Создание математической модели, позволяющей предсказывать дисперсность получаемого порошка тугоплавкого металла

Расулов А.Х, Халимжонов Т.С., Расулова Ш.А., Икромов Ж.Т., Бекжанова В.Б. (ТашГТУ)

Введение. Создание математически модели, позволяющей предвидеть дисперсность получаемого порошка тугоплавкого металла и установить эффективные способы ее регулирования, требует применения комплексного подхода, т.е. отражения развития процесса в одновременном и взаимосвязанном протекании всех основных стадий и явлений. Приведены результаты исследования теоретических основ создания твердосплавного инструмента сочетающего прочность и пластичности из дисперсных порошков тугоплавких металлов. Показано, что к важным технологическим аспектам создания твердосплавных инструментов относится получение порошков тугоплавких металлов методом плазмохимического восстановления оксидов тугоплавких металлов.

Объекты и методы исследование. Лабораторная установка мощностью до 20 кВт для получения высокодисперсных порошков тугоплавких металлов представлена на рис. 1. В плазмотроне использовался стержневой вольфрамовый катод диаметром 5 мм, запрессованный в медный водоохлаждаемый держатель. Анодом служило водоохлаждаемое медное сопло диаметром 5 – 12 мм. Диаметр реактора на графите – 90 мм, его длина – 210 мм.

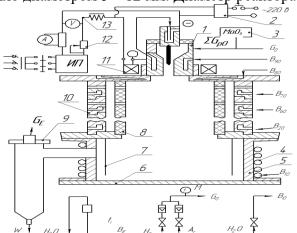


Рисунок 1 - Схема лабораторной установки: I — плазмотрон; 2 — осциллятор; 3 — дозатор; 4 — змеевик; 5 — отделитель; 6 — днище отделителя; 7 — дефлектор; 8 — тепловой экран; 9 — фильтр; 10 — секция реактора; 11 — соленоид; 12 — реостат; 13 — дроссель; ИП — источник пита-

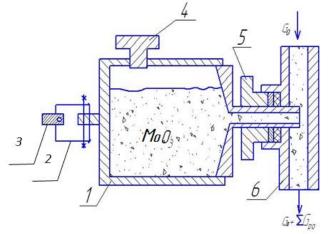


Рисунок 2 - Принципиальная схема дозирующего устройства: 1 — бункер дозатора; 2 — кардан; 3 — вал двигателя; 4 — заглушка; 5 — зажимная гайка; 6 — смеситель

Для обеспечения равномерной подачи сырья, быстрого начала и прекращения процесса, применялась созданная автором конструкция дозатора (рис.2), работающего по принципу сообщающихся сосудов. Расход сырья регулировался числом оборотов бункера и углом его наклона и составил 0,005-0,1 г/с (при тонкостенном патрубке с внешним диаметром 5 мм, внутреннем 3 мм и длине 40 мм). В экспериментах применялся выносной фильтр с рабочей поверхностью 0,5 м 2 из стеклоткани. Газоснабжение плазмотрона производилось из стандартных баллонов. Плазмообразующим газом в основном являлась смесь Ar и H_2 . Добавлением Ar достигнут необходимый для комплексных исследований 2-3-часовой режим работы плазматрона без заметной эрозии электродов, а также последующая воспроизводимость режимов работы установки.

Выбор конструкции бункера-дозатора произведен на основании опробования дозатора с ворошителем (объемный расход сырья G_{po} < 30 кг/ч), бункера питателя с псевдохимическим

слоем ($G_{po} > 20~$ кг/ч) и питателя с вертикальным шнеком. Лучшие результаты по уровню пульсаций, воспроизводимости, диапозону расходов получены на шнековом питателе.

Полученные научные результаты и их анализ. Обсчет опытов по синтезу модели производился в предположении, что: 1) сырье состоит из трех фракций с размерами частиц 10,30 и 50 мкм и их содержание 3, 42, 55 масс. % (см. табл. 1); 2) плазменный поток является ограниченным; 3) осевое распределение температуры $T_m(x)$ в плазменной струе задавалось по экспериментальным данным с максимальной погрешностью +100; 4) расчет стадии конденсации-коагуляции проводился при значении S_k , равном плотности жидкого вольфрама — 15,54 см; 5) изменение $S_{y\partial}$ продукта в потоке прекращается при $T_m(x)$ < 1450 К. Выбор конструкции питателя сырья произведен на основании опробования дозатора с ворошителем (G_{po} <0 кг/ч) бункера питателя с псевдохимическим слоем (G_{po} >20 кг/ч) и питателя с вертикальным шнеком. Лучшие результаты по уровню пульсаций, воспроизводимости, диапазону расходов получены на шнековом питателе.

Выводы. Растворимость вольфрама в кобальте в большой мере зависит от количества углерода в сплаве и режима охлаждения после спекания: в случае недостатка углерода высокая скорость охлаждения приводит к существенному увеличению содержания вольфрама в кобальте. Естественно, что содержание в связующей фазе сплавов WC—Со некоторого количества вольфрама и углерода приводит к изменению ее свойств. Это дает возможность регулировать механические характеристики твердых сплавов в целом.

Таким образом, теоретически обоснована возможность создания математической модели, позволяющей прогнозировать дисперсность получаемого порошка тугоплавкого металла.

Литература

- 1. Патент №IAP 04732. 26.06.2013. Нурмуродов С.Д., Расулов А.Х. и др. Плазмохимический реактор.
- 2. Каламазов Р.У. Нанокристаллические структуры в материаловедении.—Ташкент: ТашГТУ, 2004.—98 с.
- 3. Нурмуродов С.Д., Расулов А.Х. //Создание конструкционных материалов с использованием ультрадисперсных порошков вольфрама: Монография Ташкент, ТашГТУ, 2015. -168 с.
- 4. Nurmurodov S.D., Rasulov A.X. //Ekstremal sharoitlarda ishlatiladigan qattiq qotishmali metall kompozitlar va ularni termik ishlash: Monografiya Toshkent, ToshDTU, «Fan va texnologiya» nashriyoti, 2016. 170 b.
- 5. Расулов А.Х. Экстремал шароитда ишлайдиган Мо-Тіс-Ni-W-Fe системали қотишмалардан асбоблар ишлаб чиқариш технологиясини тадбиқ қилиш.// Вестник Таш-ГТУ. –Ташкент, 2015. – \mathbb{N} 2. –C. 160-164.
- 6. Расулов А.Х. и другие. Разработка технологии производства нового спеченного сплава Мо-ТіС. Материалы V Международной студенческой научно-практической конференции. Омск, 4-10 апреля 2016. С. 138-142.