Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Детали машин, подъемно-транспортные машины и механизмы»

ПОРЯДОК ПОДБОРА И РАСЧЕТА ПОДШИПНИКОВ КАЧЕНИЯ

Методические указания

Минск БНТУ 2010 УДК 621.81.001.63:378.244 ББК 34.44я7 П 44

Составители: В.М. Анохин, В.В. Бирич, А. М. Статкевич

Рецензенты: Г. А. Таяновский, С.И. Романюк

В издании излагаются последовательность подбора и расчета подшипников качения при выполнении курсового проекта на кафедре «Детали машин, подъемно-транспортные машины и механизмы» БНТУ. С целью экономии времени студентов при расчетах и проектировании в нем приведены примеры выполнения расчетов, необходимые литературные источники и стандарты.

Издание предназначено для студентов дневной и заочной форм обучения, выполняющих курсовое проектирование по механике, прикладной механике, деталям машин.

Введение

Задача по проектированию опор с подшипниками качения является достаточно сложной и имеет, как правило, многовариантные решения. Выбор типа и размеров подшипника зависит от условий его работы, требуемого ресурса и надежности, от требований к жесткости опоры и точности вращения, стоимости и т. д. Для оптимального решения необходимо знать действующие нагрузки, свойства и характеристики подшипников. Настоящее издание содержит основные сведения, необходимые для выбора и расчета опор с подшипниками качения, характеристики наиболее распространенных стандартных подшипников.

Даны рекомендации по определению нагрузок в подшипниках от сил в зацеплении различных передач, а также от сил, возникающих в приводных валах и муфтах. Настоящие методические указания основаны на стандартах ГОСТ 18854—94 [1] и ГОСТ 18855—94 [2] и призваны помочь студентам в выборе подшипников качения для узлов машин и оборудования общего назначения при выполнении курсового проекта по дисциплинам «Детали машин», «Прикладная механика», «Механика».

1. ОБОСНОВАНИЕ ВЫБОРА ПОДШИПНИКОВ

1.1. Классификация подшипников

Подшинники качения — это наиболее распространенные стандартные изделия (сборочные единицы) множества конструкций и модификаций, которые изготавливаются на специализированных заводах и встраиваются в более сложные изделия (редукторы, коробки подач и скоростей, шпиндели металлорежущих станков и др.).

Основные функциональные элементы подшипника качения — тела качения (шарики или ролики), которые катятся по дорожкам качения. Дорожки качения, как правило, располага-

ются на специально изготовляемых наружном и внутреннем кольцах подшипника. Тела качения, как правило, разделены сепаратором, который обеспечивает равномерное распределение тел качения по окружности.

Подшипники классифицируют по следующим признакам:

- 1) по направлению действия воспринимаемой нагрузки:
- а) *радиальные*, воспринимающие нагрузку, действующую перпендикулярно оси вращения подшипника,
 - б) упорные, воспринимающие осевую нагрузку,
- в) радиально-упорные, воспринимающие комбинированную (радиальную и осевую) нагрузку;
 - 2) по форме тел качения:
 - а) шариковые со сферическими телами качения,
- б) роликовые с цилиндрическими, коническими и бочкообразными телами качения;
 - 3) по количеству рядов тел качения:
 - а) однорядные,
 - б) двухрядные,
 - в) многорядные:
 - 4) по наличию уплотнений и защитных шайб:
 - а) открытые без уплотнений и защитных шайб,
- б) закрытые с одним или двумя уплотнениями, с одной или двумя защитными шайбами или одним уплотнением и одной зашитной шайбой.

Стандарты устанавливают следующие серии подшипников: сверхлегкая, особо легкая, легкая, легкая широкая, средняя, средняя широкая, тяжелая. Подшипники различных серий отличаются друг от друга размерами, предельным числом оборотов в минуту, статической и динамической грузоподъемностью и другими параметрами.

В ГОСТ 3189–89 «Подшипники шариковые и роликовые. Система условных обозначений» [3] установлены типы подшипников, приведенные в табл. 1 с указанием установленных стандартом условных обозначений.

Типы подшипников

Типы подшипников	Обозначения
Шариковый радиальный	0
Шариковый радиальный сферический	1
Роликовый радиальный с короткими цилин-	
дрическими роликами	2
Роликовый радиальный со сферическими	
роликами	3
Роликовый радиальный с длинными цилин-	
дрическими или игольчатыми роликами	4
Роликовый радиальный с витыми роликами	5
Шариковый радиально-упорный	6
Роликовый конический	7
Шариковый упорный, шариковый упорно-	
радиальный	8
Роликовый упорный, роликовый упорно-	
радиальный	9

В условное обозначение подшипника входят кодовые обозначения серии, типа, конструктивных особенностей, категории и диаметра присоединительного отверстия подшипника (диаметр вала, сопрягаемого с данным подшипником). Полное обозначение стандартного подшипника включает девять позиций, в которых, считая справа налево, закодированы:

диаметр присоединительного отверстия подшипника (позиции первая и вторая);

серия диаметров подшипника (третья позиция);

тип подшипника (четвертая позиция);

конструктивные особенности (пятая и шестая позиции);

серия ширин подшипника (седьмая позиция);

класс точности подшипника (восьмая позиция – отделяется от седьмой знаком тире);

категория подшипника (девятая позиция).

Диаметр отверстия подшипника для подшипников с диаметром присоединительного отверстия от 20 до 495 мм обозначается числом, которое представляет собой частное от деления диаметра на 5, для подшипников с диаметрами отверстия от 10 до 17 мм обозначения соответствуют приведенным в табл. 2.

Таблица 2 Обозначение диаметра присоединительного отверстия подшипников с диаметрами отверстия от 10 до 17 мм

d	10	12	15	17
Обозначение	00	01	02	03

Для подшипников с диаметром до 9 мм первая позиция указывает фактический внутренний диаметр в миллиметрах. В этом случае на третьем месте справа в обозначении стоит «0». Подшипники с диаметром отверстия 22, 28, 32, 500 мм и более обозначаются дробью, знаменатель которой указывает диаметр отверстия, а числитель – все остальные характеристики в установленном для всех подшипников порядке.

Для наиболее часто используемых серий, типов и конструктивных особенностей подшипника в качестве кодовых цифр использованы нули, которые не указывают в условных обозначениях при отсутствии слева других цифр. Например «Подшипник 205 ГОСТ 8338» — радиальный однорядный, нормального класса точности, легкой серии, с диаметром отверстия 25 мм. В обозначении использованы только три позиции справа, поскольку остальные четыре позиции формально заняты нулями.

Класс точности подшипника качения указывают перед условным обозначением номера подшипника, отделяя его знаком тире, например «Подшипник 6-205 ГОСТ 8338» (такой же подшипник шестого класса точности). Самые распростра-

ненные классы точности подшипников (классы «нормальный» и 0) при условном обозначении их нулем в обозначении подшипника категории С не указывают.

Для шариковых радиальных и радиально-упорных подшипников и для роликовых радиальных подшипников ГОСТ 520–2002 «Подшипники качения. Общие технические условия» [4] устанавливает следующие классы точности: 8, 7, нормальный, 6, 5, 4, Т, 2 (обозначения указаны в порядке возрастания точности).

Для роликовых конических подшипников установлены классы точности 8, 7, 0, нормальный, 6X, 6, 5, 4, 2.

Класс точности «нормальный» для всех подшипников, кроме конических, обозначают знаком 0. Для конических подшипников нулевой класс точности обозначают знаком 0, а нормальный — буквой N. Для обозначения класса точности 6X используют знак X.

Подшипники классов точности 7 и 8 изготавливают по заказу при пониженных требованиях к точности вращения деталей. Нормы точности для таких подшипников устанавливаются в отдельных технических нормативно-правовых актах.

В зависимости от наличия требований по уровню вибрации, допускаемых значений уровня вибрации или уровня других дополнительных технических требований в ГОСТ 520–2002 установлены три категории подшипников: A, B, C.

К категории А относят подшипники классов точности 5, 4, T, 2, отвечающие повышенным дополнительным требованиям, регламентирующим нормы уровня вибрации, волнистости и отклонения от круглости поверхностей качения, значения осевого и радиального биений, соответствующие следующему более высокому классу точности, моменту трения и угла контакта.

К категории В относят подшипники классов точности 0, нормального, 6X, 6, 5, отвечающие повышенным дополнительным требованиям, регламентирующим нормы уровня вибрации, волнистости и отклонения от круглости поверхностей качения, значения осевого и радиального биений, соответствующие следующему, более высокому классу точности, моменту

трения и угла контакта, высоте, монтажной высоте и ширине подшипников.

К категории С относят подшипники классов точности 8, 7, 0, нормального, 6, к которым не предъявляют дополнительные требования, установленные для подшипников категорий A и B.

Конкретные значения дополнительных технических требований устанавливают в нормативных документах на подшипники категорий A, B, C или в конструкторской документации, утвержденной в установленном порядке.

Категорию подшипника A или B указывают перед обозначением класса точности. Категорию C перед условным обозначением подшипника не указывают.

Примеры обозначений (без указания слова «подшипник» и номера стандарта или ТУ) с указаниями классов точности:

A5-307; 205; X-307; N-97510.

Знак 0 включают в обозначение, только если слева от него тоже есть знак маркировки, например, B0-205.

1.2. Основные эксплуатационные характеристики подшипников

1.2.1. Конструкция и эксплуатационная характеристика основных типов подшипников качения

1. Шариковый радиальный — самый массовый, распространенный и дешевый тип. Шариковые радиальные однорядные подшипники в основном предназначены для восприятия радиальной нагрузки, но могут воспринимать и осевые в обоих направлениях (до 70 % от неиспользованной радиальной или при отношении осевой нагрузки к радиальной — не более 0,35). Подшипники стандартизованы в диапазоне посадочных диаметров на вал от 1 до 380 мм. Допустимый взаимный перекос осей колец — до 8'.

 к которым не предъявляют дополнительные требования, установленные для подшипников категорий А и В.

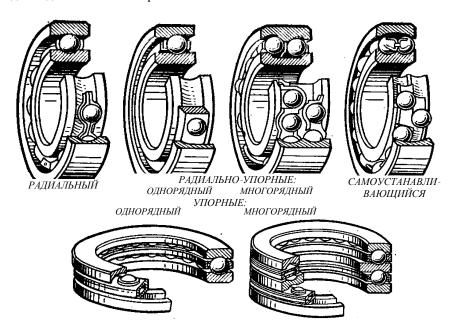


Рис. 1. Подшипники шариковые Конкретные значения дополнительных технических требований устанавливают в нормативных документах на подшипники категорий A, B, C

2. Шариковый радиально-упорный воспринимает радиальные и значительные осевые нагрузки. Применяется там, где осевые нагрузки довольно велики. Шариковые радиально-упорные подшипники сдвоенные применяют для восприятия осевых нагрузок обоих направлений и при ограниченных диаметральных размерах. Шариковые радиально-упорные подшипники с разъемным внутренним кольцом в зависимости от формы дорожек качения имеют трех- или четырехточечный контакт шарика с кольцами и предназначены для восприятия радиальной и осевых нагрузок в обоих направлениях. Существуют аналогичные подшипники с разъемным наружным кольцом.

Нагрузочная способность шариковых радиально-упорных подшипников выше, чем у радиальных шариковых, благодаря большему числу тел качения, которое удается разместить в подшипнике из-за наличия скоса на наружном или внутрен-

нем кольце. Без осевой нагрузки подшипники работать не могут. Способность подшипника воспринимать осевую нагрузку зависит от номинального угла контакта α (угол между нормалью к площадке контакта наружного кольца с телом качения и плоскостью вращения подшипника). С ростом α осевая грузоподъемность подшипника растет, а предельная частота вращения и допустимая радиальная нагрузка уменьшаются. Подшипники выполняют с номинальными углами контакта $\alpha = 12$; 26; 36° . В настоящее время изготовляют подшипники с углами контакта 15, 25 и 36° со скосом на внутреннем кольце и центрированием сепаратора по наружному кольцу. Это позволяет существенно повысить предельную частоту вращения вследствие более благоприятных условий смазки. В диапазоне посадочных диаметров на вал от 3 до 320 мм подшипники стандартизованы. Допустимый взаимный перекос колец $4-6^\circ$.

Таблица 3

Угол контакта и осевая грузоподъемность радиально-упорных подшипников

Тип подшипника	Угол контакта α	Коэффициент допустимой осевой грузоподъемности K
36000, 236000, 336000	12	До 0,7
46000, 246000, 346000	26	До 1,5
66000, 266000, 366000	36	До 2,0

Примечание: Допустимая осевая нагрузка определяется в долях неиспользованной допустимой радиальной грузоподъемности подшипника \mathcal{C}_0 данного типа, т. е.

$$F_a \leq K(C_0 - F_r)$$

где К – коэффициент допустимой осевой грузоподъемности из табл. 3.

- 3. Шариковый сферический самоустанавливающийся тип. Воспринимает радиальные и незначительные осевые нагрузки (до 20 % от неиспользованной радиальной). Применяется там, где оси опор смежные или при гибких длинных валах, имеющих большой прогиб. Шариковые радиальные двухрядные сферические подшипники допускают работу в условиях взаимных перекосов осей колец до 4° из-за сферической поверхности дорожки качения наружного кольца и могут воспринимать осевые силы в обоих направлениях. Подшипники выпускаются с цилиндрическими, а также с коническими отверстиями для установки на валу с помощью закрепительных втулок. Сепараторы чаще всего штампованные. Подшипники стандартизованы в диапазоне посадочных диаметров на вал от 5 до 110 мм.
- 4. Шариковые упорные воспринимают только осевые нагрузки. При необходимости устанавливаются в паре с другим подшипником, воспринимающим радиальную нагрузку. Шариковые упорные подшипники одинарные предназначены для восприятия только осевых нагрузок. Размеры посадочных наруж-ных и внутренних диаметров колец отличаются. Тугое кольцо устанавливают на валу, а свободное в корпус. Частоты вращения ограничены центробежными силами и гироскопическими моментами, действующими на шарики. Одинарные под-шипники воспринимают нагрузку только в одном направлении. Для восприятия осевой нагрузки обоих направлений используют двойные упорные подшипники. В диапазоне посадочных диаметров на вал от 10 до 480 мм подшипники стандартизованы. Допустимый перекос колец до 2'.
- 5. Роликовые радиальные подшипники с короткими цилиндрическими роликами предназначены для восприятия радиальных нагрузок. Роликоподшипники очень чувствительны к относительным перекосам колец. Перекосы вызывают концентрацию контактных напряжений на краях роликов. Для уменьшения концентрации напряжений используют подшипники с модифицированным контактом: ролики или дорожки качения делают с небольшой выпуклостью (бомбиной), что

приводит к повышению допустимого угла перекоса с 2 до 6', а ресурса – в 1,5-2 раза. Подшипники с бортами на обоих кольцах (типы 12000, 32000, 42000 и др.) могут воспринимать одностороннюю осевую нагрузку при условии, что она не более 0,2-0,4а ундвинивной о вшиливием можнар визовании в пинаналина инекадвиных диамазонена осадобных диаметров на вал от 15 до 260 мм подшипники стандартизованы.

Рис. 2. Подшипники роликовые

б. Роликовые сферические подшипники воспринимают очень большие радиальные и довольно большие осевые нагрузки.

Самоустанавливающийся тип. Роликовые радиальные сферические двухрядные подшипники отличаются от радиальных сферических двухрядных шарикоподшипников большей грузоподъемностью, но меньшей быстроходностью. Допустимый угол взаимного перекоса колец — до 4°. Подшипники выпускают с цилиндрическими или коническими отверстиями для крепления на валу с помощью закрепительных втулок. В диапазоне посадочных диаметров на вал от 40 до 400 мм подшипники стандартизованы.

7. Роликовые радиально-упорные конические подшипники предназначены для восприятия совместно действующих радиальных и осевых нагрузок. Без осевой нагрузки подшипники работать не могут. Обычно угол конуса наружного кольца α = 10–18°. Подшипники с большими углами конуса α = 25–30° применяют в качестве сдвоенных. Нагрузочная способность радиально-упорных роликоподшипников выше, чем радиально-упорных шариковых подшипников, но предельная частота и точность вращения ниже. Для восприятия значительных нагрузок при стесненных радиальных размерах эти подшипники сдваивают или используют многорядные конические подшипники. В ряде конструкций удобно применять подшипники с упорным бортом на наружном кольце. В диапазоне посадочных диаметров на вал от 15 до 320 мм подшипники стандартизованы. Допустимый угол взаимного перекоса колец 2', а с модифицированным контактом – 4-8'.

Допустимая осевая нагрузка определяется в долях неиспользованной допустимой радиальной грузоподъемности подшипника \mathcal{C}_0 данного типа, т. е.

$$F_a \le K(C_0 - F_r)$$
,

где K – коэффициент допустимой осевой грузоподъемности из табл 4

Таблица 4

Осевая грузоподъемность конических роликоподшипников

Тип подшипника	Коэффициент допустимой осевой грузоподъемности K
7000, 67000	До 0,7
27000	До 1,5
97000	До 0,4
77000	До 0,3

Роликовый конический подшипник воспринимает большие радиальные и большие осевые нагрузки. Это универсальный, разъемный тип подшипника. Он рекомендуется, в частности, для конических зубчатых передач, устанавливается попарно, при износе регулируется осевой зазор, для чего под фланцами крышек предусматривается набор регулировочных прокладок или устанавливаются регулировочные гайки.

8. Игольчатый подшипник воспринимает только радиальные нагрузки. Он отличается очень малыми радиальными габаритами, может работать без одной обоймы или вообще без обойм, не имеет сепаратора, иголки укладываются вплотную одна к другой. Предельное число оборотов меньше, чем у других подшипников. Роликовые радиальные игольчатые подшипники применяют при ограниченных радиальных размерах, а также при качательном движении. Для повышения нагрузочной способности подшипника иглы часто устанавливают без сепаратора, что позволяет увеличить их число. Для уменьшения радиальных габаритов широко применяют игольчатые подшипники без внутреннего кольца. Эти подшипники осевые нагрузки не воспринимают. Допустимый угол взаимного перекоса колец с немодифицированным контактом 1′.

1.2.2. Предельные частоты вращения

Предельную частоту вращения подшипника n определяют в соответствии со значением скоростного параметра \mathcal{D}_{PW} , установленного для каждого типа. Подшипники с диаметром от-

верстий более 10 мм считаются высокоскоростными, если для них $D_{\rho w} \cap > 4.105$ мм·мин⁻¹, где $D_{\rho w} -$ диаметр окружности расположения центров тел качения, мм, n – предельная частота вращения кольца, мин⁻¹. Предельные частоты вращения, указанные в каталогах, относятся к подшипникам класса точности 0 в зависимости от смазочного материала (пластичного или жидкого). Применение подшипников более высоких классов точности с массивными сепараторами при смазывании масляным туманом позволяет повысить предельную частоту вращения в 2–3 раза. В таблицах приложения указаны предельные частоты вращения при использовании пластичного (числитель) и жидкого (знаменатель) материала.

1.2.3. Основные критерии выбора типа подшипников

В процессе проектирования конструктор чаще всего выбирает тип, конструктивную разновидность и габаритные размеры подшипника. Среди большого количества типов подшипников не всегда легко найти подходящий. Для этого необходимо четко знать свойства и возможность применения подшипников, описание которых дано выше, а также приводится в учебной и справочной литературе. Рекомендуется прежде всего рассматривать возможность использования дешевого и простого в эксплуатации радиального однорядного шарикоподшипника. Применение других типов должно быть оправдано условиями эксплуатации, например, недостаточным ресурсом шарикоподшипника, потребностью в повышенной жесткости, необходимостью компенсировать значительные пере-косы осей валов и т. д.

При выборе типа и размера подшипника для заданных условий работы необходимо учитывать следующие факторы:

- 1) значение и направление нагрузки (радиальная, осевая, комбинированная);
- 2) характер нагрузки (постоянная, переменная, вибрационная, ударная);

- 3) частоту вращения подшипника, какое из колец (внутреннее или наружное) вращается;
 - 4) необходимый ресурс в часах или млн. оборотов;
- 5) состояние окружающей среды (температура, влажность, запыленность). Обычные подшипники, изготовленные по нормам ГОСТ 520–2002, предназначены для использования при температуре до 100 °C;
- 6) особые требования к подшипникам, вытекающие из условий к эксплуатации (самоустанавливаемость, способность допускать осевое перемещение вала, условия монтажа, требования к жесткости и точности вращения, момент трения, шумность);
- 7) желательные размеры подшипника (посадочные размеры вала, диаметр отверстия в корпусе, ширина);
 - 8) требования к надежности;
 - 9) стоимость подшипника и узла в целом.

Учет всего многообразия приведенных факторов является весьма сложной задачей, для решения которой можно воспользоваться следующими рекомендациями [5]:

- 1. Для опор, воспринимающих ударные, а также значительные переменные нагрузки, рекомендуется установка роликовых подшипников, которые способны к восприятию больших нагрузок. Шарикоподшипники обладают меньшей несущей способностью, однако допускают большую частоту вращения.
- 2. При действии на подшипник только радиальных нагрузок применяют любой тип радиальных подшипников в зависимости от частоты вращения и условий эксплуатации.
- 3. При комбинированных нагрузках определяют возможность установки одного или двух радиально-упорных подшипников. Чаще всего их ставят парными комплектами, обеспечивая при этом строгое фиксированное положение вала в обоих направлениях. При этом для шариковых подшипников рекомендуется, а для коническо-роликовых требуется регулировка.
- 4. Если осевая нагрузка значительно больше радиальной, упорные подшипники применяют в комбинации с радиальными.
 - 5. В общем машиностроении, если нет особых требований к

частоте и точности вращения, применяют подшипники класса точности 0 по Γ OCT 520–2002.

Для валов, требующих точного вращения в связи с технологическим назначением машины или высокими скоростями (шпиндели металлорежущих станков, валы и оси приборов и т. п.), применяют подшипники более высоких классов точности. Однако при повышении классов точности стоимость подшипников существенно возрастает.

6. При проектировании машин в первую очередь следует ориентироваться на применение шариковых радиальных однорядных подшипников, так как они имеют невысокую стоимость, просты при монтаже и способны воспринимать комбинированные нагрузки (осевая нагрузка не должна превышать около одной трети радиальной).

1.3. Предварительный выбор типа подшипников для механических передач

При проектировании механических передач в соответствии с установившейся практикой проектирования и эксплуатации машин тип подшипника можно выбирать (с учетом перечисленных выше факторов), используя следующие рекомендации или на основании их краткого изложения в табл. 5.

Для опор валов цилиндрических прямозубых и косозубых колес редукторов и коробок передач чаще всего применяют шариковые радиальные подшипники. Первоначально принимают подшипники легкой узкой серии. Если при последующем расчете грузоподъемность подшипника легкой серии окажется недостаточной, принимают подшипник средней серии.

При чрезмерно больших размерах шариковых подшипников (невозможно установить соединительный болт (винт) или невозможно установить крышки подшипников) в качестве опор валов цилиндрических колес применяют также подшипники роликовые конические.

Таблица 5

Предварительный выбор подшипников механических передач

Передача	Вал	Тип подшипника	Серия
1	2	3	4
Цилиндрическая	Б	Шариковые радиальные однорядные	Средняя (легкая)
прямозубая	Т	Шариковые радиальные однорядные	Легкая (средняя)
1110-110-110-	Б	Шариковые радиальные однорядные Роликовые цилиндрические	Средняя (легкая)
Шевронная	T	Шариковые радиальные однорядные	Легкая (средняя)
Цилиндрическая	Б	Шариковые радиальные однорядные при $\frac{F_a}{F_r} \le 0.35$ Шариковые радиально-упорные Роликовые конические	Средняя (легкая)
косозубая	T	Шариковые радиальные однорядные при $\frac{F_a}{F_r} \le 0.35$ Шариковые радиально-упорные Роликовые конические	Легкая (средняя)
Коническая	Б	Шариковые радиально-упорные Роликовые конические при: $d < 60$ мм (консистентная смазка) или $n < 2500$ об/мин $d < 85$ мм (жидкостная смазка) или $n < 2500$ об/мин	Средняя (легкая)
	T	Роликовые конические при: $d < 60$ мм (консистентная смазка) или $n < 2500$ об/мин $d < 85$ мм (жидкостная смазка) или $n < 2500$ об/мин	Легкая (средняя

Окончание табл. 5

1	2	3	4
Червячная	Б	Шариковые радиально-упорные Роликовые конические при: $d < 60$ мм (консистентная смазка) или $n < 2500$ об/мин $d < 85$ мм (жидкостная смазка) или $n < 2500$ об/мин Сдвоенные (шариковые радиально-упорные или роликовые конические). При $\frac{F_a}{VF_r} \ge \varrho$ двухрядные (сдвоенные) подшипники применять нецелесообразно, так как будет работать только один ряд качения	Средняя (легкая)
	T	Роликовые конические	Легкая

Конические и червячные колеса должны быть точно и жестко зафиксированы в осевом направлении. Шариковые радиальные подшипники обладают малой осевой жесткостью. Поэтому в силовых передачах для опор валов конических и червячных колес применяют конические роликовые подшипники. Первоначально выбирают легкую серию.

Для опор вала конической шестерни по тем же соображениям применяют конические роликовые подшипники. При высокой частоте вращения вала-шестерни ($n > 1500\,$ мин $^{-1}$ и $d > 70\,$ мм) применяют подшипники шариковые радиально-упорные. Первоначально также выбирают легкую серию.

Опоры червяка в силовых передачах нагружены значительными осевыми силами. Поэтому в качестве опор вала червяка применяют в основном конические роликовые подшипники. При высоких скоростях вращения и длительной непрерывной работе червячной передачи с целью снижения тепловыделения применяют шариковые радиально-упорные подшипники.

Для опор плавающих валов шевронных передач применяют радиальные подшипники с короткими цилиндрическими ро-

ликами. В качестве плавающего вала принимают ведущий вал, так как он имеет меньшую массу.

2. ВЫБОР ПОДШИПНИКОВ ПРИ ЗАДАННЫХ РЕСУРСЕ И НАДЕЖНОСТИ

Наметив тип и конструктивную разновидность подшипника, выполняют расчет на долговечность (ресурс) и осуществляют его выбор по каталогу. Если подшипник воспринимает внешнюю нагрузку в неподвижном состоянии или при n < 10 мин⁻¹, его следует выбирать или проверять по статической грузопольемности.

Критерий оценки работоспособности подшипников качения — усталостное выкрашивание поверхностей качения. Расчеты на долговечность (ресурс) основываются на экспериментально установленных зависимостях, причем под долговечностью понимается свойство объекта сохранять работоспособность до предельного состояния, оговоренного в технической документации. Показателями долговечности могут служить ресурс или срок службы. Ресурс — это наработка до предельного состояния, выраженная в миллионах оборотов или часах (для некоторых объектов ресурс может быть выражен в километрах), а срок службы — календарная продолжительность эксплуатации до момента наступления предельного состояния, выраженная в годах, месяцах, сутках, часах. Срок службы включает в себя наработку изделия и время простоев.

Ресурс подшипника

$$L_{10} = \left(\frac{C}{P}\right)^{\rho}$$
, млн. оборотов, (1)

где C — динамическая грузоподъемность подшипника (радиальная C_{Γ} или осевая C_{∂}), H;

P– эквивалентная динамическая нагрузка (радиальная P_{Γ} или

осевая P_{a} , а при переменных режимах работы – P_{af} или P_{ad}), H;

p — показатель степени; ρ = 3 для шариковых подшипников и p = 10/3 для роликовых подшипников.

Ресурс подшипника

$$L_{10h} = \frac{10^6 L_{10}}{60n}, \, \mathbf{q}, \tag{2}$$

где n – частота вращения кольца подшипника, мин $^{-1}$.

Формулы (1), (2) соответствуют 90 % вероятности безотказной работы. Это значит, что такое число миллионов оборотов или часов должны гарантированно отработать 90 % подшипников заданного типоразмера при постоянном режиме.

Формулы справедливы при частоте вращения кольца подшипника от 10 мин $^{-1}$ до предельной по каталогу, а так же если P_{Γ} (или P_{a}) не превышает 0,5 C_{Γ} (или C_{a}).

Рекомендуемые значения ресурсов подшипников различных машин указаны в табл. 6.

 $\label{eq:2.2} \mbox{Таблица 6}$ Рекомендуемые значения расчетного ресурса подшипников \mathcal{L}_h

Машины и оборудование	<i>L</i> _h , ч
1	2
Бытовые приборы и редко работающее оборудование	500
Сельскохозяйственные машины, механизмы с ручным	От 4000
приводом, легкие конвейеры, автомобили	
Червячные редукторы общего назначения	От 5000
Конвейеры поточного производства, лифты	От 8000
Волновые и глобоидные редукторы общего назначения	От 10000
Стационарные электродвигатели, элеваторы	От 12000

Окончание табл. 6

1	2
Цилиндрические, конические, коническо-цилиндриче-	От 12500
ские и планетарные редукторы общего назначения	
Машины для непрерывной односменной работы, станки,	От 20000
железнодорожный транспорт	
Машины для круглосуточной работы (компрессоры,	От 40000
насосы, судовые приводы)	
Энергетические установки, шахтные насосы, оборудо-	От 100000
вание морских судов	

2.1. Динамическая грузоподъемность подшипников

Выбор подшипников на заданные ресурс или долговечность выполняют по динамической грузоподъемности ${\mathcal C}$. Условие подбора

$$C$$
 (потребная) $\leq C$ (паспортная).

Паспортная динамическая грузоподъемность C — это такая постоянная сила, которую подшипник может воспринимать в течение 1 млн. оборотов без появления признаков усталости не менее чем у 90 % из определенного числа подшипников, подвергающихся испытаниям. При этом под C понимается постоянная радиальная (для радиальных и радиальноупорных подшипников с невращающимся наружным кольцом) или осевая (для упорно-радиальных и упорных подшипников при вращении одного из колец) нагрузка.

Значения динамической грузоподъемности для каждого типоразмера подшипников заранее подсчитаны и указаны в каталоге. Формулы для их расчетов получены на основании совместного рассмотрения контактной задачи, законов распределения нагрузки между телами качения, кинематики подшип-ника, которая определяет число циклов нагружения и экспери-ментальной зависимости.

При расчете радиальной динамической грузоподъемности узла, состоящего из сдвоенных радиальных или радиально-

упорных однорядных подшипников, пара одинаковых подшипников рассматривается как один двухрядный. Суммарная динамическая радиальная грузоподъемность комплекта из двух шарикоподшипников

$$C_{\Gamma \text{cym}} = C_{\Gamma} I^{0.7} \approx 1.625 C_{\Gamma}$$

а двух роликоподшипников

$$C_{r \text{ cym}} = C_r i^{7/9} \approx 1.714 C_r$$
.

При выборе двухрядных радиально-упорных подшипников следует исходить из условия, что если $F_a/VF_r > e$, то в этих двухрядных подшипниках будет работать только один ряд тел качения и величину динамической грузоподъемности следует принимать как для однорядного подшипника. Следовательно, при $F_a/VF_r > e$ двухрядные (сдвоенные) подшипники применять нецелесообразно.

2.2. Эквивалентная динамическая нагрузка

При условии смазывания без загрязнений основной причиной выхода из строя подшипников качения является усталостное выкрашивание рабочих поверхностей колец и тел качения. Это связано с циклическим изменением контактных напряжений при вращении колец подшипника. Значение базовой динамической грузоподъемности C указывают в каталогах для каждого стандартного подшипника. В действительности такую нагрузку подшипник воспринимать не может, так как не выполняется условие $P \le 0.5C$. Эквивалентная динамическая нагрузка P — это такая условная нагрузка (радиальная для радиальных и радиально-упорных подшипников; осевая для упорных и упорно-радиальных), при которой обеспечиваются та-

кой же ресурс и надежность, как и при действительных условиях нагружения. Для радиальных и радиально-упорных подшипников эквивалентная динамическая радиальная нагрузка

$$P = P_r = (XVF_r + YF_a)K_6K_T$$

Для упорных подшипников

$$P = P_{\partial} = F_{\partial} \cdot K_{\delta}K_{T}$$
.

Для упорно-радиальных подшипников

$$P = P_r = (XVF_r + YF_a)K_6K_T$$

В этих формулах F_r и F_a – соответственно радиальная и осевая нагрузки;

X и Y- коэффициенты радиальной и осевой динамической нагрузки;

V- коэффициент вращения;

 K_6 – коэффициент динамичности нагрузки;

 $K_{\text{\tiny T}}$ – температурный коэффициент.

Коэффициент вращения V учитывает влияние интенсивности и числа повторных циклов контактных напряжений внутреннего кольца на ресурс подшипника. Если внутреннее кольцо подшипника неподвижно по отношению к вектору нагрузки, то принимают V=1,2. Во всех остальных случаях V=1. Исключение составляют сферические подшипники, для которых в любом случае V=1. Например, для подшипников, установленных в сателлит планетарной передачи, генератор волновой передачи, канатный блок или в шкив ременной передачи, вращающийся на разгрузочной втулке, V=1,2.

Коэффициенты X и Y (табл. 7, 8, 9) зависят от конструкции подшипника и параметра осевого нагружения. Параметр осевого нагружения e равен предельному отношению $F_{a}(VF_{c})$ 24

при котором осевая нагрузка не уменьшает ресурс подшипника. Это связано с тем, что с ростом осевой нагрузки при $F_a/(VF_r) \le e$ увеличивается дуга нагружения и нагрузка более равномерно распределяется между телами качения. При выборе подшипников следует стремиться к тому, чтобы отношение $F_a/(VF_r)$ было возможно ближе к e. В шарикоподшипниках с малыми углами контакта ($\alpha < 18^\circ$) под влиянием осевой нагрузки действительный угол контакта изменяется, поэтому e зависит не только от номинального угла контакта, но и от F_a .

Значения коэффициентов X и Y для однорядных шарикоподшипников при $F_a/VF_c > e$

α	0°	12°	15°
X	0,56	0,45	0,44
Y	$\frac{1-x}{e}$	$\frac{1-x}{e}$	$\frac{1-x}{e}$
e	$0.518 \left(\frac{F_a}{C_{or}}\right)^{0.24}$	$0,618 \left(\frac{F_a}{C_{or}}\right)^{0,163}$	$0,618 \left(\frac{F_a}{C_{or}}\right)^{0,12}$
e'	_	$0,563 \left(\frac{F_r}{C_{or}}\right)^{0,165}$	$0,573 \left(\frac{F_r}{C_{or}}\right)^{0,136}$

Таблица 8

Таблица 7

Значения X, Y и e для однорядных и двухрядных

шарикоподшипников

	*	Подшипники однорядные		Подшипники двурядные				
α	$\alpha \left \frac{iF_a^*}{C_{or}} \right $		$\frac{F_a}{VF_r} > e$		$\frac{F_a}{VF_r} \le e$		$\frac{F_a}{VF_r} > e$	
		Χ	Y	X	Y	Χ	Y	
	0,014		2,37				2,37	0,19
	0,028		2,00				2,00	0,22
	0,056		1,70				1,70	0,26
	0,084		1,54				1,54	0,29
0°	0,110	0,56	1,44	1,0	0	0,56	1,44	0,30
	0,170		1,30				1,30	0,34
	0,20		1,15	15			1,15	0,38
	0,420		1,05				1,05	0,42
	0,56		0,98				0,98	0,45
	0,014		1,78		2,08		2,94	0,34
	0,028	-	1,59		1,84		2,63	0,35
	0,056		1,42		1,69		2,37	0,39
	0,084		1,33		1,52		2,18	0,41
12°	0,11	0,45	1,28	1,0	1,59	0,74	1,98	0,43
	0,17		1,19		1,30		1,84	0,46
	0,28		1,10		1,20		1,69	0,50
	0,42		1,03		1,16		1,64	0,54
	0.56		0,98		1,16		1,62	0,56
26°		0,41	0,87	1	0,92	0,67	1,41	0,68
36°		0,37	0,66	1	0,66	0,60	1,07	0,95

^{*}Коэффициенты Y и e для промежуточных величин отношений ${}^{i}F_{a}/C_{or}$ определяются интерполяцией. При α = 0° во всех случаях принимают i = 1. Таблица 9

$\frac{F_a}{VF_r}$	- ≤ 0	$\frac{F_a}{VF_r}$	> <i>e</i>	е		
X	X Y X Y					
	Подшипники однорядные					
1	0	0,4tg $lpha$	1,5tg $lpha$			
Подшипники двухрядные						
1	0,45ctg $lpha$	0,67	0,67tgα	1,5tg $lpha$		

Числовые значения X, Y и e для однорядных и двухрядных шарикоподшипников даны в табл. 8. Для двухрядных радиальных сферических шарикоподшипников $e=1.5 \,\mathrm{tg}\alpha$. При $(F_a/VF_r) \le e$ X=1, $Y=0.42 \,\mathrm{ctg}\alpha$, а при $(F_a/VF_r) > e$ X=0.65 и $Y=0.65 \,\mathrm{ctg}\alpha$. Для этих подшипников коэффициенты X, Y и e заранее подсчитаны и указаны в таблицах каталога для каждого типоразмера. Для конических и радиальных двухрядных сферических роликоподшипников значения X, Y и e определяется по данным табл. 9. Числовые значения коэффициентов также заранее подсчитаны и указаны в таблицах каталога.

Радиальные роликовые подшипники с цилиндрическими роликами, а также игольчатые подшипники без бортов на одном из колец не воспринимают осевые нагрузки. Подшипники с бортами на обоих кольцах могут воспринимать небольшие кратковременные осевые нагрузки, но приложены они не к дорожкам качения, а к бортам. Поэтому при расчете эквивалентных нагрузок они не учитываются. Для таких подшипников X = 1, а Y = 0.

При расчете эквивалентной динамической радиальной нагрузки узла, состоящего из сдвоенных радиальных или радиально-упорных однорядных подшипников, установленных узкими или широкими торцами наружных колец друг к другу, используются значения коэффициентов X и Y для двухрядных подшипников из табл. 8 или 9. Для узлов, состоящих из двух или более одинаковых радиально-упорных однорядных подшип-

ников, установленных последовательно и изготовленных и смонтированных так, что нагрузка между ними распределяется равномерно, эквивалентную динамическую радиальную нагрузку определяют так же, как для однорядных подшипников. Сдвоенная установка радиальных подшипников не рекомендуется.

Предельные частоты вращения для комплектов сдвоенных радиально-упорных шарикоподшипников снижают на 20~% от указанных в таблице, а для комплектов подшипников серий $336000~\mathrm{K}$ и $346000~\mathrm{K}$ – на 60~%.

Выбор коэффициентов K_6 и $K_{\rm T}$. Коэффициент K_6 учитывает динамичность нагрузки и приблизительно равен отношению значений кратковременной перегрузки к номинальной расчетной нагрузке. Ориентировочные значения коэффициента K_6 приведены в табл. 10.

Таблица 10 Значения коэффициента $\mathcal{K}_{\mathbf{5}}$

Характер нагрузки и область применения	K_{6}
1	2
Нагрузка спокойная. Маломощные кинематические редукторы	
и приводы. Ролики ленточных конвейеров. Механизмы ручных кра-	1,0
нов и блоков. Тали, кошки, ручные лебедки. Приводы управления	
Кратковременная перегрузка до 120 %. Прецизионные зубчатые	
передачи. Металлорежущие станки (кроме строгальных, долбеж-	
ных и шлифовальных). Гироскопы. Механизмы подъема кранов.	1–1,2
Электротали и монорельсовые тележки. Лебедки с механическим	1-1,2
приводом. Электродвигатели малой и средней мощности. Легкие	
вентиляторы и воздуходувки	
Кратковременная перегрузка до 150 %. Зубчатые передачи. Редук-	
торы всех типов. Буксы рельсового подвижного состава. Механиз-	
мы передвижения крановых тележек. Механизмы поворота кра-	1,3–1,5
нов. Механизмы изменения вылета стрелы кранов. Шпиндели	
шлифовальных станков	

Окончание табл. 10

1 2

Кратковременная перегрузка до 180 %. Центрифуги и сепараторы. Буксы и тяговые двигатели электровозов. Механизмы и ходовые колёса кранов и дорожных машин. Строгальные и долбежные станки. Мощные электрические машины	1,5–1,8
Кратковременная перегрузка до 250 %. Дробилки и копры. Кривошипно-шатунные механизмы. Валки и адъюстаж прокатных станов. Мощные вентиляторы	1,8–2,5
Кратковременная перегрузка до 300 %. Тяжелые ковочные машины. Лесопильные рамы. Холодильное оборудование. Валки и роликовые конвейеры крупносортных станов, блюмингов и слябингов	2,5–3,0

Для подшипников, работающих при температурах выше 100 °C, используют стали с более высокой, чем обычно, температурой отпуска и в зависимости от нее к обозначению подшипника добавляют знаки Т, Т1, Т2–Т6 (температура отпуска соответственно 200, 225, 250, 300, 350, 400 и 450 °C). Рабочая температура подшипника, измеренная на наружном кольце, должна быть на 50 °C ниже температуры отпуска.

В табл. 11 приведены значения температурного коэффициента для подшипников из стали марки ШХ15. Как показывает практика, в ответственных случаях при выборе этого коэффициента в связи с отсутствием в справочниках сведений о смазке следует использовать экспериментальные данные.

Таблица 11 Значения температурного коэффициента $\mathcal{K}_{\scriptscriptstyle \mathrm{T}}$

Рабочая температура, °С	$K_{\scriptscriptstyle m T}$	Рабочая температура, °С	$\mathcal{K}_{\scriptscriptstyle{\mathrm{T}}}$
100	1	200	1,25
125	1,05	225	1,35
150	1,10	250	1,40
175	1,15		

2.3. Определение осевых реакций в опорах

Вал на подшипниках, установленных по одному в опоре,

условно рассматривают как балку на шарнирно-подвижных опорах или как балку с одной шарнирно-подвижной и одной шарнирно-неподвижной опорой. Принимают, что радиальные реакции приложены к оси вала в точках пересечения с ней нормалей, проведенных к серединам контактных площадок на наружных кольцах. Если в одной опоре установлены два подшипника, то задача оказывается статически неопределимой. Точное решение этой задачи весьма затруднительно, поэтому в инженерной практике обычно основываются на упрощающих предпосылках.

При выполнении расчетов и конструировании приходится применять метод последовательных приближений: вначале размер подшипников и места их расположения намечают на чертеже приближенно, затем после подбора подшипников уточняют чертеж и расчет. В ряде случаев направление вращения может быть переменным или неопределенным, причем изменение направления вращения может привести к изменению не только направления, но и значений реакций в опорах. Некоторые нагрузки, например нагрузка на вал от муфты, могут иметь неопределенное направление. Во всех случаях при расчете реакций в опорах рассматривают опасный случай. Возможная ошибка при этом приводит к повышению надежности.

При установке вала на двух радиальных или радиальноупорных подшипниках нерегулируемых типов внешнюю осевую нагрузку воспринимает один из них, причем в том направлении, в котором он ограничивает осевое перемещение вала.

При определении осевых нагрузок на радиально-упорные подшипники регулируемых типов следует учитывать осевые силы, возникающие под действием радиальных нагрузок из-за наклона контактных линий. Значения этих сил зависят от типа под-шипника (шариковый, роликовый), углов наклона контактных линий, значений радиальных нагрузок, а также от того, как отрегулированы подшипники. Если подшипники собраны с большим зазором, то всю нагрузку будет воспринимать только один шарик (или два) или ролик. Осевая составляющая от ради-

альной нагрузки при этом будет равна F_r tga. Условия работы подшипников при таких больших зазорах крайне неблагоприятны, и поэтому такие зазоры недопустимы. Обычно подшипники регулируют так, чтобы осевая игра при установившемся температурном режиме была близка к нулю. В этом случае при действии на подшипник радиальной силы под нагрузкой будет находиться примерно половина тел качения, а суммарная по всем нагруженным телам качения осевая составляющая

$$R_S = e^t F_r$$

где e' = 0.83e для конических роликоподшипников;

e'=e для радиально-упорных шарикоподшипников при $\alpha \ge 18^\circ$.

При определении \mathcal{C} для радиально-упорных подшипников с малыми номинальными углами контакта ($\alpha = 12-15^{\circ}$) необходимо учитывать изменение этих углов под действием осевой нагрузки. Поэтому для таких подшипников \mathcal{C} определяют по формулам из табл. 7, 8. Как следует из сказанного выше, величина $\mathcal{R}_{\mathcal{S}}$ представляет собой минимальную осевую силу, действующую на радиально-упорный регулируемый подшипник при заданной радиальной нагрузке. Следовательно, для нормальных условий работы этих подшипников должно выполняться условие

$$F_a \ge R_s$$
.

Если $F_a > R_s$, то более половины всех тел качения или они все будут находиться под нагрузкой. Жесткость опоры с ростом осевой нагрузки увеличивается, и поэтому в некоторых опорах (например, в опорах шпинделей станков) применяют сборку с предварительным натягом.

При больших частотах вращения для предотвращения ги-

роскопического верчения шариков также применяют сборку с предварительным натягом. При этом минимальная величина осевой нагрузки будет больше чем $e^{i}F_{r}$. По этой же причине упорные подшипники также должны работать с осевой нагрузкой, минимальное значение которой зависит от частоты вращения кольца подшипника. С учетом сказанного выше при нахождении осевых реакций следует исходить из условия равновесия всех осевых сил, действующих на вал, и условий ограничения минимального уровня осевых нагрузок на радиально-упорные регулируемые подшипники. Так, для схем, изображен-ных в табл. 12, составляют три уравнения:

$$F_A + R_{a1} - R_{a2} = 0$$
; $R_{a_1} \ge R_{s1}$; $R_{a_2} \ge R_{s2}$.

Таблица 12 Определение осевой нагрузки R_{a}

Схема нагружения подшипников	Соотношение	Осевая
Слема пагружения подшинников	сил	нагрузка
а) подшипники установлены «врастяжку»	$R_{S1} \ge R_{S2}$	
Ra2 Ra1	$F_{\partial_1} \ge 0$	$R_{a1} = R_{s1}$
Fa Rsa Rr2 Rr2 Rs1	$R_{S1} < R_{S2}$	$R_{a2} = R_{a1} + F_a$
224	$F_a \ge R_{s2} - R_{s1}$	
б) подшипники установлены «враспор»	$R_{S1} < R_{S2}$	$R_{a1} = R_{a2} - F_a$
Ra2 / Ra1	$F_a < R_{s2} - R_{s1}$	$R_{a2} = R_{s2}$
Rr2 _{Rs2} Fa _{Rs1} Rr1		

Для нахождения решения в одной из опор осевая сила принимается равной минимальной: $F_a = R_{\mathcal{S}}$. Задаемся $R_{a1} = R_{\mathcal{S}1}$, тогда $R_{\partial 2} = R_{\partial 1} + F_{\partial 2}$. Если при этом $R_{\partial 2} \geq R_{\mathcal{S}}$, то осевые силы

найдены правильно. Если $R_{a_2} < R_{s}$, то следует принять $R_{a_2} = R_{s2}$, и тогда $R_{a_1} = R_{a2} - F_a$, причем условие $R_{a_2} \ge R_{s2}$ будет обязательно выполнено. Анализируя схемы нагружения, представленные в табл. 12, следует отметить, что при изменении направления действия силы F_a на противоположное для правильного использования формул по определению осевой нагрузки необходимо поменять местами номера опор и их реакций.

3. ОПРЕДЕЛЕНИЕ ЭКВИВАЛЕНТНОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ

3.1. Порядок определения P_{r_i} C_{r_i} L_{10h} для радиальных шариковых однорядных подшипников

В случае использования радиальных шариковых однорядных подшипников осевые составляющие радиальных нагрузок $R_{a1} = R_{a2} = 0$ и осевую силу в зацеплении F_a воспринимает подшипник, ограничивающий осевое перемещение вала под действием этой силы и испытывающий осевое нагружение R_{ai} равное этой силе. Расчет эквивалентной нагрузки P_r выполняется только для подшипника с большей радиальной нагрузкой F_r (суммарной реакцией) и проводится в следующей последовательности [6]:

- а) определяется отношение $\frac{F_a}{VF_c}$;
- б) определяются коэффициенты e и Y по соотношению $\frac{R_a}{C_{or}}$;
- в) по результату сопоставления $\frac{F_{\partial}}{VF_{f}} \le e$ или $\frac{F_{\partial}}{VF_{f}} \ge e$ выбирают соответствующую формулу и определяют эквивалентную динамическую нагрузку P_{f} :

г) по формулам

$$C_{rp} = L_{10}^{0.3} \cdot P_{r}$$

$$L_{10} = \left(\frac{C}{P_r}\right)^p$$

рассчитывают динамическую грузоподъемность и долговечность подшипника, а также ресурс подшипника в часах:

$$L_{10h} = \frac{10^6 L_{10}}{60n} \, .$$

3.2. Порядок определения P_r , C_r , L_{10h} для радиально-упорных шариковых и роликовых однорядных подшипников

Здесь каждый подшипник вала испытывает свою осевую нагрузку R_{a1} , R_{a2} , зависящую от схемы установки подшипников и соотношения осевой силы в зацеплении редукторной пары F_a и осевых составляющих радиальных нагрузок в подшипниках R_{s1} , R_{s2} (см. табл. 12). Поэтому эквивалентная динамическая нагрузка рассчитывается для каждого подшипника с целью определения наиболее нагруженной опоры. Последовательность действий следующая:

- а) определяют коэффициент влияния осевого нагружения е;
- б) определяют осевые составляющие радиальных нагрузок в подшипниках R_{S1} , R_{S2} ;
 - в) определяют осевые нагрузки подшипников R_{a1} , R_{a2} ;
 - г) вычисляют отношения $\frac{F_a}{VF_{r,1}}$ и $\frac{F_a}{VF_{r,2}}$;

- д) по результатам сопоставления $\frac{F_{a}}{VF_{r}} \le e$ или $\frac{F_{a}}{VF_{r}} \ge e$ выбирают соответствующую формулу и определяют эквивалентные динамические нагрузки P_{D1} , P_{D2} ;
- е) сравнив значения P_{p1} и P_{p2} , определяют более нагруженный подшипник;
- ж) по большему значению эквивалентной нагрузки P_{ρ} рассчитывают динамическую грузоподъемность $C_{r\rho}$ и долговечность L_{10} ;
- 3) подбирают подшипник по каталогу или определяют пригодность ранее выбранного подшипника по условию $C_{\mathit{\GammaD}} \leq C_{\mathit{\Gamma}}$.

3.3. Порядок определения P_r , C_r , L_{10h} для радиально-упорных шариковых и роликовых двухрядных (сдвоенных однорядных) подшипников фиксирующих опор

При расчете таких подшипников надо учитывать, что даже небольшие осевые силы R_{a} влияют на значение эквивалентной нагрузки P_{p} .

При определении динамической грузоподъемности C_{rp} и долговечности L_{10h} фиксирующей опоры, состоящей из сдвоенных радиально-упорных подшипников, установленных враспор или врастяжку, пару одинаковых подшипников рассматривают как один двухрядный радиально-упорный подшипник (/ = 2 — количество рядов тел качения). Последовательность вычислений:

- а) вычисляют отношение $\frac{F_{\partial}}{VF_{f}}$, где $R_{\partial} = F_{\partial}$ осевая сила в зацеплении:
 - б) определяют коэффициент влияния осевого нагружения е;
 - в) по результату сопоставления $\frac{F_a}{VF_r} \le e$ или $\frac{F_a}{VF_r} \ge e$ выби-

рают соответствующую формулу и определяют эквивалентную динамическую нагрузку P_r .

Если
$$\frac{F_a}{VF_r} \le e$$
, то у сдвоенного подшипника работают оба

ряда тел качения и P_{∂} рассчитывают по характеристикам (X, Y) двухрядного радиально-упорного подшипника. При этом считают, что радиальная нагрузка (реакция) R приложена посередине сдвоенного подшипника.

Базовая динамическая грузоподъемность C_{Γ} сдвоенного подшипника равна базовой динамической грузоподъемности однорядного подшипника, умноженной на 1,625 для шариковых и 1,714 для роликовых подшипников.

Если
$$\frac{F_{a}}{VF_{c}} \ge e$$
, то у подшипника работает только один ряд

тел качения и P_r рассчитывают по характеристикам (X_r Y) однорядного радиально-упорного подшипника. В этом случае необходимо учитывать, что точка приложения реакции смещается.

3.4. Расчет эквивалентных нагрузок при переменных режимах работы подшипника

Если нагружение подшипника задано циклограммой нагрузок, в которой приведены соответствующие этим нагрузкам значения частот вращения, то циклограммы следует схематизировать и представить в упрощенном виде (рис. 3).

Эквивалентная динамическая радиальная нагрузка при переменном режиме работы для шарико- и роликоподшипников

$$P_{\mathfrak{I}} = \sqrt[3]{\frac{P_{r1}^3 \mathcal{L}_{10,1} + P_{r2}^3 \mathcal{L}_{10,2} + \ldots + P_{rn}^3 \mathcal{L}_{10,n}}{\mathcal{L}_{10}}} \; ,$$

где $L_{10} = L_{10,1} + L_{10,2} + ... + L_{10,n}$.

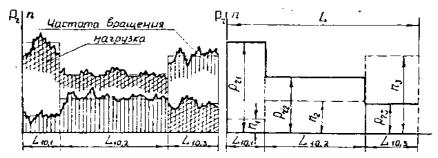


Рис. 3. Примерная циклограмма нагрузок подшипника

Если ресурс на каждом режиме задан в часах, то его пересчитывают на миллионы оборотов:

$$L_{10,i} = \frac{60n_i L_{10,n_1}}{10^6} \, .$$

4. ПРИМЕРЫ РАСЧЕТОВ

Пример 1. Подобрать радиальный роликоподшипник с короткими цилиндрическими роликами и безбортовым наружным кольцом для плавающего вала редуктора общего назначения.

Дано: диаметр вала d=50 мм; радиальная нагрузка $F_{r1}=F_{r2}=380$ = $F_{r2}=3800$ H; частота вращения внутреннего кольца n=800 мин⁻¹; необходимый ресурс $L_{10h}=10000$ ч; рабочая температура $t \le 90$ °C, $K_{\rm T}=1$, V=1, $K_{\rm G}=1.3$ (рис. 4).

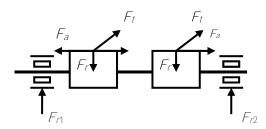


Рис. 4. Схема нагружения Расчет

1. Так как для радиальных роликовых подшипников X = 1, Y = 0, определяем эквивалентную нагрузку по формуле

$$P_{3KB} = F_{\Gamma}VK_{\delta}K_{T} = 3800 \cdot 1 \cdot 1, 3 \cdot 1 = 4940 \text{ H}.$$

2. Определяем необходимый ресурс:

$$L_{10} = \frac{60 n L_{10h}}{10^6} = \frac{60 \cdot 800 \cdot 10000}{10^6} = 480$$
 млн. оборотов.

3. Из формулы (1) определяем потребную динамическую грузоподъемность:

$$C_{\Gamma} = L_{10}^{0.3} P_2 = 480^{0.3} \cdot 4940 = 31482,62 \text{ H}.$$

4. По каталогу (табл. П4) выбираем роликоподшипник 2210, радиальная динамическая грузоподъемность которого C_{Γ} = 45700 H, статическая радиальная грузоподъемность $C_{o\Gamma}$ = 27500 H, предельная частота вращения при пластичной смазке 7000 мин⁻¹. Габариты подшипника: d = 50 мм, D = 90 мм, B = 20 мм.

Динамическая радиальная грузоподъемность подшипника по каталогу несколько выше необходимой, следовательно, при заданном ресурсе 10000 ч вероятность безотказной работы будет выше 90 %.

Пример 2. Подобрать радиальный шарикоподшипник для плавающей опоры вала редуктора диаметром 30 мм.

Дано: $F_{r2} = 2270 \text{ H}$; $n = 600 \text{ мин}^{-1}$; потребный ресурс $L_{10h} = 17500 \text{ ч}$; рабочая температура $t \pm 90 \text{ °C}$; V = 1, $K_6 = 1.4$, $K_T = 1$ (рис. 5).

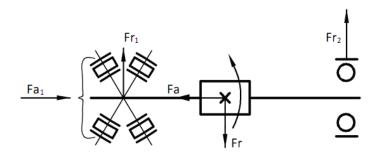


Рис. 5. Схема нагружения

Расчет

1. Определяем эквивалентную нагрузку:

$$P_r = F_{r2}VK_{6}K_{T} = 2270 \cdot 1 \cdot 1, 4 \cdot 1 = 3178 \text{ H}.$$

2. Определяем необходимый ресурс:

$$L_{10} = \frac{60nL_{10h}}{10^6} = \frac{60 \cdot 600 \cdot 17500}{10^6} = 630$$
 млн. оборотов.

3. Определяем необходимую динамическую грузоподъемность:

$$C_r = L_{10}^{0.333} P_r = \sqrt[3]{630} \cdot 2270 = 19459,845 \text{ H}.$$

4. По каталогу (табл. П1) выбираем шарикоподшипник 206 с радиальной динамической грузоподъемностью C_r =19500 H, статической радиальной грузоподъемностью C_{or} = 11200 H, предельной частотой вращения при пластичной смазке 9000 мин⁻¹. Габариты подшипника: d = 30 мм, D = 62 мм, B = 16 мм. Вероятность безотказной работы при заданном ресурсе несколько выше 90 %.

Пример 3. Подобрать шарикоподшипник для вала диаметром 45 мм.

Дано: $F_{r1} = 3200 \text{ H}$; $F_{r2} = 6200 \text{ H}$; $F_a = 2108 \text{ H}$; $\rho = 150 \text{ мин}^{-1}$, потребный ресурс $L_{10h} = 17500 \text{ H}$; V = 1, $K_6 = 1.3$, $K_{\text{T}} = 1 \text{ (рис. 6)}$.

Расчет

1. Так как для более нагруженной радиальной нагрузкой второй опоры $\frac{F_{a}}{F_{r}} = \frac{2108}{6200} = 0.34 < 0.35$, т. е. осевая нагрузка не

превышает 35 % от радиальной, предварительно выбираем радиальный шариковый подшипник легкой серии 209. Размеры этого подшипника (табл. Π 1): $\mathcal{O}=45$ мм; $\mathcal{D}=85$ мм; $\mathcal{D}=19$ мм;

 C_r = 33200 H; C_{or} = 21600 H, предельная частота вращения при пластичной смазке 7500 мин⁻¹.

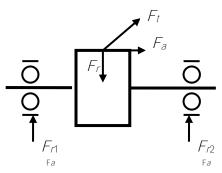


Рис. 6. Схема нагружения

2. Определяем эквивалентную нагрузку.

По табл. 8 для соотношения $\frac{F_{\mathcal{A}}}{C_{or}} = \frac{2108}{21600} = 0,098$ получаем e=0,30,~X=0,56,~Y=1,44.

Для первой опоры
$$\frac{F_a}{VF_{r1}} = \frac{2108}{1 \cdot 3200} = 0.66 > e$$
.

Определяем эквивалентную нагрузку по формуле

$$P_{r1} = (XVF_{r1} + YF_a)K_6K_T = (0.56 \cdot 1 \cdot 3200 + 1.44 \cdot 2108) \cdot 1.3 \cdot 1 = 6276 \text{ H}.$$

Аналогично для второй опоры
$$\frac{F_a}{VF_{r2}} = \frac{2108}{1.6200} = 0.34 > e$$
, тогда

$$P_{r2} = (XVF_{r2} + YF_{a}) K_{6}K_{T} = (0.56 \cdot 1.6200 + 1.44 \cdot 2108) \cdot 1.3 \cdot 1 = 8459.77 \text{ H}.$$

3. Определяем ресурс принятого подшипника:

$$L_{10} = \left(\frac{C_{\Gamma}}{P_{\Gamma}}\right)^3 = \left(\frac{33200}{8459,77}\right)^3 = 60,44$$
 млн. оборотов.

$$L_{10h} = \frac{10^6 L_{10}}{60n} = \frac{10^6 \cdot 60,44}{60 \cdot 150} = 6715,77$$
 ч, что меньше необхо-

димого, т. е. выбранный подшипник не обеспечивает требуемый ресурс $L_{10h} = 17500$ ч.

- 4. Принимаем подшипник средней серии 309. У этого подшипника d=45 мм, D=100 мм, B=25 мм, $C_f=52700$ H, $C_{of}=31500$ H, предельная частота вращения при пластичной смазке 6700 мин⁻¹.
 - 5. Определяем эквивалентную нагрузку.

Для соотношения
$$\frac{F_a}{C_{or}} = \frac{2108}{31500} = 0.67$$
 находим $e = 0.28$;

$$\frac{F_a}{VF_c}$$
 = 0,34 > e , следовательно, X = 0,56, Y = 1,57.

Для первой опоры
$$\frac{F_a}{VF_{c1}} = \frac{2108}{1 \cdot 3200} = 0.66 > e$$
.

Определяем эквивалентную нагрузку по формуле

$$P_{r1} = (XVF_{r1} + YF_a) K_6 K_{\text{\tiny T}} = (0.56 \cdot 1 \cdot 3200 + 1.57 \cdot 2108) \cdot 1.3 \cdot 1 = 5100.2 \text{ H}.$$

Аналогично для второй опоры $\frac{F_a}{VF_{r2}} = \frac{2108}{1.6200} = 0.34 > e$, тогда

$$P_{r2} = (XVF_{r2} + YF_{a})K_{\delta}K_{T} = (0.56 \cdot 1.6200 + 1.57 \cdot 2108) \cdot 1.3 \cdot 1 = 8816.0 \text{ H}.$$

6. Определяем ресурс принятого подшипника:

$$L_{10} = \left(\frac{C_r}{P_r}\right)^3 = \left(\frac{52700}{8816,0}\right)^3 = 213,6$$
 млн. оборотов.
$$L_{10h} = \frac{10^6 L_{10}}{60 n} = \frac{10^6 \cdot 213,6}{60 \cdot 150} = 23733,3 > 17500$$
 ч.

При заданном ресурсе вероятность безотказной работы выше 90 %.

Пример 4. Подобрать подшипники для вала червяка, расчетная схема нагружения подшипников которого изображена на рис. 7.

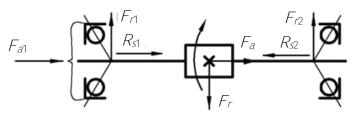


Рис. 7. Схема нагружения

Дано: диаметр вала d=40 мм; n=400 мин⁻¹; $F_{r1}=1200$ H; $F_{r2}=1500$ H; $F_a=4800$ H; $K_6=1.3$; $K_T=1$; V=1. Необходимый ресурс $L_{10h}=3500$ ч.

Расчет

1. Задаемся подшипниками 36208; $\mathcal{O}=40$ мм, $\mathcal{D}=80$ мм; 42

D = 18 мм; C_r = 38900 H; C_{Or} = 26100 H; α = 12°; n_{max} = 13000 мин $^{-1}$ при жидкой смазке.

2. Определяем минимальные осевые силы для 1-го и 2-го подшипников:

$$\frac{F_a}{C_{or}} = \frac{4800}{26100} = 0.124 /$$

По данным табл. 8 находим e' = 0.495.

3. Определяем осевые реакции в опорах:

$$R_{s1} = e \cdot F_{r1} = 0.495 \cdot 1200 = 594 \text{ H};$$

 $R_{s2} = e \cdot F_{r2} = 0.495 \cdot 1500 = 742.5 \text{ H}.$

Так как, а $F_a = 4800 > R_{s2} - R_{s1} = 742.5 - 594 = 148.5$, принимаем, что $F_{a1} = R_{s1} = 594$ H, тогда из условия равновесия $F_{a2} = F_a + F_{a1} = 4800 + 594 = 5394$ H, что больше R_{s2} , и, следовательно, осевые силы найдены правильно.

4. Определяем эквивалентную нагрузку.

$$\frac{F_{a1}}{F_{r1} \cdot V} = \frac{594}{1200 \cdot 1} = 0.495 = e.$$

$$P_{r1} = XVF_{r1}K_{6}K_{T} = 1 \cdot 1 \cdot 1200 \cdot 1.3 \cdot 1 = 1560 \text{ H}.$$

$$\frac{F_{a2}}{F_{r2} \cdot V} = \frac{5394}{1500 \cdot 1} = 3.6 > e.$$

$$P_{r2} = (XVF_{r2} + YF_{a2}) K_{6}K_{T} = (1 \cdot 0.45 \cdot 1500 + 1.1 \cdot 5394) \cdot 1.3 \cdot 1 = 8591 \text{ H}.$$

5. Определяем ресурс принятого подшипника:

$$L_{10} = \left(\frac{C_r}{P_{r2}}\right)^3 = \left(\frac{38900}{8591}\right)^3 = 92,837$$
 млн. оборотов;
 $L_{10h} = \frac{10^6 L_{10}}{60n} = \frac{10^6 \cdot 92,837}{60 \cdot 400} = 3868,2 > 3500$ ч.

Подшипник пригоден. При заданном ресурсе вероятность безотказной работы несколько выше 90 %.

Пример 5. Подобрать подшипники для вала конической шестерни по расчетной схеме на рис. 8.

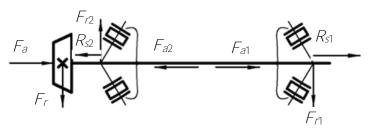


Рис. 8. Схема нагружения

Дано: d = 30 мм; $F_{r1} = 5000$ H; $F_{r2} = 1200$ H; $F_a = 380$ H; n = 1450 мин⁻¹; $K_6 = 1.3$; $K_T = 1$; V = 1; потребный ресурс $L_{10h} = 6000$ ч.

Расчет

- 1. Задаемся подшипниками 7306, у которых d = 30 мм; D = 72 мм; B = 20,75 мм; $C_r = 43000$ H; $C_{or} = 29500$ H; $P_{max} = 7500$ мин $^{-1}$ при жидкой смазке; e = 0,34; Y = 1,78.
- 2. Определяем минимальные осевые нагрузки для подшипников:

$$e' = 0.83e = 0.83 \cdot 0.34 = 0.2822$$

$$R_{s1} = e^t F_{r1} = 0.2822 \cdot 5000 = 1411 \text{ H};$$

$$R_{s2} = e^t F_{r2} = 0.2822 \cdot 1200 = 338.6 \text{ H}.$$

3. Определяем осевые реакции в опорах.

При $R_{S1} > R_{S2}$ и $F_a > 0$ принимаем, что $F_{a1} = R_{S1} = 1411 \, H$, тогда из условия равновесия $F_{a2} = F_{a1} + F_a = 1411 + 380 = 1791 \, H$.

- 4. Определяем эквивалентные нагрузки:
- а) для 1-й опоры

$$\frac{F_{a1}}{VF_{c1}} = \frac{1411}{1.5000} = 0.282 < e = 0.34$$
.

Следовательно, X = 1; Y = 0.

Отсюда $P_{f1} = F_{f1}VK_{\mathbf{6}}K_{\mathbf{T}} = 5000 \cdot 1 \cdot 1,3 = 6500 \text{ H}.$

б) для 2-й опоры

$$\frac{F_{a2}}{VF_{r2}} = \frac{1791}{1.1200} = 1.49 > e$$
.

Следовательно, X = 0.4, Y = 1.733.

Отсюда

$$P_{r2} = (XVF_{r2} + YF_{a2}) K_{6}K_{T} = (0.4 \cdot 1.1200 + 1.78 \cdot 1791) \cdot 1.3 \cdot 1 = 4768.4 \text{ H}.$$

5. Определяем ресурс принятых подшипников (расчет выполняем по 1-й более нагруженной опоре):

$$L_{10} = \left(\frac{C_r}{P_{r1}}\right)^3 \sqrt[3]{\frac{C}{P_{r1}}} = \left(\frac{43000}{6500}\right)^3 \cdot \sqrt[3]{\frac{43000}{6500}} = 543.4$$
 млн. оборотов;

$$L_{10h} = \frac{10^6 L_{10}}{60n} = \frac{10^6 \cdot 543.4}{60 \cdot 1450} = 6249 \text{ y} > 6000 \text{ y}.$$

Подшипник пригоден.

Пример 6. Определить расчетный ресурс конических подшипников 27307 вала червяка, изображенного на рис. 9.

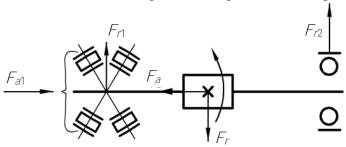


Рис. 9. Схема нагружения

Дано: $F_{r1} = 5000 \text{ H}$; $F_{r2} = 4000 \text{ H}$; $F_{a} = 3278 \text{ H}$; $n = 950 \text{ мин}^{-1}$; $K_{\mathbf{5}} = 1.2$; $K_{\mathbf{T}} = 1$; V = 1; pecypc $L_{10h} = 12000 \text{ ч}$.

Расчет

- 1. Определяем характеристики подшипника 27307 по каталогу: C_{Γ} = 39400 H; $C_{o\Gamma}$ = 29500 H, n_{max} = 6300 мин⁻¹ при жидкой смазке, e = 0,79, Y = 0,76 d = 35 мм, D = 80 мм, T = 23 мм, B = 21 мм, α = 28°.
- 2. Рассматриваем два подшипника левой опоры как один двухрядный и определяем суммарную динамическую радиальную грузоподъемность:

$$C_{\Gamma \text{ cym}} = C_{\Gamma} i^{7/9} = 39400 \cdot 2^{7/9} = 67551 \text{ H}.$$

3. Определяем эквивалентную нагрузку для двухрядного подшипника левой опоры.

Так как
$$\frac{F_{a1}}{VF_{r1}} = \frac{3278.5}{1.5000} = 0.6557 < e$$
, имеет смысл применить

сдвоенный подшипник. Следовательно, по данным табл. 9, X = 1,0. Определим значение угла α :

$$\alpha = \arctan(e/1.5) = \arctan(0.79/1.5) = 27.77^{\circ}$$

тогда для двухрядного роликового радиально-упорного подшипника Y = 0.45ctg $\alpha = 0.45$ ctg $27.77^{\circ} = 0.855$.

Эквивалентная нагрузка

$$P_{f1} = (XVF_{f1} + YF_{a1}) K_{6} K_{T} = (1.5000 + 0.855.3278) \cdot 1.2 \cdot 1 = 9372.5 \text{ H}.$$

4. Определяем ресурс подшипников:

$$L_{10} = \left(\frac{C_{\Gamma \text{сум}}}{P_{\text{r1}}}\right)^{3,333} = \left(\frac{67551}{9372,5}\right)^{3,333} = 722,72$$
 млн. оборотов.

$$L_{10h} = \frac{10^6 L_{10}}{60n} = \frac{10^6 \cdot 722,72}{60 \cdot 950} = 12679,4 \text{ } \mathbf{q} > 12000 \text{ } \mathbf{q}.$$

Подшипник пригоден.

Пример 7. Подобрать радиальный шарикоподшипник для вала редуктора диаметром d = 30 мм.

Дано: $F_{r1} = 1500 \text{ H}$; $n = 1000 \text{ мин}^{-1}$; потребный ресурс $L_{10h} = 10000 \text{ ч}$; рабочая температура $t \le 950 \text{ °C}$; $K_6 = 1.3$; $K_T = 1$; V = 1. Циклограмма нагрузки (рис. 10) состоит из четырех ступеней, имеющих отношение радиальных нагрузок:

$$\frac{P_{r1}}{P_r} = 1.0;$$
 $\frac{P_{r2}}{P_r} = 0.5;$ $\frac{P_{r3}}{P_r} = 0.195;$ $\frac{P_{r4}}{P_r} = 0.005;$

при соответствующем отношении ресурса

$$\frac{L_{10ah1}}{L_{10ah}} = 0.1; \qquad \frac{L_{10ah2}}{L_{10ah}} = 0.5; \qquad \frac{L_{10ah3}}{L_{10ah}} = 0.1; \qquad \frac{L_{10ah4}}{L_{10ah}} = 0.3.$$

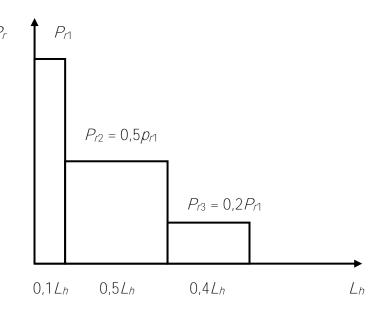


Рис. 10. Циклограмма нагрузки

Осевые нагрузки случайные (малые по величине), т. е. можно принять

$$F_{\partial}=0$$
.

Расчет

1. Определяем эквивалентную нагрузку:

$$P_r = (XVF_r + YF_a)K_6K_T$$

где
$$X = 1$$
, $Y = 0$, так как $\frac{F_{a1}}{VF_{r1}} = 0 < e$, тогда

$$P_r = XVF_r K_{\delta} K_{T} = 1.1.1500.1, 3.1 = 1950 \text{ H}.$$

2. Эквивалентная динамическая нагрузка при переменном режиме работы

$$P_{3r} = P_r \sqrt[3]{\left(\frac{P_{r1}}{P_r}\right)^3 \cdot \frac{L_{10ah}}{L_{10ah}} + \left(\frac{P_{r2}}{P_r}\right)^3 \cdot \frac{L_{10ah2}}{L_{10ah}} + \left(\frac{P_{r3}}{P_r}\right)^3 \cdot \frac{L_{10ah3}}{L_{10ah}} + \left(\frac{P_{r4}}{P_r}\right)^3 \cdot \frac{L_{10ah4}}{L_{10ah}}} = 1950 \sqrt[3]{1,0^3 \cdot 0,1 + 0,5^3 \cdot 0,5 + 0,195^3 \cdot 0,1 + 0,05^3 \cdot 0,3} = 1066 \text{ H}.$$

3. Определяем необходимый ресурс:

$$L_{10} = \frac{60 \cdot n \cdot L_{10h}}{10^6} = \frac{60 \cdot 1000 \cdot 10000}{10^6} = 600$$
, млн. оборотов.

4. Определяем необходимую базовую динамическую радиальную грузоподъемность:

$$C_{\Gamma} = \sqrt[3]{L_{10}} \cdot P_{3\Gamma} = \sqrt[3]{600} \cdot 1066 = 8990 \text{ H}.$$

5. Выбираем по каталогу (табл. П1) шарикоподшипник особо легкой серии 106 по ГОСТ 8338–75 со следующими характеристиками C_{Γ} = 8300 H, $C_{O\Gamma}$ = 6800 H, \mathcal{D} = 30 мм, \mathcal{D} = 55 мм, \mathcal{B} = 13 мм.

Литература

- 1. Подшипники качения. Статическая грузоподъемность: ГОСТ 18854—94.
- 2. Подшипники качения. Динамическая расчетная грузоподъемность и расчетный ресурс (долговечность): ГОСТ 18855—94.
- 3. Подшипники шариковые и роликовые. Система условных обозначений: ГОСТ 3189–89.
- 4. Подшипники качения. Общие технические условия: ГОСТ 520–2002.
- 5. Детали машин в примерах и задачах / С.Н. Ничипорчик [и др.]. Минск: Вышэйшая школа, 1981. 432 с.
- 6. Дунаев, П.Ф. Конструирование узлов и деталей машин / П.Ф. Дунаев, О.П. Леликов. М.: Высшая школа. 352 с.

ПРИЛОЖЕНИЕ

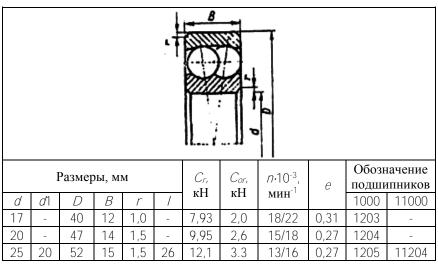
ХАРАКТЕРИСТИКИ СТАНДАРТНЫХ ПОДШИПНИКОВ КАЧЕНИЯ

Таблица П1 Подшипники шариковые радиальные однорядные (из ГОСТ 8338–75)

	P	азмер	οы, м	M	C_{r_i}	C_{or}	<i>n</i> •10 ⁻³	05
	d	D	В	r	кН	кН	мин	Обозначение
	10	26	8	0,5	4,62	1,96	30/36	100
	12	28	8	0,5	5,07	2,36	26/32	101
	15	32	9	0,5	5,59	2,85	22/28	102
	17	35	10	0,5	6,05	3,25	19/24	103
	20	42	12	1,0	9,36	5,0	17/20	104
	25	47	12	1,0	11,2	6,5	15/18	105
, B .	30	55	13	1,5	13,3	8,3	12/15	106
	35	62	14	1,5	15,9	10,2	10/13	107
2000	40	68	15	1,5	16,8	11,6	9,5/12	108
' [{}] _{*1}	45	75	16	1,5	20,8	14,6	9,0/11	109
	50	80	16	1,5	21,6	16,0	8,5/10	110
	55	90	18	2,0	28,1	21,2	7,5/9,0	111
b	60	95	18	2,0	29,6	23,2	6,7/8,0	112
	65	100	18	2,0	30,7	25,0	6,3/7,5	113
	70	110	20	2,0	37,7	31,0	6,0/7,0	114
	75	115	20	2,0	39,7	33,5	5,6/6,7	115
	80	125	22	2,0	47,7	40,0	5,3/6,3	116
	85	130	22	2,0	49,4	43,0	5,0/6,0	117
	90	140	24	2,5	58,5	50,0	4,8/5,6	118
	95	145	24	2,5	60,5	54,0	4,5/5,3	119
	100	150	24	2,5	60,5	54,0	4,3/5,0	120
						я серия		
	10	30	9	1,0	5,90	2,65	24/30	200
	12	32	10	1,0	6,89	3,1	22/28	201
	15	35	11	1,0	7,80	3,75	19/24	202
	17	40	12	1,0	9,56	4,75	17/20	203
	20	47	14	14	12,7	6,55	15/18	204
	25	52	15	14	14,0	7,8	12/15	205
	30	62	16	1,5	19,5	11,2	10/13	206
	35	72	17	2,0	25,5	15,3	9/11	207
	40	80	18	2,0	32,0	19,0	8,5/11	208

	F	азмер)Ы. M	M	C_{r_i}	Cor,	<i>n</i> ·10 ⁻³ ,	0.7
	d	D	B	r	кН	кН	мин	Обозначение
	45	85	19	2,0	33,2	21,6	74/9	209
	50	90	20	2,0	35,1	23,5	7/84	210
	55	100	21	2,5	43,6	29,0	6,3/7,5	211
	60	110	22	2,5	52,0	32,5	6/7	212
	65	120	23	2,5	56,0	40,5	5,3/6,3	213
	70	125	24	2,5	61,8	45,0	5/6	214
	75	130	25	2,5	66,3	49,0	4,8/5,6	215
	80	140	26	3,0	70,2	55,0	4,5/53	216
	85	150	28	3,0	83,2	64,0	43/5	217
	90	160	30	3,0	95,6	73,5	3,8/4,5	218
					Средня			
	95	170	32	3,5	108	81,5	3,6/4,3	219
	12	37	12	14	9,75	4,65	19/24	301
	15	42	13	1,5	11,4	5,4	17/20	302
B	17	47	14	14	13,5	6,65	16/19	303
	20	52	15	2,0	15,9	7,8	13/16	304
7 7 7	25	62	17	2,0	22,5	11,6	11/14	305
	30	72	19	2,0	28,1	16,0	9/11	306
	35	80	21	2,5	33,2	19,0	8.5/10	307
	40	90	23	2,5	41,0	24,0	74/9	308
Tr U	45	100	25	2,5	52,7	31,5	6,7/8	309
	50	110	27	3,0	61,8	38,0	6,3/74	310
	55	120	29	3,0	71,5	45,0	5,6/6,7	311
	60	130	31	3,5	81,9	52,0	5/6	312
	65	140	33	3,5	92,3	60,0	4,8/5,6	313
	70	150	35	3,5	104	68,0	44/5,3	314
	75	160	37	3,5	114	76,5	43/5,0	315
	80	170	39	3,5	124	86,5	3,8/4,5	316
					Тяжела	ая сери		
	17	62	17	2,0	22,9	11,8	12/15	403
	20	72	19	2,0	30,7	16,6	10/13	404*
	25	80	21	2,5	36,4	20,4	9,0/11	405
	30	90	23	2,5	47,0	26,7	84/10	406
	35	100	25	2,5	55,3	31,0	7,0/8,5	407
	40	110	27	3,0	63,7	364	6,7/8,0	408
	45	120	29	3,0	76,1	45,5	6,0/7,0	409
	50	130	31	34	87,1	52,0	5,3/63	410

					Продолжение табл. П1			
	P	азмер		M	C_{r_i}	C_{or}	<i>n</i> ⋅10 ⁻³ ,	Обозначение
	d	D	В	r	кН	кН	мин	
	55	140	33	3,5	100	63,0	5,0/6,0	411
	60	150	35	3,5	108	70,0	4,8/5,6	412
	65	160	37	3,5	119	78,1	4,5/5,3	413
	70	180	42	4,0	143	105	3,8/4,5	414
	80	200	48	4,0	163	125	3,4/4,0	416
	85	210	52	5,0	174	137	3,2/3,8	417
	15	32	8	0,5	5,59	2,85	22/28	7000102
	17	35	8	0,5	6,05	3,25	19/24	7000103
	25	47	8	0,5	7,61	4,75	14/17	7000105
	30	55	9	0,5	11,2	7,35	12/15	7000106
	35	62	9	0,5	12,4	8,15	10/13	7000107
	40	68	9	0,5	13,8	9,15	9,5/12	7000108
	45	75	10	1,0	15,6	10,8	9/11	7000109
. 	50	80	10	1,0	16,3	11,4	85/10	7000110
-	55	90	11	1,0	19,5	14,0	74/9	7000111
	60	95	11	1,0	19,9	15,0	6,7/8	7000112
	65	100	11	1,0	21,2	16,6	6,3/74	7000113
	70	110	13	1,0	28,1	25,0	6/7	7000114
6	75	115	13	1,0	28,6	27,0	5,6/6,7	7000115
TT U	80	125	1,4	1,0	33,2	31,5	53/64	7000116
	120	180	19	1,5	61,8	64,0	3,4/4,0	7000124
	150	225	24	2,0	92,3	98,0	2,6/3,2	7000130
	20	32	4	0,5	1,74	1,18	20/26	7000804
	25	37	4	0,5	1,74	1,18	17/20	7000805
	30	42	4	0,5	1,82	1,18	15/18	7000806
	35	47	4	0,5	1,82	1,18	13/16	7000807
	40	52	4	0,5	1,82	1,18	11/14	7000808
	55	72	7	0,5	4,69	3,7	8,5/10	7000811
	120	150	10	1,5	7,72	4,95	3,8/44	7000824
	170	215	14	1,0	28,5	31,5	2,6/3,2	7000834
	15	24	5	0,5	146	0,83	28/34	1000802
	20	32	7	0,5	2,7	14	19/24	1000804*
	25	37	7	0,5	345	2,8	17/20	1000805
	30	42	7	0,5	4,49	2,9	15/18	1000806
	35	47	7	0,5	4,75	13/16	13/16	1000807
								ие табл. П1


	P	азмер	ЭЫ, Μ	M	C_{r_i}	Cori	<i>n</i> ⋅10 ⁻³ ,	05
	d	D	В	r	кН	кН	мин	Обозначение
	40	52	7	0,5	4,94	3,45	11/14	1000808
	60	78	10	0,5	8,71	7,35	7,5/9	1000812
	65	85	10	1,0	11,7	9,15	7/8,5	1000813
	70	90	10	1,0	12,1	10	6,7/8	1000814
	80	100	10	1,0	12,4	10,8	6/7	1000816
	85	110	13	1,5	194	16,6	53/64	1000817*
	90	115	13	14	194	17	54/6,3	1000818
	95	120	13	14	19,9	17,6	5/6	1000819
	105	130	13	1,5	20,8	19,6	4,5/5,3	1000821
	110	140	16	1,5	28,1	26,0	4,3/5,0	1000822
	120	150	16	1,5	29,1	28,0	3,8/4,5	1000824
	140	175	18	2,0	39,0	46,5	3,4/4,0	1000828
	150	190	20	2,0	48,8	61,0	3.0/3,6	1000830
, <i>B</i> ,	160	220	20	2,0	49,4	64,0	2,8/3,4	1000832
-	170	215	22	2,0	61,8	78,0	2,6/3,2	1000834
	180	225	22	2,0	62,4	81,5	2,4/3,0	1000836
	200	250	24	2,5	76,1	102	2,2/2,8	1000840
	45	58	8	0,5	4,3	2,96	9,5/12	2000809
0	15	28	7	0,5	4,03	2,04	24/30	1000902
Tr u	17	30	7	0,5	4,36	2,32	22/28	1000903
	20	37	9	0,5	6,55	3,65	18/22	1000904
	25	42	9	0,5	7,32	4,0	16/19	1000905
	30	47	9	0,5	7,59	4,55	14/17	1000906
	35	55	10	1,0	10,4	6,2	11/14	1000907
	40	62	12	1,0	13,8	9,3	10/13	1000908
	45	68	12	1,0	14,3	8,15	9/11	1000909
	55	72	7	0,5	4,69	3,7	8,5/10	7000811
	55	80	13	1,5	16,0	11,4	8,0/9,5	1000911
	60	85	13	1,5	16,5	12,0	7,5/9	1000912
	65	90	13	1,5	17,4	13,4	6,7/8	1000913
	75	105	16	1,5	24,3	19,3	6/7	1000915
	80	110	16	1,5	27,5	20,4	5,6/6,7	1000916
	85	120	18	2,0	31,9	30,0	5,3/6,3	1000917
	90	125	18	2,0	33,2	31,5	5/6	1000918
	95	130	18	2,0	33,8	33,3	4,8/5,6	1000919

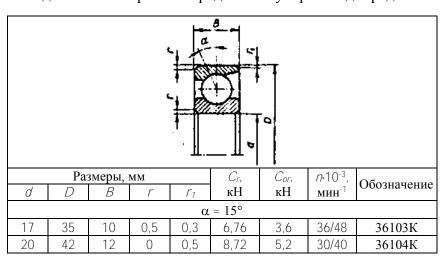
Окончание табл. П1

	P	азмер	οы, м	M	C_{r_i}	Cor,	<i>n</i> ⋅10 ⁻³ ,	05
	d	D	В	r	кН	кН	МИН	Обозначение
8	100	140	20	2,0	44,9	41,5	4,5/5,3	1000920
-	105	145	20	2,0	46,5	44,0	4,3/5,0	1000921
	110	150	20	2,0	46,5	45,0	4,0/4,8	1000922
	120	165	22	2,0	55,3	57,0	3,6/4,3	1000924
	130	180	24	2,5	65,3	67,0	3,4/4,0	1000926
	140	190	24	2,5	66,6	72,0	3,2/3,8	1000928
T 1	150	210	28	3,0	88,4	93.0	2,8/3,4	1000930
	160	220	28	3,0	92,3	98,0	2,6/3,2	1000932
	170	230	28	3,0	93,6	106	2,4/3,0	1000934

Примечание. Здесь и далее – предельные частоты вращения п указаны для пластичного смазочного материала (числитель) и жидкого (знаменатель). Подшипники, отмеченные знаком "*" выпускаются опытными партиями.

Таблица П2 Подшипники шариковые радиальные сферические двухрядные (ГОСТ 28428–90)

Продолжение табл. П2


	1	Размер)Ы. MI	М		Cr,	Cor,	<i>n</i> ⋅10 ⁻³ ,			ачение
						кН	кН	мин ⁻¹	е		пников
d	ď	D	В	r	/					1000	11000
30	25	62	16	1,5	27	15,6	4,7	10/13	0,24	1206	11205
35	30	72	17	2,0	29	15,9	5,2	9,0/11	0,23	1207	11206
40	35	80	18	2,0	31	19,0	6,6	8,5/10	0,22	1208	11207
45	40	85	19	2,0	33	21,6	7,5	7,5/9,0	0,21	1209	11208
50	45	90	20	2,0	35	22,9	8,3	7,0/8,5	0,21	1210	11209
55	50	100	21	2,5	37	26,5	10,3	6,3/7.5	0,20	1211	11210
60	55	110	22	2,5	38	30,2	12,0	5,6/6,7	0,19	1212	11211
65	60	120	23	2,5	40	31,2	13,0	5,3/6.3	0,17	1213	11212
70	-	125	24	2,5	-	34,5	24,3	5,0/6,0	0,18	1214	-
17	-	47	14	1,5	-	12,5	3,1	14/17	0,33	1303	-
20	-	52	15	2,0	-	12,5	3,3	12/15	0,29	1304	-
25	-	62	17	2,0	-	17,8	5,0	9,5/13	0,28	1305	-
30	25	72	19	2,0	31	21,2	6,4	9,0/11	0,26	1306	11305
35	30	80	21	2,5	35	25,1	8,0	7,5/9.0	0,25	1307	11306
40	35	90	23	2,5	36	29.6	9,7	6,7/8,0	0,24	1308	11307
45	40	100	25	2,5	39	37,7	12,8	6,3/7,5	0,25	1309	11308
50	45	110	27	3.0	42	43,6	14,5	5,6/6,7	0,24	1310	11309
55	50	120	29	3,0	45	50,7	18,0	5,0/6,0	0,23	1311	11310
60	55	130	31	3,5	47	57,2	21,0	4,5/5,3	0,23	1312	11311
65	60	140	33	3,5	50	61,8	23,3	4,3/5,0	0,23	1313	11312*
70	-	150	35	3,5	-	74,1	28,1	4,0/4,8	0,22	1314	-
20	-	47	18	1,5	-	12,5	3,2	14/17	0,48	1504	-
25	-	52	18	1,5	-	12,4	3,5	11/14	0,43	1505	-
30	25	62	20	1,5	31	15,3	4,6	9,5/12	0,39	1506	11505
35	30	72	23	2,0	35	21,6	6,6	8,5/10	0,37	1507	11506
40	-	80	23	2,0	-	22,5	7,5	7,5/9,0	0,33	1508	-
45	40	85	23	2,0	39	23,4	8.3	7,0/8,5	0,31	1509	11508*
50	45	90	23	2,0	42	23,4	8,7	6,3/7,5	0,28	1510	11509*
60	-	110	28	2,5	-	33,8	13,0	5,3/6,3	0,28	1512	-
65	60	120	31	2,5	50	43,6	16,8	5,0/6,0	0,28	1513	11512
20	_	52	21	2,0	_	18,2	4,6	11/14	0,52	1604	-
25	-	62	24	2,0	-	24,2	6,4	9,5/12	0,47	1605	-

Окончание табл. П2

	Размеры, мм					Cr,	Cor,	<i>n</i> ⋅10 ⁻³ ,		Обозначение	
		Tomer	, m			кН	кН	мин ⁻¹	е	подши	ипников
d	ď	D	В	r	/	KII	KII	МИН		1000	11000
30	-	72	27	2.0	-	31,2	8,7	8,5/10	0,44	1606	-
35	30	80	31	2,5	43	39,7	11,0	7,0/8,5	0,46	1607	11606
40	-	90	33	2,5	-	44,9	13,2	6,3/7,5	0,43	1608	-
45	-	100	36	2,5	-	53,8	16,5	5,6/6,7	0,43	1609	-
50	45	110	40	3,0	55	63,7	19,9	5,3/6,3	6,43	1610	11609
55	-	120	43	3,0	-	76,1	23,6	4,5/5,6	0,41	1611	-
60	55	130	46	3,5	62	87,1	28,1	4,0/5,0	0,40	1612	11611
65	60	140	48	3,5	65	95,6	32,3	3,6/4,5	0,38	1613	11612*
60	-	150	35	3,5	-	78	27,6	3,2/4,0	0,41	1412	-
25	-	47	12	1,0	-	7,5	2,3	15/18	0,20	1105	-
30	-	55	13	1,5	-	9,3	3,2	12/15	0,19	1106	=

Примечание. Для подшипников, устанавливаемых на валу с помощью закрепительной втулки, указаны длина втулки и диаметр \mathcal{O}_1 посадочного отверстия втулки на вал.

Таблица П3 Подшипники шариковые радиально-упорные однорядные

	Pas	вмеры,	MM		C_{r_i}	C_{or}	<i>n</i> ⋅10 ⁻³ ,	ис таол. 113
d	D	В	r	r_1	кН	кН	мин -1	Обозначение
				α	= 15°			
25	47	12	0	0,5	9,56	6,3	26/36	36105K
30	55	13	0,5	0,8	14,3	8,65	22/32	36106К
35	62	14	0,5	0,8	15,6	10,6	20/28	36107K
40	68	15	0,5	0,8	16,8	12,2	18/25	36108K
45	75	16	0,5	0,8	23,2	16	16/22	36109К
50	80	16	0,5	0,8	24,5	18,3	15/20	36110K
55	90	18	2	0	34	25	13/18	361ПК
60	95	18	2	0	35,5	26,5	12/17	36112K
65	100	18	2	0	36	28,5	11/16	36113K
70	110	20	2	0	46,8	36	10/16	36114K*
75	115	20	2	0	45,5	39	10/15	36115K*
80	125	22	2,6	0	58	48	9,0/13	36116К*
90	140	24	2,5	0,2	72	60	7,5/11	36118K
17	40	12	1,0	0,5	9,23	4,65	34/45	36203K
25	52	15	1,5	0,8	13,5	8	24/34	3 6205 K
30	62	16	1,5	0,8	24,2	12	20/30	36206К
35	72	17	2	0	39,1	15.6	18/26	36207К
40	80	18	2	0	41	20.0	16/22	36208K
45	85	19	2	0	42,3	25	15/20	36209К
50	90	20	2	0	35,5	28,5	14/19	36210К
55	100	21	2,5	0,2	55,3	39.1	12/17	36211K
80	140	26	93,0	0,5	93	76,9	8,0/12	36216К
				α	= 12°			
20	47	14	1,5	0,8	15,40	9,00	22/30	36204
30	62	16	1,5	0,8	22,0	14,1	16/22	36206
40	80	18	2,0	1,0	38,9	26,1	12/17	36208
50	90	20	2,0	1,0	43,2	31,7	10/14	36210
60	110	22	2,5	1,2	61,5	46,2	8,5/12	36212
65	120	23	2,5	1,2	70,4	54,8	8,0/1 1	36213
70	125	24	2,5	1,2	80,2	64,4	7,5/10	36214
75	130	25	2,5	1,2	80,0	67,6	7,1/9,5	36215
85	150	28	3,0	1,5	104,0	86,4	6,3/8,5	36217

	Dor				C			пие таол. 113
d	D	в меры , В		r	<i>С_г,</i> к Н	<i>С_{ог},</i> к Н	<i>n</i> ·10 ⁻³ ,	Обозначение
90	160	30	<i>r</i> 3,0	1,5	118,0	97,5	мин ⁻¹ 5,8/8	36218
95	170	32	3,5	2,0	134,0	111,6	5,4/7,5	36219
17	47	14	1,5	0,8	154,0	8,05	12/17	36303*
40	90	23	2,5	1,2	53,9	36,0	11/15	36308
90	190	43	4,0	2,0	174,2	146,4	5,0/7,1	36318
	ı		ı		= 25°	ı		ı
40	68	15	1,5	0,8	15,9	11,6	15/20	46108K
45	75	16	1,5	0,8	22,0	15,3	14/19	46109K
50	80	16	1,5	0,8	23,2	19,6	13/18	46110K
55	90	18	2,0	1,0	32,5	23,6	11/16	46111K
60	95	18	2,0	1,0	33,5	25,5	11/16	46112K
65	100	18	2,0	1,0	34,0	27,5	10/15	46113K
70	110	20	2,0	1,0	44,0	34,5	9,0/13	46114K
75	115	20	2,0	1,0	44,0	38,2	8,5/12	46115K
80	125	22	2,0	1,0	56,0	45,5	8,0/11	46116K
90	140	24	2,5	1,2	68,0	57,0	7,0/10	46118K
			•	α	= 26°	•	•	
30	55	13	1,5	0,8	14,5	10,1	11/14	46106
35	62	14	1,5	0,8	18,1	12,9	9,5/12	46107*
40	68	15	1,5	0,8	18,9	14,1	9,0/1 1	46108
45	75	16	1,5	0,8	27,6	17,2	8,0/'0	46109
50	80	16	1,5	0,8	27,1	22,4	7,0/9,0	46110*
55	90	18	2,0	1,0	32,6	24,8	6,3/8,5	46111
60	95	18	2,0	1,0	37,4	31,1	6,0/7,5	46112
70	110	20	2,0	1,0	46,1	36,5	5,0/6,7	46114
75	115	20	2,0	1,0	47,3	42,8	4,8/6,3	46115
80	125	22	2,0	1,0	59,2	52	4,3/6,0	46116
85	130	22	2,0	1,0	57,4	54,1	4,3/5,6	46117
90	140	24	2,5	1,2	68.0	57,0	3,8/5,3	46118
20	47	14	1,5	0,8	12,5	8,8	13/18	46204
25	52	15	1,5	0,8	13,7	9,6	12/15	46205
30	62	16	1,5	0,8	21,9	13,8	10/13	46206
35	72	17	2,0	1,0	29,0	19,3	9,0/1 1	46207
40	80	18	2,0	1,0	36,8	25,5	8,0/10	46208
		. 0	-10	.,0	55,0	2010	5,5110	.0200

	Par	змеры,	MM		C_{r_i}	Cori	<i>n</i> ⋅10 ⁻³ ,	тис таол. 113
d	D	В	r	<i>r</i> ₁	кН	кН	мин ⁻¹	Обозначение
45	85	19	2,0	1,0	38,7	27,1	7,0/9,0	46209
50	90	20	2,0	1,0	40,6	29,3	6,3/8,5	46210
55	100	21	2,5	1,2	50,3	37,1	6,0/7,5	46211
60	110	22	2,5	1,2	60,8	44,0	5.3/7,1	46212
65	140	33	3,5	2,0	113,0	83,1	4,3/5,8	46213
75	130	25	2,5	1,2	78,4	63,3	4,3/5,8	46215
80	140	26	3,0	1,5	88,4	75,3	4/5,4,0	46216
85	150	28	3,0	1,5	98,0	81,0	3,8/5,0	46217
90	160	30	3,0	1,5	114,0	89,7	3,6/4,8	46218
17	47	14	1,5	0,8	16,1	8,20	14/19	46303
20	52	15	2,0	1,0	17,8	9,9	12/17	46304
25	62	17	2,0	1,0	26,9	16,0	10/14	46305
30	72	19	2,0	1,0	32,6	20,3	9,0/12	46306
35	80	21	2,5	1,2	42,6	25,7	8,0/10	46307
40	90	23	2,5	1,2	50,8	33,6	7,0/9,0	46308
45	100	25	2,5	1,2	61,4	41,0	6,3/8,5	46309
50	110	27	3,0	1,5	71,8	48,8	5,6/7,5	46310
55	120	29	3,0	1,5	82,8	58,7	5,0/7,0	46311
60	130	31	3,5	2,0	100,0	72,4	4,8/6,3	46312
65	140	33	3,5	2,0	113,0	83,1	4,3/5,8	46313
70	150	35	3,5	2,0	127,0	94,5	4,0/5,3	46314
75	160	37	3,5	2,0	131,0	100,1	3,8/5,0	46315
80	170	39	3,5	2,0	136,0	109,7	3,6/4,8	46316
85	180	41	4,0	2,0	153,4	125,8	3,4/4,5	46317
90	190	43	4,0	2,0	165,0	142,2	3,2/4,3	46318
				α	= 36°			
17	40	12	1,0	0,5	10	5,8	14/19	66203
20	47	14	1,5	0,8	13,4	8,1	11/16	66204*
25	52	15	1,5	0,8	14,6	9,4	10/14	66205*
30	62	16	1,5	0,8	20,2	13,1	8,5/12	66206
35	72	17	2,0	1,0	27,0	18,5	7,5/10	66207
40	80	18	2,0	1,0	32,0	22,9	6,7/9,0	66208
45	85	19	2,0	1,0	36,9	26,1	6,3/8,5	66209*
50	90	20	2,0	1,0	37,5	28,0	5,6/7,5	66210*

Окончание табл. ПЗ

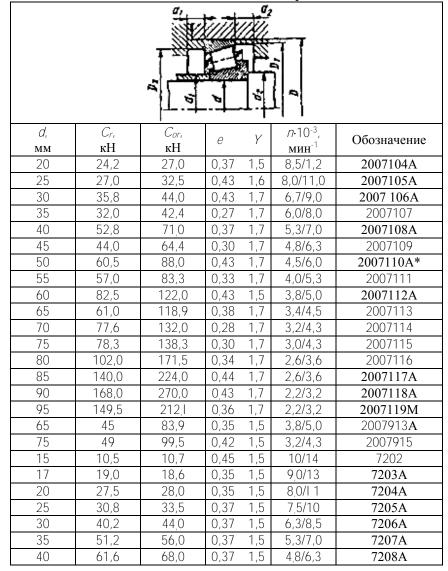
	Par	змеры,	MM		C_{r_i}	C_{or}	<i>n</i> ⋅10 ⁻³ ,	Ogomonomo
d	D	В	r	r_1	кН	кН	мин -1	Обозначение
55	100	21	2,5	1,2	46,3	35,1	5,3/7,0	66211
60	110	22	2,5	1,2	56,0	43,7	4,8/6,3	66212
75	130	25	2,5	1,2	68,0	60,3	4,0/5,3	66215
85	150	28	3,0	1,5	90,0	79,0	3,4/4,5	66217*
90	160	30	3,0	1,5	106,0	90,4	3,2/4,3	66218*
95	170	32	3,5	2,0	116,0	104,6	3,0/4,0	66219
17	47	14	1,5	0,8	17,3	8,38	22/31	66303
20	52	15	2,0	1,0	18,5	11,0	10/15	66304
25	62	17	2,0	1,0	25,1	15,6	9,0/12	66305
35	80	21	2,5	1,2	38,3	24,4	7,0/9,5	66307*
40	90	23	2,5	1,2	50,5	33,2	6,3/8,5	66308*
45	100	25	2,5	1,2	59,4	40,5	5,6/7,5	66309
55	120	29	3,0	1,5	80,5	57,5	4,5/6,3	66311*
70	150	35	3,5	2,0	119,0	87,8	3,6/4,8	66314
75	160	37	3,5	2,0	128,7	92,2	3,4/4,8	66315*
90	190	43	4,0	2,0	160,0	140,9	2,8/3,8	66318
95	200	45	4,0	2,0	173,7	141,1	2,6/3,6	66319
30	90	23	2,5	1,2	43,8	30	6,5/9,0	66406
40	110	27	3,0	1,5	72,2	45,8	5,0/7,0	66408
45	120	29	3,0	1,5	81,6	51,0	4,8/6,6	66409
55	140	33	3,5	2,0	105,0	68,3	4,0/5,5	66411
60	150	35	3,5	2,0	125,0	89,8	3,7/5,1	66412
70	180	42	4,0	2,0	152,0	124,8	3,1/4,3	66414
90	225	54	5,0	2,5	208,0	188	2,5/3,4	66418

Таблица П4

Подшипники радиальные с короткими роликами (ГОСТ 8328–75)

Тип 2000					Тип 32	0	,			8	9 2
	111-111-11							2000		ип 1200	
-1			, MM		C_{r_i}	<i>С_{ог},</i> кН	<i>n</i> ⋅10 ⁻³ ,				пников
<u>d</u>	D	<i>B</i>	10	r_1	кН		мин ⁻¹	2000	12000	32000	42000
20	42	12	1,0	0,5	8,8	4,7	16,0/20,0	2104	_	2210/	_
30	55	13	M	08	17,9	7,85	170/15,0	2107	_	32106	_
35	62	14	1,5	0,8	21,6	12,2	10,0/13,0	2107	_	32107*	_
40	68	15	1,5	1,0	25,1	14.6	9,5/12,0	_	_	32108*	_
45	75	16	1,5	1,0	31,4	17,6	9,0/11,0	-	_	32109	_
50	80	16	1,5	1,0	30,8	17,6	8,5/10,0	2110	_	32110	_
55	90	18	2,0	1,5	34,7	23,6	7,5/9,0	2111	_	32111	_
65	100	18	2,0	1,5	38,0	26,5	6,3/7,5	2113	_	32113	_
70	110	20	2,0	1,5	56,1	36,0	6,0/7,0	_	-	32114	_
75	115	20	2,0	1,5	58,3	39,0	5,6/6,7	_	12115	32115	_
80	125	22	2,0	1,5	66.0	44,0	5,3/6,3	_	_	32116	_
85	130	22	2,0	1.5	68,2	46,5	5,0/6,0		_	32117*	_
90	140	24	2,5	2,0	80,9	56,0	4,8/5,6		_	32118	_
95	145	24	2,5	2,0	84,2	58,5	4,5/5,0	-	-	32119	-
20	47	14	1,5	1,0	14,7	7,35	15/18	2204	12204	32204	42204
25	52	15	1,5	1,0	16,8	8,8	12/15	2205	_	32205	-
25	52	15	1,5	1,0	28,6	9,0	12/15	-	_	-	42205A
30	62	16	1,5	1,0	22,4	12,0	10/13	2206	-	32206	42206
35	72	17	2,0	1,0	31,9	17,6	9,0/11	2207	12207	32207	42207
40	80	18	2;0	2,0	41,8	24,0	8,5/10	2208	12208	32208	42208
45	85	19	20	70	44,0	25,5	7,5/9,0	2209	_	32209	42209
50	90	20	2,0	2,0	45,7	27,5	7,0/8,5	2210	12210	32210	42210

Vasy Var Cr, r κH κH κH κH MuH¹ 2000 12000 32000 42000 55 100 21 2,5 2,0 65,1 34,0 6,3/7.5 2211 12211 32211 42211 60 110 22 2,5 2,6 64,4 43,0 5,6/6,7 232 12212 32212 42212 60 110 22 2,5 2,5 76,5 51,0 5,6/6,7 2232 12213 32213 42213 60 120 28 2,5 7,5 79,0 57,06 2214 1214 32214 42214 75 130 25 2,5 5,5 79,2 57,0 5,0/6,0 2214 1214 32214 42214 75 130 25 2,5 5,5 19,3 63.0 4,8/5,3 2214 1214 32214 42214 75 10 26 3,0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1</th><th colspan="6">продолжение таол. п</th></t<>								1	продолжение таол. п					
55 100 21 2,5 2,0 56,1 34,0 6,3/7,5 2211 12211 32211 42211 60 110 22 2,5 2,5 64,4 43,0 5,6/6,7 2232 12212 32212 42212 65 120 23 2,5 2,5 76,5 51,0 5,3/6, 2213 12213 32213 42213 70 125 24 2,5 2,5 79,2 57,0 5,0/6,0 2214 12214 32214 42214 75 130 25 2,5 2,5 91,3 63.0 4,8/5,6 2215 - 32216 42215 80 140 26 3,0 30 106 86,0 4,5/5,3 2216 - 32216 42215 80 140 26 3,0 30 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0		Разм	еры	, MM								ипников		
60 110 22 2,5 2,5 64,4 43,0 5,6/6,7 232 12212 32212 42212 65 120 23 2,5 2,5 76,5 51,0 5,3/6, 2213 12213 32213 42213 70 125 24 2,5 2,5 79,2 57,0 5,0/6,0 2214 12214 32214 42214 75 130 25 2,5 91,3 63.0 4,8/5,6 2215 - 32216 42215 80 140 26 3,0 3,0 106 68,0 4,5/5,3 2216 - 32216 42216 85 150 28 3,0 3,0 119 78,0 4,3/5,0 2217 - - 42216 85 150 28 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 20 20,2	_	D	В		<i>r</i> ₁				2000	12000	32000	42000		
65 120 23 2,5 2,5 76,5 51,0 5,3/6, 2213 12213 32213 42214 70 125 24 2,5 2,5 79,2 57,0 5,0/6,0 2214 12214 32214 42214 75 130 25 2,5 2,5 91,3 63.0 4,8/5,6 2215 - 32215 42215 80 140 26 3,0 3,0 106 68,0 4,5/5,3 2216 - 32216 42216 85 150 28 3,0 3,0 119 78,0 4,3/5,0 2217 - - 42217 90 160 30 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0 2,0 28,6 9,5 9,5/12 - - - 42305A 25 62 17 20 2,0	55	100	21	2,5	2,0	56,1	34,0	6,3/7,5	2211	12211	32211	42211		
70 125 24 2,5 2,5 79,2 57,0 5,0/6,0 2214 12214 32214 42214 75 130 25 2,5 2,5 91,3 63.0 4,8/5,6 2215 - 32215 42215 80 140 26 3,0 3,0 106 68,0 4,5/5,3 2216 - 32216 42216 85 150 28 3,0 3,0 119 78,0 4,3/5,0 2217 - - 42217 90 160 30 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0 20 40,2 9,5 9,5/12 - - 42305A 30 72 19 2,0 20,0 36,9 20,0 8,5/10 2306 - 32306 42305A 30 72 19 2,0 2,0 4,6<	60	110	22	2,5	2,5	64,4	43,0	5,6/6,7	2232	12212	32212	42212		
75 130 25 2,5 2,5 91,3 63.0 4,8/5,6 2215 - 32215 42215 80 140 26 3,0 3,0 106 68,0 4,5/5,3 2216 - 32216 42216 85 150 28 3,0 3,0 119 78,0 4,3/5,0 2217 - - 42217 90 160 30 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0 2,0 28,6 9,5 9,5/12 - - - 42305A 30 72 19 2,0 20,4 4,6 27,0 8/9,5 2307 12307 2307* 42305A 30 72 19 2,0 40,4 27,0 8/9,5 2307 12307 2307* 42308 40 90 23 2,5 2,5 80,5 </td <td>65</td> <td>120</td> <td>23</td> <td>2,5</td> <td>2,5</td> <td>76,5</td> <td>51,0</td> <td>5,3/6,</td> <td>2213</td> <td>12213</td> <td>32213</td> <td>42213</td>	65	120	23	2,5	2,5	76,5	51,0	5,3/6,	2213	12213	32213	42213		
80 140 26 3,0 3,0 106 68,0 4,5/5,3 2216 - 32216 42216 85 150 28 3,0 3,0 119 78,0 4,3/5,0 2217 - - 42217 90 160 30 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0 2,0 40,2 9,5 9,5/12 - - - 42305A 30 72 19 2,0 2,0 40,2 9,5 9,5/12 - - - 42305A 30 72 19 2,0 36,9 20,0 8,5/10 2306 - 32306 42306 35 80 21 2,5 2,5 56,1 32,5 6,7/8,0 2307 12307 2307* 42308A 45 100 25 2,5 2,5 72,1	70	125	24	2,5	2,5	79,2	57,0	5,0/6,0	2214	12214	32214	42214		
85 150 28 3,0 3,0 119 78,0 4,3/5,0 2217 - - 42217 90 160 30 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0 2,0 28,6 9,5 9,5/12 2305 - 32305* - 25 62 17 2,0 2,0 40,2 9,5 9,5/12 - - - 42305A 30 72 19 2,0 2,0 36,9 20,0 8,5/10 2306 - 32306 42305A 30 72 19 2,0 36,0 32,5 56,1 32,5 6,7/8,0 2307 12307 2307* 42307 40 90 23 2,5 55,1 32,5 6,7/8,0 2309 1230 32309 42304 45 100 25 2,5 72,1 <td>75</td> <td>130</td> <td>25</td> <td>2,5</td> <td>2,5</td> <td>91,3</td> <td>63.0</td> <td>4,8/5,6</td> <td>2215</td> <td>=</td> <td>32215</td> <td>42215</td>	75	130	25	2,5	2,5	91,3	63.0	4,8/5,6	2215	=	32215	42215		
90 160 30 3,5 3,5 142 105 3,8/4,5 2218 12218 32218 42218 25 62 17 2,0 2,0 28,6 9,5 9,5/12 2305 - 32305* - 25 62 17 2,0 2,0 40,2 9,5 9,5/12 - - - 42305A 30 72 19 2,0 2,0 36,9 2,0 8,5/10 2306 - 32306 42305A 35 80 21 2,5 2,0 44,6 27,0 8/9,5 2307 12307 2307* 42307 40 90 23 2,5 2,5 56,1 32,5 6,7/8,0 230 12308 2308 42308A 45 100 25 2,5 5,5 12,1 68,0 6,3/7,5 2309 12309 32309 42308A 50 110 27 3,0 3,	80		26	3,0	3,0	106	68,0	4,5/5,3	2216	=	32216	42216		
25 62 17 2,0 2,0 28,6 9,5 9,5/12 2305 - 32305* - 25 62 17 2,0 2,0 40,2 9,5 9,5/12 - - - 42305A 30 72 19 2,0 2,0 36,9 20,0 8,5/10 2306 - 32306 42305 35 80 21 2,5 2,0 44,6 27,0 8/9,5 2307 12307 2307* 42307 40 90 23 2,5 2,5 56,1 32,5 6,7/8,0 - - - 42308A 45 100 25 2,5 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42308A 45 100 25 2,5 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42308A 45 100 25 3,5 3,5	85	150	28	3,0	3,0	119	78,0	4,3/5,0	2217	-	-	42217		
25 62 17 2,0 2,0 40,2 9,5 9,5/12 42305A 30 72 19 2,0 2,0 36,9 20,0 8,5/10 2306 32306 42306 35 80 21 2,5 2,0 44,6 27,0 8/9,5 2307 12307 2307* 42307 40 90 23 2,5 2,5 56,1 32,5 6,7/8,0 - 42308A 45 100 25 2,5 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42309 50 110 27 3,0 3,0 88 52,0 5,6/6,7 2310 12310 - 32310A 42310A 50 110 27 3,0 3,0 102 67,0 5,6/6,7 - 32310A 42310A 50 120 29 3,0	90	160	30	3,5	3,5	142	105	3,8/4,5	2218	12218	32218	42218		
30 72 19 2,0 2,0 36,9 20,0 8,5/10 2306 - 32306 42307 35 80 21 2,5 2,0 44,6 27,0 8/9,5 2307 12307 2307* 42307 40 90 23 2,5 2,5 56,1 32,5 6,7/8,0 - - - 42308A 45 100 25 2,5 2,5 80,5 32,5 6,7/8,0 - - - 42308A 50 110 27 3,0 3,0 88 52,0 5,6/6,7 2310 12310 - - 50 110 27 3,0 3,0 110 52,0 5,6/6,7 - - 32310A 42310A 50 110 27 3,0 3,0 102 67,0 5,0/6,0 2311 12311 2311 42311 65 120 29 3,0 3,0	25	62	17	2,0	2,0	28,6	9,5	9,5/12	2305	-	32305*	-		
35 80 21 2,5 2,0 44,6 27,0 8/9,5 2307 12307 2307* 42307 40 90 23 2,5 2,5 56,1 32,5 6,7/8,0 2308 12308 32308 - 40 90 23 2,5 2,5 80,5 32,5 6,7/8,0 - - - 42308A 45 100 25 2,5 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42308A 50 110 27 3,0 3,0 88 52,0 5,6/6,7 2310 12310 - - 50 110 27 3,0 3,0 110 52,0 5,6/6,7 - 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 65 140 33 3,5 3,5	25	62		2,0	2,0	40,2	9,5	9,5/12	-	-	-	42305A		
40 90 23 2,5 2,5 80,5 32,5 6,7/8,0 - - - 42308A 40 90 23 2,5 2,5 80,5 32,5 6,7/8,0 - - - 42308A 45 100 25 2,5 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42308A 50 110 27 3,0 3,0 88 52,0 5,6/6,7 - - 32310A - 50 110 27 3,0 3,0 110 52,0 5,6/6,7 - - 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5	30	72			2,0	36,9	20,0	8,5/10	2306	-	32306	42306		
40 90 23 2,5 2,5 80,5 32,5 6,7/8,0 - - - 42308A 45 100 25 2,5 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42309 50 110 27 3,0 3,0 88 52,0 5,6/6,7 - - 32310A 42310A 50 110 27 3,0 3,0 110 52,0 5,6/6,7 - - 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 1-32315 42315 75 160 37 3,5 3,5 <t< td=""><td>35</td><td>80</td><td></td><td>2,5</td><td></td><td>44,6</td><td>27,0</td><td>8/9,5</td><td></td><td>12307</td><td>2307*</td><td>42307</td></t<>	35	80		2,5		44,6	27,0	8/9,5		12307	2307*	42307		
45 100 25 2,5 72,1 68,0 6,3/7,5 2309 12309 32309 42309 50 110 27 3,0 3,0 88 52,0 5,6/6,7 2310 12310 - - 50 110 27 3,0 3,0 110 52,0 5,6/6,7 - - 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 - 32313 42313 70 150 35 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183	40	90		2,5	2,5	56,1	32,5	6,7/8,0	2308	12308	32308	-		
50 110 27 3,0 3,0 88 52,0 5,6/6,7 2310 12310 - - 50 110 27 3,0 3,0 110 52,0 5,6/6,7 - - 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 - 32313 42313 70 150 35 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32315 42315 80 170 39 3,5 3,5 19	40	90	23	2,5		80,5	32,5			-	-	42308A		
50 110 27 3,0 3,0 110 52,0 5,6/6,7 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 - 32313 42313 70 150 35 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32315 42315 80 170 39 3,5 3,5 180 125 4,5/5,3 2316 12316 32316 42316 85 180 41 4,0 4,0	45	100	25	2,5	2,5	72,1	68,0	6,3/7,5	2309	12309	32309	42309		
50 110 27 3,0 3,0 110 52,0 5,6/6,7 32310A 42310A 55 120 29 3,0 3,0 102 67,0 5,0/6,0 2311 12311 32311 42311 60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 - 32313 42313 70 150 35 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32315 42315 80 170 39 3,5 3,5 180 125 4,5/5,3 2316 12316 32316 42316 85 180 41 4,0 4,0	50	110	27	3,0	3,0	88	52,0	5,6/6,7	2310	12310	-	-		
60 130 31 3,5 3,5 123 76,5 4,8/5,6 2312 12312 - 42312 65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 - 32313 42313 70 150 35 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32315 42315 80 170 39 3,5 3,5 190 205 3,6/4,3 2316 12316 32316 42316 85 180 41 4,0 4,0 212 146 3,4/4,0 2317 - 32317 42317 90 190 43 4,0 222 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106	50	110	27	3,0	3,0	110	52,0	5,6/6,7		-	32310A	42310A		
65 140 33 3,5 3,5 138 85,0 4,5/5,3 2313 - 32313 42313 70 150 35 3,5 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32316 42315 80 170 39 3,5 3,5 190 205 3,6/4,3 2316 12316 32316 42316 85 180 41 4,0 4,0 212 146 3,4/4,0 2317 - 32317 42317 90 190 43 4,0 4,0 242 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106 69,5 5,6/6,7 - 12410 32410 42410 55 140 33 3,5	55	120	29	3,0	3,0	102	67,0	5,0/6,0	2311	12311	32311	42311		
70 150 35 3,5 151 102 4,0/4,8 2314 - 32314 42314 75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32315 42315 80 170 39 3,5 3,5 190 205 3,6/4,3 2316 12316 32316 42316 85 180 41 4,0 4,0 212 146 3,4/4,0 2317 - 32317 42317 90 190 43 4,0 4,0 242 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106 69,5 5,6/6,7 - - 12409* 42409 50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5	60	130	31	3,5	3,5	123	76,5		2312	12312	-	42312		
75 160 37 3,5 3,5 183 125 4,5/5,3 2315 12315 32315 42315 80 170 39 3,5 3,5 190 205 3,6/4,3 2316 12316 32316 42316 85 180 41 4,0 4,0 212 146 3,4/4,0 2317 - 32317 42317 90 190 43 4,0 4,0 242 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106 69,5 5,6/6,7 - - 12409* 42409 50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 <td< td=""><td>65</td><td>140</td><td>33</td><td>3,5</td><td>3,5</td><td>138</td><td>85,0</td><td>4,5/5,3</td><td>2313</td><td>-</td><td>32313</td><td>42313</td></td<>	65	140	33	3,5	3,5	138	85,0	4,5/5,3	2313	-	32313	42313		
80 170 39 3,5 3,5 190 205 3,6/4,3 2316 12316 32316 42316 85 180 41 4,0 4,0 212 146 3,4/4,0 2317 - 32317 42317 90 190 43 4,0 4,0 242 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106 69,5 5,6/6,7 - - 12409* 42409 50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 </td <td>70</td> <td>150</td> <td>35</td> <td>3,5</td> <td>3,5</td> <td>151</td> <td>102</td> <td>4,0/4,8</td> <td>2314</td> <td>-</td> <td>32314</td> <td>42314</td>	70	150	35	3,5	3,5	151	102	4,0/4,8	2314	-	32314	42314		
85 180 41 4,0 4,0 212 146 3,4/4,0 2317 - 32317 42317 90 190 43 4,0 4,0 242 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106 69,5 5,6/6,7 - - 12409* 42409 50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229	75	160	37	3,5	3,5	183	125	4,5/5,3	2315	12315	32315	42315		
90 190 43 4,0 4,0 242 160 3,2/3,8 2318 12318 32318 42318 45 120 29 3,0 3,0 106 69,5 5,6/6,7 - - 12409* 42409 50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264	80	170	39	3,5	3,5	190	205	3,6/4,3	2316	12316	32316	42316		
45 120 29 3,0 3,0 106 69,5 5,6/6,7 - - 12409* 42409* 50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 </td <td>85</td> <td>180</td> <td>41</td> <td>4,0</td> <td>4,0</td> <td>212</td> <td>146</td> <td>3,4/4,0</td> <td>2317</td> <td>=</td> <td>32317</td> <td>42317</td>	85	180	41	4,0	4,0	212	146	3,4/4,0	2317	=	32317	42317		
50 130 31 3,5 3,5 130 86,5 5,0/6,0 - 12410 32410 42410 55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 - - 32417 42417	90	190	43	4,0	4,0	242	160	3,2/3,8	2318	12318	32318	42318		
55 140 33 3,5 3,5 142 98,5 4,8/5,6 2411 - - 42411 60 150 35 3,5 3.5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 - - 32417 42417	45	120	29	3,0	3,0	106	69,5	5,6/6,7	-	-	12409*	42409		
60 150 35 3,5 3.5 168 106 4,3/5,0 - - 32412 42412 65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 - - 32417 42417	50	130	31	3,5	3,5	130	86,5	5,0/6,0	-	12410	32410	42410		
65 160 37 3,5' 3,5 183 127 4,0/4,8 2413 - 32413 42413 70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 - - 32417 42417	55	140	33	3,5	3,5	142	98,5	4,8/5,6	2411	-	-	42411		
70 180 42 4,0 4,0 229 163 3,6/4,3 - - 32414 - 75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 - - 32417 42417	60	150	35	3,5	3.5	168	106	4,3/5,0	-	-	32412	42412		
75 190 45 4,0 4,0 264 173 3,4/4,0 - - - 42415 80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 - - 32417 42417	65	160	37	3,5'	3,5	183	127	4,0/4,8	2413	-	32413	42413		
80 200 48 4,0 4,0 303 200 3,2/3,8 2416 12416 32416 - 85 210 52 5,0 5,0 319 228 3,0/3,6 32417 42417	70	180	42	4,0	4,0	229	163	3,6/4,3	-	_	32414	-		
85 210 52 5,0 5,0 319 228 3,0/3,6 32417 42417	75	190	45	4,0	4,0	264	173	3,4/4,0	-	-	-	42415		
	80	200	48	4,0	4,0	303	200	3,2/3,8	2416	12416	32416	-		
90 225 54 5,0 5,0 385 260 2,8/3,4 - 12418 32418 -	85			5,0	5,0	319	228	3,0/3,6	-	_		42417		
	90	225	54	5,0	5,0	385	260	2,8/3,4	-	12418	32418	_		


Окончание табл. П4

	Разм	еры	, MM		C_{r_i}	C_{or}	<i>n</i> ⋅10 ⁻³ ,	Обозн	ачение	подши	пников
d	D	В	r	r_1	кН	кН	мин ⁻¹	2000	12000	32000	42000
25	52	18	1,5	1,0	22,9	12,9	11/14	2505	-	32505*	42505
30	62	20	1,5	1,0	31,9	19.0	9,5/12	-	-	32506	42506
35	72	23	2,0	1,0	47,3	29.0	8,5/10	-	-	32507	42507
35	72	23	2,0	1,0	59,4	29.0	8,5/10	-	12507A	-	-
40	80	23	20	2,0	56,1	35,0	7 5/9,0	-	-	32508	-
45	85	23	2,0	2,0	59,4	38,0	7,0/8,5		-	32509*	-
50	90	23	20	2,0	67,7	40,5	6 3/7,5		-	32510*	-
55	100	25	2,5	2,0	73,7	48,0	6,0/7,0		-	32511	42511*
60	110	28	2,5	2,5	93,5	68,0	5,3/6,3	=	ı	32512	-
65	120	31	2,5	2,5	110	76,5	4,8/5,6		-	32513	-
70	125	31	2,5	2,5	117	81,5	4,8/5,6	=	ı	32514*	-
70	125	31	2,5	2,5	154	81,5	4,8/5,6	=	2514A*	=	-
75	130	31	2,5	2,5	125	159	4,5/5,3	=	-	32515*	-
80	140	33	3,0	3,0	147	88,0	4,0/4,8	-	-	32516	42516
85	150	36	3,0	3,0	168	122	3,8/4,5	=	ı	32517*	-
90	160	40	3,0	3,0	194	150	3,6/4,3	=	-	32518	-
95	170	43	3,5	3,5	229	170	3,4/4,0	=	-	32519*	-
25	62	24	2,0	2,0	41,8	24,5	9,0/1 1	-	12605	32605	-
30	72	27	2,0	2,0	51,1	29.0	8,0/9,5	-	-	-	42606
35	80	31	2,5	2,0	58,3	38,0	7,0/8,5	-	-	32607	42607
40	90	33	2,5	2,5	80,9	51,0	6,3/7,5	-	-	32608	-
45	100	36	2,5	2,5	96,8	67,0	5,6/6,7	2609	12609	32609	42609
50	110	40	3,0	3,0	121	80.0	5,0/6,0	-	-	32610	-
55	120	43	3,0	3,0	138	98.0	4,8/5,6	2611	-	32611*	-
60	130	46	3,5	3,5	168	114	4,3/5,0	2612	-	32612	42612
65	140	48	3,5	3,5	190	129	4,0/4,8	-	12613	32613	42613
70	150	51	3,5	3,5	212	160	3,8/4,5	2614	-	32614	42614
75	160	55	3,5	3,5	260	200	3,4/4,0	2615	-	32615	42615
80	170	58	3,5	3,5	275	200	3,2/3,8	-	-	32616	42616
85	180	60	4,0	4,0	297	230	3,0/3,6	-	-	32617	-
90	190	64	4,0	4,0	330	240	2,8/3/4	-	-	32618	42618

Таблица П5 (левая часть)

Подшипники роликовые конические радиально-упорные однорядные (из ГОСТ 333–79 и ГОСТ 27365–87 для повышенной грузоподъемности)

	PowerL MA												
Размеры, мм													
d	D	b	С	T	r	<i>r</i> ₁	$d_{1\max}$	D_{1min}	∂1min	∂ _{2min}			
20	42	15	12	15	1,0	0,3	29	39	3	4,5			
25	47	15	11,5	15	1,0	0,3	31	44	3	4,5			
30	55	17	13	17	1,5	0,5	35	52	3	4,5			
35	62	17	15	18	1,5	0,5	40	59	3	4,5			
40	68	19	14,5	19	1,5	0,5	45	65,5	4	4.5			
45	75	19	16	20	1,5	0,5	50	72	4	4,5			
50	80	20	15,5	20	1,5	0,5	55	76	4	5,5			
55	90	22	19	23	2,0	0,8	61	86	4	5,5			
60	95	23	17,5	23	2,0	0,8	67	91	4	5,5			
65	100	22	19	23	2,0	0,8	71	96,5	4	5,5			
70	110	24	20	25	2,0	0,8	76	105	5	6,0			
75	115	24	20	25	2,0	0,8	82	110,5	5	7,0			
80	125	27	23	29	2,0	0,8	87	120	6	7,0			
85	130	29	22	29	2,0	0,8	94	125	6	8,0			
90	140	32	24	32	2,5	0,8	99	134,5	6	8,0			
95	145	30	26	32	2,5	0,8	105	140	6	8,0			
65	90	17	14	17	1,5	0,5	70	87,8	3	4,5			
75	10	19	17	20	1,5	0,5	80	103	3	4,5			
15	35	11	9	11,75	1,0	0,3	19	32	2	3			
17	40	12	11	13,25	1,5	0,5	22,5	37	3	3			
20	47	14	12	15,25	1,5	0,5	26	43,5	3	3			
25	52	15	13	16,25	1,5	0,5	31	48,5	3	3			
30	62	16	14	17,25	1,5	0,5	37	58,5	3	3			
35	72	17	15	18,25	2,0	0,8	43	68,5	4	3			
40	80	18	16	19,75	2,0	0,8	48	75,5	4	3,5			

				Раз	меры,	MM				
d	D	b	С	T	r	<i>r</i> ₁	d _{1max}	D_{1min}	a _{1min}	a _{2min}
45	85	19	16	20,75	2,0	0,8	53	81,5	4	3,5
50	90	20	17	21,75	2,0	0,8	57	86,5	4	3,5
55	100	21	18	22,75	2,5	0,8	63	95,0	5	4,5
60	110	22	19	23,75	2,5	0,8	69	105,5	5	4,5
70	125	24	21	26,25	2,5	0,8	80	120	6	5,0
75	130	26	22	27,25	2,5	0,8	85	125	6	5,0
80	140	26	22	28,25	3,0	1,0	90	134	6	6,0
85	150	28	24	30,50	3,0	1,0	96	143	7	6,5
90	160	30	26	32,50	3,0	1,0	102	153	7	6,5
95	170	32	27	34,50	3,5	1,2	110	163	7	7,5
100	180	34	29	37,00	3,5	1,2	114	170	7	8,0
85	130	36	29	36	2,0	0,8	94	125	6	6,5
25	52	22	18	22	1,5	0,5	30	49	4	4
50	90	32	245	32	2,0	0,8	57	87	5	7,5
75	130	41	31	41	2,0	0,8	84	125	6	10
20	52	15	13	16,25	2,0	0,8	27	49	3	3
25	62	17	15	18,25	2,0	0,8	33	59	3	3
30	72	19	17	20,75	2,0	0,8	38	68	3	4,5
35	80	21	18	22,75	2,5	0,8	43	76	5	4,5
40	90	23	20	25,25	2,5	0,8	50	86	5	5
45	100	26	22	27,25	2,5	0,8	55	95	5	5
50	110	27	23	29,25	3,0	1,0	61	105	5	6
55	120	29	25	31,5	3,0	1,0	67	114	5	6,5
60	130	31	27	33,5	3,5	1,2	72	124	5	7,5
65	140	33	28	36	3,5	1,2	78	132	6	8
70	150	35	30	38	3,5	1,2	83	142	6	8
75	160	37	31	40	3,5	1,2	91	152	6	9
85	180	41	35	44,5	4,0	1,5	102	167	7	10,5
90	190	43	36	46,5	4,0	1,5	108	178	7	10,5
100	215	47	39	51,50	4,0	1,5	121	202	7	12,5
30	62	20,5	17	21,25	1,5	0,5	37	59	3	4
35	72	23	20	24,25	2,0	0,8	43	69	4	5
40	80	23,5	20	24,75	2,0	0,8	48	76	4	5,5
45	85	23,5	19	24,75	2,0	0,8	53	82	4	5,5
50	90	23	19	24,75	2,0	0,8	57	87	4	5,5
55	100	25	21	26,75	2,5	0,8	63	95	5	5,5
60	110	28	24	29,75	2,5	0,8	69	106	5	5,5

d,	C_{r_i}	C_{or}	e Y	<i>n</i> ⋅10 ⁻³ ,	Ogomonomo
MM	кН	кН	e r	мин ⁻¹	Обозначение
45	50,0	33,0	0,41 1,5	4,5/6,0	7209
50	56,0	40,5	0,43 1,5	4,3/5,6	7210A
55	65,0	46,0	0,41 1,5	3,8/5,0	7211
60	78,0	58,0	0,40 1,5	3,4/4,5	7212A
70	96.0	82,0	0,43 1,5	3,0/4,0	7214A
75	107	84,7	0,39 1,5	2,8/3,8	7213
80	112	95,2	0,43 1,5	2,4/3,4	7216A
85	130	109	0,43 1,5	2,2/3,2	7217A
90	158	125	0,43 1,5	2,0/3,0	7218A
95	168	131,3	0,41 1,5	1,9/2,8	7219M
100	185	146,7	0,40 1,5	1,9/2,8	7220
85	100	128,6	0,25 1,5	2,6/3,6	3007117M
25	24,0	17,6	0,35 1,5	6,7/9	3007205
50	56,0	40,0	0,40 1,5	3,8/5	3007210A
75	107	84,0	0,43 1,5	2,4/3,4	3007215A
20	26,0	17,5	0,30 1,8	8/11	7304A
25	33,0	23,3	0,30 1,8	6,7/9	7305A
30	43,0	29,5	0,34 1,8	5,6/7,5	7306
35	54,0	38,5	0,31 1,8	5,0/6,7	7307A
40	66,0	47,5	0,35 1,8	4,3/5,6	7308A
45	83,0	60,0	0,28 1,8	4,0/5,3	7309
50	100	75,5	0,35 1,8	3,6/4,8	7310A
55	107	81,5	0,35 1,8	3,2/4,3	7311A
60	128	96,5	0,30 1,8	3,0/4,0	7312
65	146	112	0,30 1,8	2,6/3,6	7313A
70	170	137	0,35 1,8	2,4/3,4	7314A
75	180	148	0,35 1,8	2,2/3,2	7315A
85	230	195	0,31 1,8	1,9/2,8	7317
90	250	201	0,35 1,8	1,8/2,6	7318A
100	290	230	0,31 1,8	1,7/2,4	7320
30	36,6	27,0	0,36 1,6	6,3/8,5	7506
35	53,0	40,0	0,35 1,6	5,3/7,0	7507
40	56,0	77,4	0,38 1,6	4,8/6,3	7508
45	60,0	46,0	0,42 1,6	4,5/6,0	7509
50	62,5	54,0	0,43 1,6	4,3/5,6	7510A
55	80,0	61,0	0,40 1,6	3,8/5,0	7511A
60	125	101	0,40 1,6	3,4/4,5	7512A

Окончание табл. П5

				Раз	меры,	MM				
d	D	b	С	T	r	<i>r</i> ₁	d _{1max}	D_{1min}	a _{1min}	a _{2min}
65	120	31	27	32,75	2,5	0,8	75	115	6	5,5
70	125	31	27	33,25	2,5	0,8	80	120	6	6
75	130	31	27	33,25	2,5	0,8	85	125	6	6
80	140	33	28	35,25	3,0	1,0	90	134	6	7
85	150	36	30	38,5	3,0	1,0	96	143	7	8,5
90	160	40	34	42,5	3,0	1,0	102	153	7	8,5
95	170	45,5	37	45,5	3,5	1,2	110	163	7	10
100	180	46	39	49	3,5	1,2	114	170	7	10
20	52	21	18,5	22,25	2,0	0,8	27	49	3	4
25	62	24	20	25,25	2,0	0,8	33	59	4	5
30	72	27	23	28,75	2,0	0,8	38	68	5	5,5
35	80	31	25	32,75	2,5	0,8	43	76	5	7,5
40	90	33	27	35,25	2,5	0,8	50	86	5	8
45	100	36	30	38,25	2,5	0,8	55	95	5	8
50	110	40	33	42,25	3,0	1,0	61	105	5	9
55	120	43	35	45,50	3,0	1,0	67	114	5	10
60	130	46	37	48,50	3,5	1,2	72	124	6	11,5
65	140	48	39	51	3,5	1,2	78	132	6	12
70	150	51	42	54	3,5	1,2	83	142	7	12
75	160	55	45	58	3,5	1,2	91	152	7	13
90	190	64	53	67,5	4,0	1,5	108	178	7	13,5
100	215	73	60	77,5	4,0	1,5	121	202	12	14,5
		Подши	пники	с болы	шим уг	лом ко	нуса (2	.5–29°)		
30	72	19	14	20,75	2,0	0,8	38	68	3	6,5
40	90	23	17	25,25	2,5	0,8	43	76	5	8
50	110	27	19	29,25	3,0	1,0	50	86	5	10
55	120	29	21	31,5	3,0	1,0	61	105	5	10,5
60	130	31	22	33,5	3,5	1,2	67	114	5	11,5
65	140	33	28	36	3,5	1,2	72	124	6	13
75	160	37	26	40	3,5	1,2	78	132	6	14
85	180	41	30	44,5	4,0	1,5	91	152	7	16,5
25	62	17	13	18,25	2,0	0,8	34	59	3	5
35	80	21	15	22,75	2,5	0,8	45	76	3	7,5
70	150	35	25	38	3,5	1,2	85	141	5	13

Окончание табл. П5

<i>О</i> , мм	<i>С_г,</i> кН	<i>С_{ог},</i> к Н	е	Y	<i>п</i> ∙10 ⁻³ , мин ⁻¹	Обозначение
65	146	98,0	0,37	1,6	3,0/4,0	7513
70	125	101	0,39	1,6	2,8/3,8	7514
75	130	108	0,43	1,6	2,6/3,6	7515A
80	143	126	0,43	1,6	2,4/3,4	7516A
85	162	141	0,43	1,6	2,2/3,2	7517A
90	190	171	0,43	1,6	2,0/3,0	7518A
95	230	225	0,38	1,6	1,9/2,8	7519
100	250	236	0,43	1,6	1,8/2,6	7520A
20	31,5	22,0	0,30	1,7	7,5/10,0	7604
25	47,5	36,6	0,30	1,7	6,0/8,0	7605A
30	63,0	51,0	0,31	1,7	5,3/7,0	7606A
35	76,0	61,5	0,31	1,7	4,8/6,3	7607A
40	90,0	67,5	0,35	1,7	4,3/5,6	7608A
45	114	90,5	0,35	1,7	3,6/4,8	7609A
50	142	110,1	0,35	1,7	3,2/4,3	7610AM
55	160	140	0,35	1,7	3,0/4,0	7611A
60	186	157	0,35	1,7	2,6/3,6	7612A
65	210	168	0,35	1,7	2,4/3,4	7613A
70	240	186	0,35	1,7	2,2/3,2	7614A
75	280	235	0,35	1,7	2,0/3,0	7615A
90	370	365	0,35	1,7	1,7/2,4	7618A
100	460	460	0,35	1,7	1,6/2,2	7620A
		ники с боль	шим у	глом	конуса (15-	
30	35,0	20,6	0,72	1,8	5,0/6,3	27306
40	56,0	37,0	0,83	1,8	4,0/5,3	27308A
50	80,0	53,0	0,83	1,8	3,2/4,3	27310 HA
55	92,0	58,0	0,81	1,8	2,8/3.8	27311
60	105	61,0	0,70	1,8	2,6/3,6	27312
65	120	70,0	0,83	1,8	2,6/3,6	27313A1
75	150	93,0	0,83	1,8	1,8/2,6	27315
85	180	146	0,76	1,8	1,7/2,4	27317
25	38,0	23,2	0,83	1,8	5,6/7,5	1027305A
35	61,6	29,0	0,83	1,8	4,5/6,0	1027307A
70	187	137	0,83	1,8	2,0/3,0	1027314A

Оглавление

BE	веден	ие	3
1.	ОБС	СНОВАНИЕ ВЫБОРА ПОДШИПНИКОВ	3
	1.1.	Классификация подшипников	3
	1.2.	Основные эксплуатационные характеристики	
		подшипников.	8
		1.2.1. Конструкция и эксплуатационная характеристика	
		основных типов подшипников качения.	8
		1.2.2. Предельные частоты вращения	14
		1.2.3. Основные критерии выбора	
		типа подшипников	15
	1.3.	Предварительный выбор типа подшипников	
		для механических передач	17
2.	ВЫІ	БОР ПОДШИПНИКОВ ПРИ ЗАДАННЫХ РЕСУРСЕ	
		АДЕЖНОСТИ	20
	2.1.	Динамическая грузоподъемность подшипников	22
	2.2.	Эквивалентная динамическая нагрузка	23
	2.3.		30
3.		РЕДЕЛЕНИЕ ЭКВИВАЛЕНТНОЙ ДИНАМИЧЕСКОЙ	
		ТРУЗКИ	33
	3.1.	Порядок определения P_r , C_r , L_{10h} для радиальных	
	2.0	шариковых однорядных подшипников	33
	3.2.	Порядок определения P_r , C_r , L_{10h} для радиально-	
		упорных шариковых и роликовых однорядных	
		подшипников	34
	3.3.	Порядок определения P_r , C_r , L_{10h} для радиально-	
		упорных шариковых и роликовых двухрядных	
		(сдвоенных однорядных) подшипников	
		фиксирующих опор	35
	3.4.	Расчет эквивалентных нагрузок при переменных	
		режимах работы подшипника	36
4.		ІМЕРЫ РАСЧЕТОВ	37
		тура	50
Π	РИЛ	ОЖЕНИЕ	51

Учебное издание

ПОРЯДОК ПОДБОРА И РАСЧЕТА ПОДШИПНИКОВ КАЧЕНИЯ

Методические указания

Составители:

АНОХИН Владимир Михайлович БИРИЧ Владимир Владимирович СТАТКЕВИЧ Александр Михайлович

Редактор Т.Н. Микулик Компьютерная верстка Н.А. Школьниковой

Подписано в печать 14.04.2010.

Формат 60×84 1/16. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс.

Усл. печ. л. 4,18. Уч.-изд. л. 3,27. Тираж 300. Заказ 776.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.