (детерминированные).
- 3. Определяются параметры распределения случайных величин, которые являются исходными данными.
- 4. Определение вероятности (риска) превышения предельного значения деформации системы на основе соответствующего решения статистической динамики.

Составление уравнения связи.

Для обеспечения эксплуатационной надежности по нормативной методике, необходимо выполнять расчет по деформациям оснований, при котором должно выполняться условие:

$$s \leq s_u$$
, (1)

где s — совместная деформация основания и сооружения, которую определяют одним из способов по ДБН; при этом для котлованов глубиной менее 5 м она составляет:

$$s = \beta \sum_{i=1}^{n} \frac{\left(\sigma_{zp,i} - \sigma_{z\gamma,i}\right) \cdot h_i}{E_i}, \qquad (2)$$

где β – безразмерный коэффициент, равный 0,8;

 E_i – модуль деформации і-го слоя грунта по ветви первичного загружения, кПа;

 h_i – толщина элементарного слоя;

n — количество слоев в пределах сжимаемой толщи H_c ; средние напряжения в элементарном слое:

$$\sigma_{zp,i} = \frac{\sigma_{zi} + \sigma_{z,i+1}}{2}, \quad \sigma_{z\gamma,i} = \frac{\sigma_{\gamma i} + \sigma_{\gamma,i+1}}{2}. \tag{3,4}$$

где $\sigma_{zp,i}$ – дополнительные напряжения от внешней нагрузки на глубине z:

$$\sigma_{zp} = \alpha \cdot p \,, \tag{5}$$

где $p = p_{cp}$ – среднее давление под подошвой фундамента;

 s_u — предельное значение совместной деформации основания и сооружения, регламентируемое нормами.

При выполнении таких расчетов согласно нормативной методике, эксплуатационная надежность системы «основание – сооружение» считается обеспеченной, если выполняется неравенство (1). Отметим, что в работе не учитывается нелинейная работа грунта основания.

Подготовка исходных данных.

Все прямо или косвенно входящие составляющие уравнения (1) являются случайными, однако некоторые величины можно принять детерминированными. В настоящей работе детерминированными считаются следующие величины: геометрические характеристики конструкции фундамента -b, l, d, d_n ; геометрические характеристики ограждающей конструкции; геометрические размеры кирпичных перегородок и толщина перекрытия; осредненный удельный вес фундамента и грунта на его обрезах γ_{mt} ; нагрузка на пол q; удельный вес материала засыпки и грунта основания. Расчетное сопротивление грунта определяется детерминистическим путем.

Все остальные параметры уравнения связи считаются случайными величинами. К числу этих параметров относятся: физические и прочностные характеристики материалов ограждающей конструкции, перекрытий, перегородок; деформационные характеристики грунта основания (модуля деформации E); вертикальная нагрузка на фундамент N, слагающаяся из собственного веса конструкций G, снеговой S и полезной нагрузок Q, также являющихся случайными величинами; среднее давление под подошвой фундамента p_{cp} ; напряжения от дополнительной нагрузки σ_{cp} ; деформации s.

В работе приняты следующие законы распределения случайных входных параметров.

- 1. Распределения $P_{\gamma b} = P_{\gamma b}(\gamma_b)$ и $P_{\gamma kk} = P_{\gamma kk}(\gamma_{kk})$ случайных величин удельных весов бетона и кирпичной кладки, которые приняты нормальными с математическими ожиданиями соответственно $m_{\gamma b}$ и $m_{\gamma kk}$ и среднеквадратическими отклонениями $\sigma_{\gamma b}$ и $\sigma_{\gamma kk}$. Значения указанных параметров определяются в соответствии с результатами испытаний или нормами проектирования.
- 2. Распределения $P_Q = P_Q(Q)$ и $P_S = P_S(S)$ случайных величин полезной нагрузки и нагрузки от снега, которые приняты нормальными с математическими ожиданиями соответственно m_Q и m_S и среднеквадратическими отклонениями σ_Q и σ_S . Значения указанных параметров могут быть определены на основании анализа массивов наблюдений за запасами воды в снеговом покрове, анализа данных

по обследованию помещений жилого и общественного фонда либо приняты в соответствии с нормами проектирования.

3. Распределение $P_E = P_E(E)$ — случайной величины модуля деформации грунта, принятого нормальным с математическим ожиданием m_E и среднеквадратическим отклонением σ_E . Значения данного параметра определяются путем анализа результатов испытаний грунта.

Все расчеты выполняются для расчетного срока службы T.

Определение вероятности превышения предельных деформаций методом статистических испытаний Монте-Карло.

Для определения вероятности превышения предельных деформаций системы «основание – сооружение» целесообразно использовать метод статистических испытаний (Монте-Карло) с использованием нормативной методики расчета осадки методом послойного суммирования. Согласно этому методу, выполняется *N* статистических испытаний. Для каждого испытания выполняются расчеты согласно следующего алгоритма.

- 1. Задаемся равномерно распределенной в интервале от 0 до 1 случайной вероятностью параметров: удельного веса бетона $P_{\gamma b}$; удельного веса кирпичной кладки $P_{\gamma kk}$; интенсивности полезной нагрузки $P_{\mathcal{Q}}$; интенсивности снеговой нагрузки $P_{\mathcal{S}}$; модуля деформации грунта E.
- 2. По значениям вероятностей находятся квантили значения соответствующих параметров по известным функциям распределения: $P_{\gamma b}$, $P_{\gamma kk}$, P_Q , P_S , E.
- 3. Определяются случайные значения вертикальной нагрузки N в зависимости от значений нагрузок G, S, Q.
- 4. Определяются случайные значения среднего давления под подошвой фундамента p_{cp} по известной формуле.
- 5. Определяется расчетное сопротивление грунта основания, при этом очерчиваются границы применимости метода послойного суммирования ($p_{cp} \le R$).
- 6. Определяются напряжения от собственного веса грунта σ_{zg} , напряжения от собственного веса грунта, снятого в котловане σ_{zy} по формулам норм и напряжения $0.2\,\sigma_{zg}$.
- 7. Определяются случайные значения напряжений от дополнительной нагрузки σ_{zp} по формуле (5).

- 8. Определяются случайные значения вертикальных деформаций s_i в каждом элементарном слое и суммарное значение s по формуле (2).
 - 9. В каждом случае проверяется условие (1).
- 10.После выполнения всех N испытаний вычисляется риск (вероятность) превышения предельных деформаций в течение расчетного срока службы P_T как отношение числа испытаний n, при которых $Y = s_u s < 0$, к числу всех испытаний N.

Число испытаний N должно быть достаточно большим, чтобы более точно определить значение Y, в данном случае число испытаний принималось $N=1x10^4$. Автором была разработана компьютерная программа для выполнения расчетов по определению риска превышения предельных деформаций в среде Mathcad.

Пример расчета. Выполнен расчет по определению вероятности превышения предельных деформаций рядового пятиэтажного кирпичного здания. В таблице 1 приведены детерминированные величины, в таблице 2 — вероятностные характеристики функций нормального распределения случайных величин.

Таблица 1 Детерминированные величины

N	Наименование параметра	Обозн.	Ед. изм.	Значение
1	Ширина фундамента	а	M	1,0
2	Длина фундамента	l	M	1,0
3	Глубина заложения фундамента	d	M	1,5
4	Толщина кирпичной стены	h	M	0,51
5	Толщина перекрытия	t	M	0,25
6	Высота этажа	H	M	3,0
7	Грузовая площадь	A	\mathbf{M}^2	3,0
8	Осредненный удельный вес фунда- мента и грунта на его обрезах	γ_{mt}	кН/м ³	20,0
9	Нагрузка на пол	q	$\kappa H/M^2$	10,0
10	Удельный вес материала засыпки	γ1	кН/м ³	16,0
11	Удельный вес грунта основания	γ	кН/м ³	18,0
12	Расчетное сопротивление грунта	R	кПа	314,057

С использованием разработанной программы выполнены расчеты по определению вероятности превышения предельной деформации основания. Результаты расчетов приведены в таблицах 3, 4.

Таблица 2 Вероятностные характеристики функций нормального распределения

N	Наименование парамет- ра	Обозна- чение	Ед. изм.	Вероятностные характер.	
				мат. ожи-	среднеквадр.
				дание т	отклон. σ
1	Удельный вес бетона	γь	$\kappa H/m^3$	25,0	0,75
2	Удельный вес кирпич-	γkk	кН/м³	18,844	0,517
	ной кладки стен и пере-				
	городок				
3	Полезная нагрузка на	P_{pol}	кН/м²	0,9	0,315
	перекрытие				
4	Нагрузка от снега	S_m	$\kappa H/m^2$	0,46	0,069
5	Модуль деформации	E	МПа	12,0	3,0
	грунта			12,0	3,0
6	Среднее давление под	p_{cp}	кПа	233,276	28,82
	подошвой фундамента			233,270	20,02

Таблица 3 Статистические параметры плотности распределения случайной величины предельной деформации основания

Параметры	Значения
Среднее значение (математическое ожидание), м	0,049
Коэффициент вариации	0,173
Максимальное значение, м	0,466
Минимальное значение, м	0,036

Таблица 4 Результаты расчетов вероятности превышения предельной деформации основания

Наименование величин	Значения
Вероятность превышения предельной деформации основания	2×10^{-3}
Допускаемая вероятность превышения предельной деформации основания по ДБН В.1.2-14-2009 [13]	1 × 10 ⁻⁴

Выводы.

1. Предложена методика и разработан алгоритм решения задачи по определению вероятности (риска) превышения предельной деформации системы «основание – здание» в рамках параметрической теории надежности с использованием метода статистических испытаний (Монте-Карло).

- 2. Разработана компьютерная программа, реализующая предложенную методику расчетов.
- 3. Выполнены расчеты по определению вероятности (риска) превышения предельной деформации системы «основание здание» для рядового жилого кирпичного здания. Получено значение вероятности превышения предельной деформации, равное $2x10^{-3}$. Данное значение превышает нормативное, регламентируемое ДБН В.1.2-14-2009 [13] (табл. 3). Значение же осадки, определенное детерминистическим расчетом по нормативной методике, составляет 0,049 м, что намного меньше регламентируемого ДБН В.2.1-10-2009 для данного типа здания (0,1 м). Можно констатировать, что в ДБН В.1.2-14-2009 заложен высокий уровень надежности, и чтобы удовлетворять этому условию, значение осадки должно быть примерно в 9 10 раз ниже нормативного.
- 4. Очевидно, что оптимальное значение риска должно находиться в диапазоне $1x10^{-2}...5x10^{-3}$, что соответствует значению надежности 0,99...0,995 и согласуется с работой Н.Н. Михеева. В нормативном документе ДБН В.2.4-3:2010 [14] приведены следующие значения вероятностей возникновения аварий на напорных гидротехнических сооружениях класса СС2 $3x10^{-3}$ 1/год (для СС2-2) и $5x10^{-4}$ 1/год (для СС2-1), т.е. за весь срок службы (50 и 100 лет соответственно) они должны составлять не более $15x10^{-2}$ и $5x10^{-2}$.
- 5. Анализ вероятностного расчета показывает необходимость усовершенствования существующих подходов к определению вероятности превышения предельного значения деформаций, т.к. новые методики позволят повысить надежность решения геотехнических задач.

ЛИТЕРАТУРА

- 1. Винников Ю.Л. Імовірнісні методи в геотехніці / Ю.Л. Винников, М.О. Харченко // Зб. наук. праць. Серія: Галузеве машинобудування, будівництво. Полтава: ПНТУ, 2015. Вып. 1(43). –с. 93–111.
- 2. Гарагаш Б.А. Надежность пространственных регулируемых систем «сооружение основание» при неравномерных осадках основания / Б.А. Гарагаш. Сочи: Кубанькино, 2004. 908 с.
- 3. Ермолаев Н.Н. Надежность оснований сооружений / Н.Н. Ермолаев, В.В. Михеев. Л.: Стройиздат, 1976. 176 с.

- 4. Пшеничкин А.П. Основы вероятностно-статистической теории взаимодействия сооружений с неоднородными грунтовыми основаниями: автореф. дис. на соискание ученой степени д-ра. техн. наук: спец. 05.23.02 / А.П. Пшеничкин. М.: МИСИ, 1980. 42 с.
- 5. Пшеничкина В.А. Экспериментально-теоретическое обоснование предельной нагрузки с заданным уровнем риска при моделировании работы системы "основание фундамент надземная часть строения" / Пшеничкина В.А., Политов С.И., Чирков А.А. // Основания, фундаменты и механика грунтов. 2015. No 6. C. 2-6.
- 6. Трофимчук А.Н. Надежность систем «сооружение грунтовое основание» в сложных инженерно-геологических условиях / А.Н. Трофимчук, В.Г. Черный, Г.И. Черный. К.: ПолиграфКонсалтинг, 2006.-248 с.
- 7. Вайнберг А.И. Надежность и безопасность гидротехнических сооружений. Избранные проблемы / А.И. Вайнберг. Харьков: Тяжпромавтоматика, 2008. 304 с.
- 8. Beacher G.B. Reliability and statistics in geotechnical Engineering / G.B. Beacher, J.T. Cristian. New York: John Wiley, 2003. 619 p.
- 9. Honjo Y. Challenges in Geotechnical Reliability Based Design / Y. Honjo // Proc. of the 3th International Symposium on Geotechnical Safety and Risk (ISGSR2007). Germany: Munich, 2011. P. 11 27.
- 10.Shahin M.A. Probabilistic Analysis of Bearing Capacity of Strip Footing / M.A. Shahin & E.M. Cheung // Proc. of the 3th International Symposium on Geotechnical Safety and Risk (ISGSR2007). Germany: Munich, 2011. P. 225 230.
- 11. Cherubini C. Shallow Foundation Reliability Design / C. Cherubini // Proc. of the 1th International Symposium on Geotechnical Safety and Risk. China: Shanghai, 2007. P. 71 90.
- 12.Основи та фундаменти споруд. Основні положення проектування: ДБН В.2.1-10-2009. Зі змінами №1, 2. К. : Мінрегіонбуд України, ДП НДІБК, 2009. 161 с.
- 13.Загальні принципи забезпечення надійності та конструктивної безпеки будівель, споруд, будівельних конструкцій та основ: ДБН В.1.2-14-2009. К. : Мінрегіонбуд України, ДП "Укрархбудінформ", 2009.-43 с.
- 14. Гідротехнічні споруди. Основні положення: ДБН В.2.4-3:2010. К.: Мінрегіонбуд України, ДП "Укрархбудінформ", 2010. 37 с.