Свойства антифрикционных сплавов на основе меди и цинка

Магистрант Шишпор К.Д., студент гр.10404115 Кижапкин С.А. Научный руководитель Рудницкий Ф.И. Белорусский национальный технический университет г. Минск

Сплавы ЦАМ — антифрикционные материалы, из которых наибольший интерес представляет сплав марки ЦАМ 10-5, который во многих случаях способен заменить оловянистую бронзу, а иногда и свинцовооловяный баббит марки В-16. При нагрузке на пару трения 50 кгс/см 2 со смазкой коэффициент трения данного сплава в паре со сталью 45 (49–51 HRC) составляет 0,009, износ — 0,017 мг/(см 2 км). Коэффициент трения баббита Б-83 при тех же условиях 0,005.

Цинковые сплавы представляют большой интерес для промышленности Республики Беларусь, прежде всего, как заменители оловянных бронз. Они отличаются высокими механическими и антифрикционными свойствами, не дефицитны и весьма экономичны. Из антифрикционных сплавов на основе цинка по оптимальному сочетанию алюминия и меди могут быть использованы несколько: ЦАМ 10-1, ЦАМ 10-5, ЦАМ 30-5 и аналогичные. Наибольший интерес для замены литейных антифрикционных бронз Бр ОЦС 6-6-3, Бр ОЦС 5-5-5, а в некоторых случаях Бр ОС 8-12, Бр ОФ 10-1, представляет цинковый сплав ЦАМ 10-5, содержащий 9-11 % алюминия, 4-6 % меди и цинк (остальное). Сплав отличается от ЦАМ 10-1 более высокими антифрикционными и прочностными свойствами, а от сплава ЦАМ 30-5 меньшей склонностью к усадке. Он и выбран в качестве базового для дальнейшего исследования возможности использования в подшипниках торфобрикетных прессов. Свойства цинкового сплава и заменяемой бронзы БрОФ 10-1 приведены в таблице 1.

Таблица 1 – Свойства бронзы БрОФ 10-1 и цинкового сплава ЦАМ 10-5

Taominga i Chonetha oponishi bipo 4 10 1 ii qirikobot o emaha ili ivi 10 5		
Марка сплава	Бр ОФ 10-1	ЦАМ 10-5
Температура плавления, °С	934	395
Плотность, т/м ³	8,76	6,3
Предел прочности при растяжении, $\sigma_{\text{в}}$, МПа:	250-350	300
Относительное удлинение, δ, %:	3-10	2
Предел пропорциональности, $\sigma_{\text{пц}}$, МПа:	130-140	45-50
Твердость, НВ	90-120	90
Коэффициент трения:		
со смазкой	0,008	0,009
без смазки	0,10	0,35
Коэффициент линейного расширения $\alpha_l \times 10^{-6}$ при температуре: 20 °C	17	27
Коэффициент теплопроводности, Вт/(м·К)	117	100,8
Ударная вязкость, КСU, кДж/м ²	0,09	0,06
Температура литья, °С	1150	480
Линейная усадка, %	1,44	1

Приведенные результаты свидетельствуют о том, что при условии улучшения некоторых свойств, сплав на основе цинка может быть успешно использован в качестве заменителя бронз.