МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Тепловые электрические станции»

ПАРОГЕНЕРАТОРЫ АТОМНЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ

Методические указания по выполнению курсового проекта для студентов специальности 1-43 01 08 «Паротурбинные установки атомных электрических станций»

Минск БНТУ 2013 УДК 621.18:621.039(075.8) ББК 31.363я7 П18

> Составители: В. В. Сорокин, Н. Б. Карницкий

Рецензенты: Р. И. Есьман, В. И. Володин

Данные методические указания написаны с целью оказания методической помощи студентам специальности 1-43 01 08 «Паротурбинные установки атомных электрических станций» дневной формы обучения по выполнению курсового проекта по парогенераторам АЭС.

В издании приводятся методики теплового и гидравлического расчета парогенераторов, рассматриваются схемы движения теплоносителей первого и второго контуров, схема улучшенной продувки.

СОДЕРЖАНИЕ

1. МЕТОДИЧЕСКИЕ ОСНОВЫ ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА	4
2. ПАРОГЕНЕРАТОРЫ АЭС	6
3. ХАРАКТЕРИСТИКИ ПАРОГЕНЕРАТОРА ПГВ-1000.	17
4. РАСЧЕТ ПАРОГЕНЕРАТОРОВ	21
5. ПРИМЕР РАСЧЕТА ПАРОГЕНЕРАТОРА ПГВ-1000	27
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	49
ПРИЛОЖЕНИЕ	50

1. МЕТОДИЧЕСКИЕ ОСНОВЫ ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА

Целью курсового проекта является закрепление теоретических и практических навыков по дисциплине «Парогенераторы АЭС».

Для его выполнения студент должен: иметь представление о структуре АЭС, вспомогательном оборудовании и устройствах; знать основы технической термодинамики, тепломассообмена и гидрогазодинамики; устройство и принцип действия парогенераторов АЭС с ВВЭР; уметь выполнять тепловой расчет теплообменника рекуперативного типа с использованием современной вычислительной техники и прикладных программ (MathCAD, Excel); уметь выполнять чертеж парогенератора в AutoCAD.

В качестве исходных данных руководителем проекта задаются:

- параметры теплоносителя первого контура: давление, расход, температуры входа и выхода;
- параметры теплоносителя второго контура: давление насыщенного пара, расход продувки, температура питательной воды;
 - материал теплообменных трубок;
- частичная нагрузка (70 % номинальной) при сохранении расхода;
- аварийный режим разгерметизации второго контура с падением абсолютного давления.

С целью приобретения навыков работы с технической и справочной литературой дополнительные исходные данные, необходимые для выполнения курсового проекта, выбираются студентами самостоятельно.

В объем курсового проекта входит: расчетно-пояснительная записка; графический материал на 1 листе формата А2 и 1 листе формата А3.

В пояснительной записке к курсовому проекту должны быть отражены следующие разделы:

- введение (краткая характеристика парогенератора);
- гидравлический расчет парогенератора по первому контуру;
 - тепловой расчет парогенератора (конструкционный);
 - тепловой расчет парогенератора (поверочный, два случая);
 - чертеж парогенератора и схемы продувки;
 - выводы и заключение;
 - список литературы.

Графическая часть проекта представляет собой конструкцию парогенератора и схему улучшенной продувки.

При выполнении курсового проекта студенты должны пользоваться Международной системой единиц (СИ). Записка и чертежи должны выполняться с учетом требований Единой системы конструкторской и технологической документации (ЕСКД).

2. ПАРОГЕНЕРАТОРЫ АЭС

2.1. Типы парогенераторов АЭС PWR/ВВЭР

Парогенератор АЭС производит пар для питания турбинной установки и систем собственных нужд атомной электростанции. Это важнейший элемент АЭС с реактором с водой под давлением, от которого зависит не только выработка энергии, но и безопасность станции. В парогенераторе нагретая вода первого контура передает тепло кипящей воде; образовавшийся насыщенный пар отводится в паровой коллектор. Сепарация влаги осу-ществляется внутри парогенератора. Запас котловой воды пополняется непрерывной подачей питательной воды. Накипеобразующие соли и шламы отводятся продувкой. Парогенератор нужен для отделения радиоактивного теплоносителя первого контура от нерадиоактивного пара и воды второго контура. Это с одной стороны делает всю паросиловую часть АЭС нерадиоактивной, с другой снижает КПД станции.

Парогенератор – крупногабаритное теплообменное устройство с большим сроком изготовления (до 36 месяцев) и стоимостью. Изготавливается на специализированных заводах, поставляется в составе реакторной установки и размещается в реакторном отделении АЭС внутри герметичной оболочки. В отношении парогенератора АЭС не может быть поставлена стандартная для инженера-теплофизика задача выбора оборудования по каталогу под заданную тепловую мощность и термодинамические параметры. Каждый комплект парогенераторов реакторной установки уникален.

Срок службы парогенератора составляет 30–60 лет с возможностью продления по данным обследования. Для обеспечения этого срока требуется правильное изготовление, транспортировка и монтаж изделия, постоянная кропотливая работа по поддержанию водно-химического режима, управлению и контролю, ремонту, диагностике и профилактике. Нормы безопасности постоянно совершенствуются, анализируется опыт

эксплуатации, поэтому в течение срока службы неоднократно осуществляют модернизацию парогенераторов.

К парогенераторам атомных электростанций предъявляются высокие требования по надежности, непрерывности работы и обеспечению заданных параметров пара. Парогенератор не может быть отключен. Как максимум допустимо снижение тепловой нагрузки путем остановки соответствующего главного циркуляционного насоса АЭС (ГЦНА) при рабочем абсолютном давлении. Парогенератор радиоактивен, закрыт теплоизоляцией, помещен в бокс, который расположен внутри герметичной оболочки. Свободный доступ к парогенераторам невозможен. Периодичность возможного доступа — раз в год, в новых проектах — раз в полтора-два года.

В парогенераторе передается огромное количество тепла, образующееся в реакторе за счет ядерных процессов, во всех режимах, в том числе и аварийных.

Парогенератор (ПГ) — это зона, где взаимодействуют между собой среды («вода» и «вода—пар») с разными температурами и скоростями, возникают температурные поля и напряжения. Более того, ПГ — огромный отстойник всего второго контура и конденсата питательного тракта. Сюда направляются прямым путем все загрязнения, которые есть во втором контуре. В него подается (для блока 1000 МВт) полторы тысячи тонн воды в час, а выходит в двести раз меньше — остальная часть выходит в виде пара. В таких условиях ПГ превращается в настоящую коррозионную машину, где все загрязнения упариваются и концентрируются. Если характеризовать состояние дел на данный момент, то следует признать, что коррозионные процессы в ПГ изучены еще недостаточно [1].

В Республике Беларусь планируется построить двухблочную АЭС с ВВЭР (АЭС–2006) по российскому проекту. Развитие ПГ для российских (ВВЭР) и зарубежных реакторов (PWR) происходит принципиально разными путями. В PWR применяются вертикальные ПГ, в которых используются горизон-

тальные трубные доски и вертикальные U-образные трубки. В СССР с самого начала создания ВВЭР был взят курс на горизонтальные ПГ. В таких аппаратах корпус расположен горизонтально, трубки устанавливаются горизонтально в виде плоских горизонтальных змеевиков, а они, в свою очередь, соединяются с вертикальными коллекторами. Из сравнения опыта эксплуатации ПГ двух типов, горизонтальные ПГ в целом лучше.

Кроме этого парогенераторы отличаются друг от друга выбором конструкционных материалов. На первых порах и в СССР, и в США использовались похожие материалы для производства ПГ – нержавеющие стали. Но применение нержавеющей стали SS304 на первой коммерческой атомной станции в США – АЭС «Шиппингпорт» – дало отрицательный результат. Уже спустя 150 часов после пуска станции в ПГ стали течь две теплообменные трубки. Проблемы продолжились на «Янки Роу», первом блоке «Индианы Пойнт» и целом ряде некоммерческих реакторов. Столкнувшись с трудностями, американские специалисты приняли решение о переходе на сплав 600МА. Они посчитали, что сплав с высоким содержанием никеля окажется коррозионно-стойким. Но время показало, что это не так. Начиная с 1980 года, на АЭС США и других стран, построенных по американским проектам, пошла череда замен ПГ. Вместо сплава 600МА, новые вертикальные аппараты изготавливаются из сплава 690ТТ. Проблема коррозии для них пока утратила свою остроту, зато проявились другие неприятные эффекты (например, износ вследствие вибрации). Предугадать негативные явления на стадии проектирования оказалось практически невозможно. Почти все они были обнаружены только при эксплуатации.

Чем хороши горизонтальные $\Pi\Gamma$? Перечислим их основные преимущества перед вертикальными [1].

1. Умеренная паровая нагрузка и простая схема сепарации. Приведенная скорость выхода пара с зеркала испарения состав-

- ляет 0,2–0,3 м/с. Это позволяет использовать простую схему сепарации при надежном обеспечении требуемой влажности пара.
- 2. Малые скорости выхода пара (до 0,5 м/с). При таких скоростях устраняется опасность вибрации трубок и других элементов $\Pi\Gamma$.
- 3. Вертикальные коллекторы исключают накопление шлама на трубах. Шлам в горизонтальных ПГ идет свободно вниз и не оказывает воздействия на трубчатку.
- 4. Горизонтальные ПГ позволяют обеспечить наличие большего, чем в случае вертикальных ПГ, запаса воды во втором контуре. Это положительно сказывается на безопасности всей установки: например, способствует более надежному расхолаживанию через ПГ при прекращении нормальной и аварийной питательной воды и смягчает переходные режимы.
- 5. В горизонтальных ПГ используется принцип ступенчатого испарения. Благодаря этому из ПГ более эффективно выводятся примеси: их концентрация в ответственных зонах ПГ поддерживается на несколько порядков ниже, чем балансная концентрация в продувочной воде.
- 6. При горизонтальном расположении поверхности теплообмена становится более надежной естественная циркуляция среды по первому контуру.
- 7. В горизонтальных ПГ проще реализовать удаление газов. Как известно, скопления неконденсирующихся газов способны воспрепятствовать циркуляции теплоносителя. Верхние части вертикальных коллекторов служат как газовые накопители с объемом до 0,5 м³ («верхняя точка»), из которых сравнительно легко можно сбрасывать газ в систему газоудаления.
- 8. Очень важное преимущество горизонтальных ПГ с точки зрения их обслуживания: наличие удобного доступа к трубчатке как со стороны первого, так и второго контура. На вертикальных ПГ приходится разрабатывать и использовать сложные системы технического обслуживания.

9. ПГ из нержавеющей стали намного менее радиоактивны, чем аналогичные изделия из сплава 600MA, так как в них меньше концентрация никеля и сопутствующего кобальта.

Для изучения процессов, идущих в ПГ, применяют целый набор научных дисциплин. Это тепло- и массообмен, гидродинамика, механические дисциплины, сопромат, металловедение, химия (включая электрохимию), математическая статистика и многие другие.

2.2. Устройство ПГВ-1000

Конструктивная схема парогенератора должна обеспечить наиболее полное использование теплоты и температуры теплоносителя первого контура — воды под давлением. На рис. 1 приведены характерные перепады температуры и давления в ПГВ-1000 МКП на фоне линии насыщения воды $\rho_s(t_s)$. Чем больше температурный напор между теплоносителями, тем меньше площадь поверхности теплообмена при заданной мощности теплообменника и ниже массогабаритные характеристики устройства.

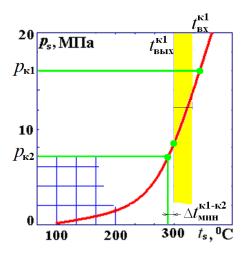


Рис. 1. Перепады давления и температуры в парогенераторе

В ядерной энергетике используется крупногабаритное и мощное теплообменное оборудование. Требование транспортабельности по железной дороге очень важно, оно устанавливает ограничения по массе и размерам устройств. Для получения высокого термодинамического КПД блока надо повышать температуру теплоносителя и понижать давление пара в конденсаторе. Низкие давление и плотность пара в конденсаторе при ограничениях на скорость, при высокой единичной мощности установки достигаются укрупнением оборудования. Экономические показатели энергоблока растут с повышением единичной мощности, но снижаются, если используется эксклюзивное или мелкосерийное оборудование. Особенность пары материалов воды и циркониевого сплава, нейтронной физики реактора обуславливает невысокие, по сравнению с обычной энергетикой, температуры теплоносителя в активной зоне. Подогрев теплоносителя в реакторе составляет с 280-300 до 310-330 °C при давлении 15-16 МПа

В этой части линии насыщения малым перепадам температур соответствуют большие перепады абсолютного давления (см. рис. 1). Увеличивая температурный напор между контурами в парогенераторе при фиксированном абсолютном давлении во втором контуре, должны резко увеличивать абсолютное давление в первом контуре и прочность корпуса реактора, его толщину и массу. Требования к параметрам теплоносителей первого и второго контура в ПГ оказываются противоречивыми и должны выбираться на основе компромисса и оптимизации АЭС в целом, что в финале приводит к малому тепловому КПД АЭС (30–33 %) и высоким массогабаритным характеристикам основного теплообменного оборудования.

Вид сверху на разрез парогенератора ВВЭР приведен на рис. 2, который поясняет схему взаимодействия теплоносителей первого и второго контура.

Нагретая вода из реактора по первому контуру поступает в вертикальный коллектор. В стенках горячего коллектора размещены отверстия для входа в теплообменные трубки (ТОТ). Каждая ТОТ представляет собой \cup -образный змеевик из аустенитной стали 08X18H10T размером $16\times1,5$ длиной в среднем 11 м. Вода входит внутрь ТОТ, движется со скоростью около 5 м/с, передавая конвективно тепло внутренней стенке трубки. Заканчиваются ТОТ в холодном коллекторе, из которого вода следует к ГЦНА и в реактор на подогрев.

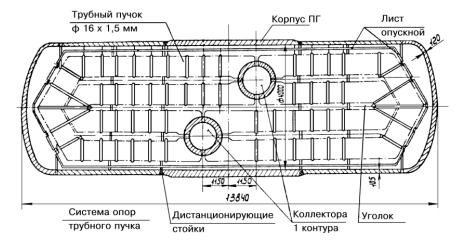


Рис. 2. Разрез парогенератора типа ВВЭР

Тепло кондуктивно (молекулярной теплопроводностью) передается от внутренней стенки ТОТ к наружной.

Теплообменные трубки собраны в четыре пучка или пакета. Компоновка ТОТ коридорная (ПГВ-440 и ПГВ-1000 новых проектов) или шахматная (серийный ВВЭР) представлена на рис. 3.

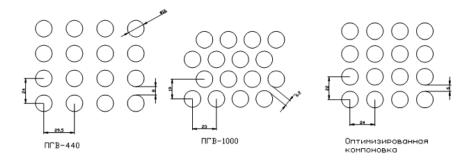


Рис. 3. Расположение теплообменных трубок

Трубные пучки несимметричны в геометрическом и тепловом отношении (см. рис. 2, 4). Внутренние пучки содержат больше трубок, но длины труб наружных пучков больше. Коллекторы сдвинуты относительно поперечной оси ПГ (см. рис. 2), соответственно сдвинуты и зоны максимального теплового напора. Размеры пучка приведены в табл. 1.

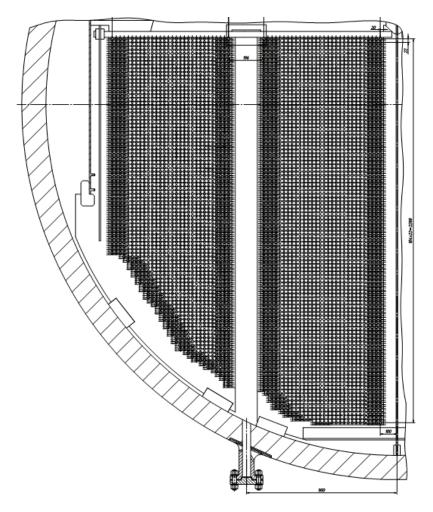


Рис. 4. Компоновка теплообменных трубок

Таблица 1

Характеристики трубных пучков ПГВ-1000

Уапактапистика	ПГВ-1000	ПГВ-1000
Характеристика	шахматное	коридорное

Диаметр корпуса, м	4,0	4,2
Длина корпуса, м	13,63	13,63
Ширина трубного пучка, м	0,695	0,712
Ширина опускных коридоров, м	0,170/0,190	0,184/0,198
Высота погруженного дырчатого листа, м	2,43	2,71
Высота трубного пучка, м	2,19	2,50
Перфорация погруженного дырчатого	7,8	8,0
листа, %		
Расстояние между осями труб по верти-	19	22
кали, мм		
Расстояние между осями труб по гори-	23	24
зонтали, мм		
Размер труб, мм	16×1,5	16×1,5

Трубные пучки погружены в объем котловой воды второго контура под ее уровень. Температура котловой воды соответствует температуре насыщения при давлении во втором контуре. Схема естественной циркуляции котловой воды показана на рис. 5.

На продувку отводится до 60 т/ч котловой воды при температуре насыщения. Режим отвода: меньшая часть отводится непрерывно, большая – периодически.

На наружной поверхности ТОТ происходит кипение на фоне скоростей циркуляции теплоносителя до 1 м/с. Пузырьки пара поднимаются с водой, сепарируются на погружном дырчатом листе и отводятся в коллектор пара, а вода возвращается к пакетам вдоль стенок и днища корпуса.

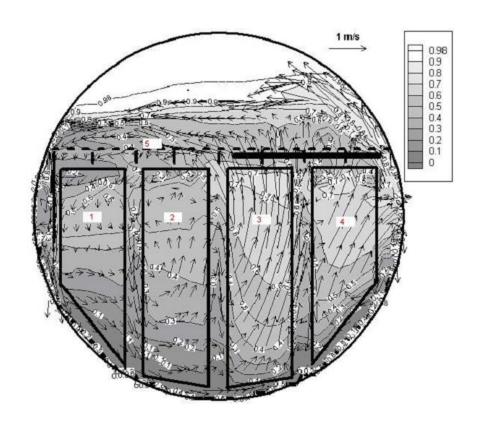
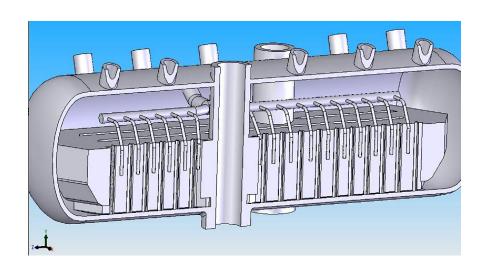



Рис. 5. Распределение скоростей воды и истинного объемного паросодержания в ПГ [2]: 1 – малый холодный пакет, 2 – большой холодный пакет; 3 – большой горячий пакет; 4 – малый горячий пакет; 5 – погружной дырчатый лист

Питательная вода поступает при температуре 195–225 °C в зависимости от развитости системы регенерации и может быть меньшей, если часть подогревателей отключены. Питательная вода подается на трубный пучок или, в новых и реконструированных ПГ, в коридоры между пучками. Схема усовершенствованной подачи питательной воды приведена на рис. 6.

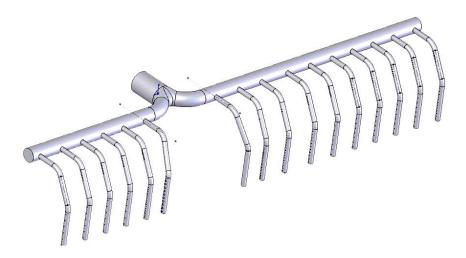


Рис. 6. Коллектор питательной воды и его размещение в $\Pi\Gamma$

3. ХАРАКТЕРИСТИКИ ПАРОГЕНЕРАТОРА ПГВ-1000

3.1. Характеристики конструкции

Парогенераторы ПГВ-1000 всех типов имеют сходное устройство и внешний вид. Особенности конструкции могут встречаться как в рамках заводских модификаций, так и реконструкций на местах. Часто это схемы и устройства продувки, питательной воды. Особенности могут подчеркиваться индексами типа ПГВ-1000 МКП. Такие парогенераторы предполагается использовать на АЭС–2006. В связи с современными тенденциями эксплуатации ВВЭР с использованием спектрального регулирования за счет изменения давления в реакторе в течение кампании или длительной работы на мощностном эффекте реактивности, хорошей организации ВХР и низкого уровня отложений на ТОТ, слежения за графиком потребления электроэнергии характеристики ПГ также могут отличаться.

Схемы различных парогенераторов приведены на рис. П1–П5. Характеристики серийного парогенератора ПГВ-1000 приведены в табл. 2.

Таблица 2 Характеристики ПГВ-1000

Характеристика	Значение
Паропроизводительность, т/ч	1470
Давление пара на выходе из коллектора (рабочее, абсолютное), МПа	6,28
Температура пара, °С	278,5
Влажность, %, не более	0,2
Теплоноситель (на выходе), °С	291
Гидравлическое сопротивление по первому контуру, МПа, не более	0,13
Гидравлическое сопротивление по второму контуру, МПа, не более	0,11
Температура питательной воды, °С	220 ± 5

Окончание табл. 2

Характеристика	Значение
Теплоноситель (на входе), °С	321 ± 5
Давление теплоносителя на входе (рабочее,	$15,7 \pm 0,3$
абсолютное), МПа	
Расход теплоносителя, м ³ /ч	21 500 + 1000 – 1200
Величина непрерывной продувки из солевого	15
отсека, т/ч	
Точность поддержания уровня, мм	± 50

Проектные характеристики парогенератора ПГВ-1000 МКП с разреженной коридорной компоновкой ТОТ приведены в табл. 3.

Таблица 3 Характеристики ПГВ-1000 МКП

Характеристика	Значение
Паропроизводительность, т/ч	1602
Мощность тепловая, МВт	800
Давление пара на выходе из коллектора (рабочее, абсолютное), МПа	7,0
Температура пара, °С	285,8
Влажность, %, не более	0,2
Теплоноситель (на входе), °С	328,9
Теплоноситель (на выходе), °С	298,2
Расход теплоносителя, м ³ /ч	21 500
Гидравлическое сопротивление (первый кон-	0,13
тур), МПа, не более	
Гидравлическое сопротивление (второй кон-	0,11
тур), МПа, не более	
Температура питательной воды, °С	225
Величина продувки, т/ч	60
КИУМ	0,9
Неплановых остановок, 1/г, менее	0,5
Срок службы, лет	60
Плановый останов, сут/г, не более	25

3.2. Схема продувки

Система продувки ПГ предназначена для поддержания норм водно-химического режима котловой воды, путем отбора ее части из мест наиболее вероятного скопления продуктов коррозии, солей и шлама.

Применяются непрерывная и периодическая продувки. Непрерывная продувка необходима для поддержания на допустимом уровне концентрации растворенных примесей. Большая часть нерастворенных примесей ведет себя подобно растворенным, и их эффективное удаление с непрерывной продувкой способствует уменьшению образования отложений. Периодическая продувка, как правило, применяется для удаления нерастворенных отложений шлама со дна ПГ, а также может использоваться для восстановления и поддержания концентрации растворенных примесей в случаях нарушения ВХР. В этих случаях она проводится по тем же линиям, что и непрерывная. Необходимость периодической продувки связана с требованием создания увеличенного ее расхода при ограничениях пропускной способности систем очистки продувочной воды. Как правило, периодической продувке в данный момент подлежит только один ПГ энергоблока.

Из опыта эксплуатации известно, что для удаления шлама нет необходимости в большой длительности периодической продувки. В течение 30–40 минут идет смыв шлама со стенок трубопровода и нижней образующей корпуса, прилегающих к месту врезки трубопровода в корпус. На эффективность продувки оказывает влияние расход продувки, скорость на входе в трубопровод. Достаточная скорость в трубопроводе важна для исключения засорения продуктами коррозии. Это особенно важно для параллельно включенных трубопроводов, не имеющих индивидуального контроля расхода. Отсутствие контроля проходимости каждого трубопровода может привести к перераспределению расхода и возможности полного забивания одной из линий. Скорость в горизонтальном участке тру-

бы должна составлять не менее 1,8 м. Места периодической продувки целесообразно рассредоточить по длине нижней образующей корпуса ПГ. Ограничением является необходимость установки дополнительной запорной арматуры и наличие проходок через гермозону.

В линии периодической продувки следует предусматривать небольшой постоянный расход для обеспечения прогрева линий во избежание термоциклического нагружения в момент включения продувки. Этот расход обеспечивается за счет применения байпасных линий малого сечения или протечек арматуры.

В штатной схеме имеется шесть линий периодической продувки: две из торцевых участков ПГ и четыре из карманов коллекторов теплоносителя. При этом обеспечивается возможность раздельной продувки из торцевых участков и карманов, так как одновременная продувка из нескольких линий разного сечения неэффективна и может приводить к забиванию шламом карманов коллекторов. Наличие запорно-регулирующих клапанов позволяет регулировать расходы по линиям непрерывной продувки каждого ПГ, а также расход в общем коллекторе периодической продувки. Регулирование расходов позволяет максимально использовать пропускную способность систем очистки продувочной воды. В случаях, когда необходимо устранить последствия кратковременных нарушений ВХР, целесообразно увеличить расход непрерывной продувки за счет прекращения на некоторое время периодической. Это позволяет в случаях нарушения ВХР привести в норму показатели продувочной воды без разгрузки блока.

Совершенствование схемы может достигаться увеличением числа линий периодической продувки для повышения эффективности удаления шлама со всей площади нижней образующей корпуса, использованием раздельной продувки каждого трубопровода. В последнем случае усложняется схема системы и растет число необходимых проходок через границу герметичной оболочки. В конечном итоге схема продувки — это ра-

зумный компромисс между эффективностью, удобством эксплуатации и обслуживания и экономическими соображениями.

Расход продувки определяется исходя из требования выполнения норм ВХР и обеспечения скорости в трубопроводе с учетом мощности системы обращения с отобранной продувочной водой.

Общие требования к организации линий продувки:

- оптимальное сечение трубопроводов;
- возможность раздельной продувки линий;
- возможность регулирования расхода;
- автоматизация управления арматурой [3].

4. РАСЧЕТ ПАРОГЕНЕРАТОРОВ

4.1. Тепловой расчет

Известные разновидности расчета ПГ: конструктивный тепловой, поверочный тепловой, гидравлический и оптимизационный [4]. Конструктивным тепловым расчетом называется расчетное определение величины поверхности теплопередачи при заданных параметрах и расходах греющего и нагреваемого теплоносителей, схеме движения, геометрических характеристиках каналов, на номинальной мощности. Поверочным тепловым расчетом называется расчетное определение характеристик рабочего процесса при режимах, отличных от номинального. Номинальная тепловая мощность аппарата— наибольшая мощность в условиях длительной эксплуатации.

Исходные данные принимаются из расчета тепловой схемы или данных испытаний. К ним относятся расход и параметры пара, расход и параметры теплоносителя.

В основе теплового расчета лежат уравнение теплового баланса и уравнение теплопередачи. Для парогенератора уравнение теплового баланса имеет вид

$$Q = G_{\text{пар}}(j'' - j_{\text{пит}}) = G_{\text{гиц}}(^{\text{вх}}j_{\text{гиц}} - ^{\text{вых}}j_{\text{гиц}}),$$

где Q – мощность ПГ, кВт;

 $G_{\text{пар}}$ – массовый расход пара, кг/с;

 $\int_{-\infty}^{\infty} f_{\text{пит}} - y$ дельные энтальпии пара и питательной воды, кДж/кг;

 $G_{\text{гщ}}$ – массовый расход греющей среды, кг/с;

 $^{\rm BX}/_{\rm Гиц}$, $^{\rm BыX}/_{\rm Гиц}$ — удельные энтальпии греющего теплоносителя на входе и выходе из $\Pi\Gamma$, к Π ж/к Γ .

Потери теплоты в окружающую среду с захватом воды, паром и с продувкой не учитываются.

Поверхность нагрева \digamma определяется из уравнения теплопередачи

$$Q = kF\Delta t_{\rm cp}, \tag{4.1}$$

где k – коэффициент теплопередачи, кBт/м $^2 \cdot K$;

 $\Delta \mathit{t}_{\rm cp}$ — средний температурный напор для поверхности нагрева.

При численных расчетах средний температурный напор не вводят и применяют выражение (4.1) для расчета такого короткого участка, что в его пределах температуры можно считать постоянными, тогда общий поток находят как сумму потоков по коротким участкам.

Параметры пара определяют по заданному абсолютному давлению во втором контуре из таблиц термодинамических свойств воды и пара на линии насыщения (или из формул, или из кодов), приведенных в табл. П1, П2. Параметры греющего теплоносителя определяют по заданным температурам из таблиц свойств воды и пара на линии насыщения.

Средний температурный напор для поверхностей нагрева определяется как среднелогарифмический, т. е.

$$\Delta \mathit{t}_{cp} = \psi(\Delta \mathit{t}_{\bar{0}} - \Delta \mathit{t}_{\scriptscriptstyle{M}}) / \ln(\Delta \mathit{t}_{\bar{0}} / \Delta \mathit{t}_{\scriptscriptstyle{M}})$$
,

где $\psi = 1$;

 Δt_{6} , Δt_{M} — большие и меньшие температурные напоры на концах поверхности нагрева, К ($\Delta t_{6} = {}^{\text{вх}}t_{\Gamma\text{III}} - \mathring{t}$; $\Delta t_{M} = {}^{\text{вых}}t_{\Gamma\text{III}} - \mathring{t}$, \mathring{t} — температура пара).

Коэффициент теплопередачи

$$k = (d_{\text{Hap}} / d_{\text{BHy}} \alpha_{\text{BHy}} + d_{\text{Hap}} \ln(d_{\text{Hap}} / d_{\text{BHy}}) / 2\lambda_{\text{CT}} + 1 / \alpha_{\text{Hap}})^{-1}, (4.2)$$

где α – коэффициенты теплоотдачи, $BT/M^2 \cdot K$;

d – диаметр трубки ТОТ, мм;

 λ_{cr} – коэффициент теплопроводности металла ТОТ, $Br/M \cdot {}^{\circ}C$.

Расчетная поверхность теплообмена \digamma пучков ТОТ ПГ определяется из выражения (4.1). Расчетную площадь увеличивают на коэффициент запаса (на загрязнения и глушение труб) 1,15.

Для определения k и последующего определения F необходимо вычислить коэффициенты теплопередачи α , при определении которых важным является знание условий теплообмена и состояния теплопередающих сред. Для всех элементов первого контура $\Pi\Gamma$ характерно вынужденное движение среды в турбулентном режиме.

Теплообменные трубки цельнотянутые из аустенитной стали можно считать гладкими, прямолинейными и длинными. В турбулентном режиме (Re > 2300) вода передает тепло стенке, критерий Нуссельта составляет

$$Nu = 0.023 \text{ Re}^{0.8} \text{ Pr}_{\text{B}}^{0.43}$$

где $NU = \alpha_{\text{вну}} \mathcal{O}_{\text{вну}} / \lambda_{\text{в}}$ — число Нуссельта, в состав которого входит искомый коэффициент теплоотдачи;

Овну − внутренний диаметр трубки.

Число Рейнольдса определяет процесс теплопередачи и режим движения среды

$$Re = WO_{BHy}/V_{B}$$

где *W* – средняя скорость воды, м/с;

 \vee_B — коэффициент кинематической вязкости воды, м²/с. Число Прандтля характеризует физические свойства воды

$$Pr_{B} = (V/a)_{B}$$

где a – коэффициент температуропроводности, M^2/c .

Число Рг и другие свойства воды приводятся в соответствующих таблицах. Входящие в числа подобия теплофизические параметры сред определяются при средней расчетной температуре теплоносителя

$$t_{\rm cp} = t_{\rm BMX} + (t_{\rm BX} - t_{\rm BMX})(\Delta t_{\rm cp} - \Delta t_{\rm M}) / (\Delta t_{\rm 0} - \Delta t_{\rm M}).$$

При небольших температурных перепадах можно использовать среднеарифметическую величину.

На наружной поверхности ТОТ происходит кипение с отдельными пузырями в развитом режиме при большом приведенном давлении без недогрева в большом объеме. В таком процессе теплоотдача определяется только кипением [5] и мало зависит от сопутствующих обстоятельств. Дополнительным аргументом в пользу такого заключения является экспериментальный факт [6]: уменьшение уровня котловой на 1 м ниже номинального при номинальной нагрузке не приводит к существенному изменению параметров теплопередачи в ПГВ-1000. Вследствие того, что кипит насыщенная вода и производится насыщенный пар, расчет ПГ АЭС с ВВЭР оказывается простым по сравнению с типичными парогенераторами. Ввод питательной воды при температуре ниже температуры насыщения в коридор с водопаровой средой формирует объемный экономайзер смешивающего типа. Отпадает необходимость

зонирования парогенератора по типам кипения. Для определения теплоотдачи при кипении используем формулу [4]

$$\alpha_{\text{Hap}} = 4.34 q^{0.7} (p^{0.14} + 0.0137 p^2),$$
 (4.3)

где $[\alpha] = B_T/M^2 \cdot K$

р – абсолютное давление в ПГ, МПа;

q – мощность теплового потока на поверхности ТОТ, B_T/M^2 .

Формула (4.3) задает нелинейную зависимость теплоотдачи от теплового потока. Чем больше поток, тем больше $\alpha_{\text{нар}}$. Расчет усложняется тем, что неизвестны тепловой поток и температурный напор. В этом случае используют метод последовательных приближений. Задают произвольный поток q_0 , стараясь угадать правильную величину, считают теплопередачу и поток по выражениям (4.2) и (4.1)

$$Q_1 = k\Delta t_{cp}$$
.

Сравнивают величины q_0 и q_1 , уточняют q_0 и так до тех пор, пока потоки не совпадут с заданной точностью (обычно 1,5 или 10%). Это и будет искомая неизвестная. Другое неудобство заключается в использовании подхода, основанного на среднелогарифмическом тепловом напоре. Теплообменную поверхность приходится делить по ходу потока на n участков Q/n с примерно постоянными $\alpha_{\text{нар}}$ в пределах участка. Подсчитывают теплообменную поверхность каждого участка, сумма поверхностей всех n участков и будет n0 число n0 увеличивают, пока n1 не перестанет изменяться в рамках принятой точности.

Скорость движения воды в ТОТ ПГ задается на уровне 4,5–5,0 м/с. В целом оптимальная скорость теплоносителей выбирается на основании технико-экономических расчетов. Увеличение скорости улучшает условия теплообмена, что приводит к снижению требуемой поверхности нагрева, снижению стоимости, массы и габаритов теплообменников. В то

же время с увеличением скорости возрастает гидравлическое сопротивление, что приводит к возрастанию мощности, затрачиваемой на перекачивание. Большие скорости способствуют процессам эрозии и коррозии, шумам и вибрации.

4.2. Гидравлический расчет

Гидравлический расчет сопротивления ПГ по первому контуру в курсовом проекте ограничивается расчетом сопротивления трубки со средневзвешенными конструктивными данными. Длина ТОТ 16×1.5 принимается /= 11 м, внутренний диаметр $\mathcal{O}_{\text{вну}} = 13$ мм.

Общее сопротивление состоит из суммы местных сопротивлений (гибы, вход и выход) и сопротивления трения.

По рис. 2 можно заключить, что гибы ТОТ плавные. Оценим количество гибов на 45° в 6 (шахматная) и 8 (коридорная) компоновки ТОТ в пакете, один гиб на 90°. Согласно [4], местные сопротивления составят: вход $\zeta_{\rm BX}=0.4$; выход $\zeta_{\rm BX}=1.0$; гиб 90° $\zeta_{\rm 90}=0.073$; гиб 45° $\zeta_{\rm 45}=0.044$. Участок гидродинамической стабилизации учтем как местное сопротивление:

$$\zeta_{\text{стаб}} = (1 - 1/(1 + 1.3\text{Re}^{0.12}))^{-2} - 1.$$

Сопротивление трения. Трубка гладкая, если

$$K_{\hspace{-0.1em}\text{\tiny III}}\hspace{0.1em}\mathcal{W}^{\hspace{-0.2em}\text{\tiny \star}}/\nu < 60$$
 ,

где K_{III} – абсолютная высота шероховатости внутренней стенки ТОТ, для аустенитных цельнотянутых ТОТ K_{III} = 10 мкм [4].

Коэффициенты сопротивления определяются из нижеприведенных условий:

$$W^* = W(\zeta/8)^{0.5};$$
 $\zeta = 0.316 / \text{Re}^{0.25}, \quad 4000 < \text{Re} < 100 000;$ $\zeta = (1.82 \text{ Ig}(\text{Re}) - 1.64)^{-2}, \quad 10^5 < \text{Re} < 10^8;$

$$\zeta = 0.1(1.46 \, K_{\text{III}} / \, d_{\text{BHV}} + 100 / \, \text{Re})^{0.25}, \quad 8 \times 10^{-5} < K_{\text{III}} / \, d_{\text{BHV}} < 0.0125.$$

Для гладких труб пользуемся второй или третьей формулами, для шероховатой — четвертой. В первую формулу подставляем ζ для гладкой трубки, затем, если шероховатость окажется существенной, пользуемся ζ для шероховатой трубки и используем метод последовательных приближений. Сопротивление трения трубки составит $\zeta // d_{\text{вну}}$, а перепад давления на трубке составит

$$\Delta p = (\zeta_{BX} + \zeta_{BMX} + \zeta_{90} + 6\zeta_{45} + \zeta_{CTAG} + \zeta // d_{BHV}) \rho W^2 / 2$$

где ρ – плотность жидкости.

5. ПРИМЕР РАСЧЕТА ПАРОГЕНЕРАТОРА ПГВ-1000

5.1. Требования по оформлению курсового проекта

Курсовой проект оформляется в соответствии с ГОСТ 7.32—2001, список литературы по ГОСТ 7.1—2003, чертежи и графики в соответствии с ЕСКД, расчеты в форме таблиц по РД 24.035.05—89.

Итеративные промежуточные этапы вычислений в таблицы не включать, записывать только последний шаг итерации и уточненные значения тепловых потоков, мощностей и площадей. Несовпадение уточненных величин и принятых на последнем шаге итерации должно быть не более 5 %. Свойства теплоносителя брать из таблиц, приведенных в табл. П1, П2.

5.2. Гидравлический расчет ПГВ-1000

Гидравлический расчет (табл. 4) сопротивления ПГ по первому контуру состоит в определении перепада давления на ТОТ. Общее сопротивление состоит из суммы местных сопротивле-

ний (гибы, вход и выход) и сопротивления трения. Скорость воды меняется по ходу движения вследствие остывания и увеличения плотности. Этот эффект следует учитывать. Количество и форма гибов могут быть определены по чертежу или заданы.

Исходные данные

Наружный диаметр теплообменной трубки $\mathcal{O}_{\text{нар}}$, мм	16
Внутренний диаметр теплообменной трубки $\mathcal{O}_{\text{вну}}$, мм	13
Длина теплообменной трубки /, м	11
Шероховатость теплообменной трубки $K_{\text{ш}}$, мкм	10
Температура греющего теплоносителя на входе [№] гщ, °С	330
Температура греющего теплоносителя на выходе г ^{вых} гщ, °С	300
Скорость греющего теплоносителя на выходе из тепло-	
обменной трубки W, м/с	4,5
Количество гибов на 90°	1
Сопротивление гиба на 90° ζ_{90}	0,073
Количество гибов на 45°	6
Сопротивление гиба на 45° ζ_{45}	0,044

Таблица 4

Алгоритм гидравлического расчета

Наименование	Расчетная формула или источник	Величина
Коэффициент ки-	Таблица свойств воды на линии	0,12·10-6
нематической вяз-	насыщения	
кости воды v , m^2/c		
Плотность воды	Таблица свойств воды на линии	640
на входе $\rho_{\text{вх}}$, $\kappa \Gamma / \text{м}^3$	насыщения	
Скорость воды	$W_{\text{BX}} = \left(W \rho'(300 \text{ °C}) \right) / \rho_{\text{BX}}$	5
на входе W_{BX} , м/с		
Число Рейнольдса	$Re_{BX} = W_{BX} O_{BHY} / V$	565 740
на входе Ревх		
Средняя плотность	$\rho = (\rho'(330 ^{\circ}\text{C}) + \rho'(300 ^{\circ}\text{C})) / 2$	676

воды ρ , $\kappa \Gamma/M^3$		
Средняя скорость	$W_{\rm cp} = \left(W \rho'(300 {\rm ^{o}C})\right)/\rho$	4,7
воды Иср, м/с		

Окончание табл. 4

Наименование	Расчетная формула или источник	Величина
Число Рейнольдса	$Re = W_{cp} d_{BHV} / v$	509 170
среднее Re	1 3	
Коэффициент со-	Формула выбрана соответственно	0,013
противления тре-	диапазону Re для гладкой трубы.	
ния ζ	Вычислено с последующим уточне-	
	нием факта гладкости по формуле	
	$\zeta = (1.82 \text{ Ig}(\text{Re}) - 1.64)^{-2}, 10^5 < \text{Re} < 10^8$	
Динамическая ско-	$W^* = W(\zeta/8)^{0.5}$	0,19
рость W∗, м/с		
Проверка условия	$K_{\text{III}}W_*/\mathbf{v} < 60$	15,8
гладкости трубы		
(гладкая)		
Потеря давления	$\Delta \rho_{\rm rp} = (\zeta // O_{\rm BHy}) \rho W_{\rm cp}^2 / 2$	82 130
вследствие трения		
$\Delta \rho_{\rm rp}$, Πα		
Потеря давления	$\Delta \rho_{\text{вых}} = (\zeta_{\text{вых}}) \rho'(300 \text{ °C}) W^2 / 2$	7209
на выходе из трубы	$\zeta_{\text{вых}} = 1$ (справочные данные)	
$\Delta p_{\text{вых}}, \Pi a$		
Потери давления	$\Delta \rho_{\rm M} = (\zeta_{90} + 6\zeta_{45}) \rho W_{\rm cp}^2 / 2$	2516
на гибах $\Delta \rho_{\scriptscriptstyle M}$, Па		
Потери на стабили-	$\zeta_{\text{cra6}} = (1 - 1/(1 + 1.3 \text{Re}_{\text{Bx}}^{0.12}))^{-2} - 1$	0,34
зацию потока $\zeta_{\text{стаб}}$		
Потеря давления	$\Delta \rho_{\text{BX}} = (\zeta_{\text{cra6}} + \zeta_{\text{BX}}) \rho'(330 {}^{\circ}\text{C}) W_{\text{BX}}^2 / 2$	5920
на вход в трубу	$\zeta_{\text{вх}} = 0.4$ (справочные данные)	
$\Delta \rho_{\text{BX}}, \Pi a$		
Общие потери	$\Delta \rho = \Delta \rho_{\rm Tp} + \Delta \rho_{\rm BMX} + \Delta \rho_{\rm BX} + \Delta \rho_{\rm M}$	97 775
давления в трубе		

IAnIIa	
$\Delta \nu$, 11a	

Общие потери давления в ТОТ по расчету составят 97 775 Па, что удовлетворительно совпадает с данными табл. 2 и табл. 3.

5.3. Конструктивный тепловой расчет ПГВ-1000

Исходные данные

Наружный диаметр теплообменной трубки $\mathcal{O}_{\text{нар}}$, мм	16
Внутренний диаметр теплообменной трубки C_{BHy} , мм	13
Коэффициент теплопроводности металла теплообменной	
трубки λ_{TP} , $BT/M \cdot K$	20
Мощность парогенератора тепловая по первому контуру	750
Q, MBT	
Температура греющего теплоносителя на входе $\ell^{\text{вх}}_{\text{гщ}}$, °С	330
Температура греющего теплоносителя на выходе г ^{вых} гщ, °С	300
Скорость греющего теплоносителя на выходе из тепло-	
обменной трубки W, м/с	4,5
Давление абсолютное во втором контуре ρ_s , МПа	6,4
Температура во втором контуре t_s , °С	280
Температура питательной воды $t_{\text{пит}}$, °С	225
Расход продувки $G_{\text{прод}}$, кг/с	14
Коэффициент ψ	1
Коэффициента запаса поверхности теплообмена	1,15

В расчете определяется площадь поверхности теплообмена парогенератора ПГВ-1000. Результаты расчета приведены в табл. 5.

Таблица 5 Алгоритм конструктивного теплового расчета

Наименование	Расчетная формула или источник	Величина
Энтальпия греющего	Таблица свойств воды на линии	1528
теплоносителя на вхо-	насыщения, <i>Г</i> ^{вх} гщ	

де /вх, кДж/кг		
Энтальпия греющего	Таблица свойств воды на линии	1346
теплоносителя на вы-	насыщения, г	
ходе /вых, кДж/кг		

Наименование	Расчетная формула или источник	Величина
Расход греющего теп-	$O/(j'_{BX}-j_{BMX})$	4121
лоносителя <i>G</i> , кг/с	(BX / Bbix)	1121
Энтальпия пара /,	Таблица свойств воды на линии	2778
кДж/кг	насыщения, $t_{\rm S}$	2770
Энтальпия котловой	Таблица свойств воды на линии	1237
воды /, кДж/кг	насыщения, t _s	1207
Энтальпия питатель-	Таблица свойств воды на линии	967
ной воды /пит, кДж/кг	насыщения, $t_{\text{пит}}$	
Расход пара G' , кг/с	$(Q - G_{\text{прод}}(I - I_{\text{пит}})) / (I' - I_{\text{пит}})$	412
	Участок 1	
Мощность участка	Q/2	375
Q/2, MBT		
Энтальпия греющего	Таблица свойств воды на линии	1528
теплоносителя на вхо-	насыщения, <i>Г</i> ^{вх} гщ	
де первого участка		
/ _{вх} , кДж/кг		
Температура грею-	$\left(t^{\text{BX}}_{\text{\GammaIII}} + t^{\text{BMX}}_{\text{\GammaIII}}\right)/2$	315
щего теплоносителя		
на выходе из первого		
участка t₁, °С		
Температура грею-	Совпадает с температурой входа	330
щего теплоносителя		
на входе в первый		
участок рых оС		
Энтальпия греющего	Таблица свойств воды на линии	1433
теплоносителя на вы-	насыщения, t_1	
ходе из первого		
участка /в1, кДж/кг		
Больший температур-	$\Delta t_{\rm f} = t^{\rm BX}_{\rm FIII} - t_{\rm S}$	50
ный перепад Δt_{6} , °С		

Меньший температур-	$\Delta t_{\rm M} = t_1 - t_{\rm S}$	35
ный перепад $\Delta t_{\scriptscriptstyle M}$ °С		
Средний температур-	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm o} - \Delta t_{\rm m}) / \ln(\Delta t_{\rm o} / \Delta t_{\rm m})$	42
ный перепад $\Delta t_{\rm cp}$, °С	•	

Наименование	Расчетная формула или источник	Величина
Средний коэффици-	$\lambda_1 = (\lambda'(330 \text{ °C}) + \lambda'(315 \text{ °C}))/2$	0,506
ент теплопроводно-		
сти воды на первом		
участке λ_1 , $Bт/м \cdot K$		
Средний коэффици-	$v_1 = (v'(330 {}^{\circ}\text{C}) + v'(315 {}^{\circ}\text{C})) / 2$	$0,12 \cdot 10^{-6}$
ент кинематической		
вязкости на первом		
участке v_1 , M^2/c		
Среднее число	$Pr_1 = (Pr'(330 ^{\circ}C) + Pr'(315 ^{\circ}C))/2$	1
Прандтля Рг ₁		
Средняя плотность	$\rho_1 = (\rho'(330 ^{\circ}\text{C}) + \rho'(315 ^{\circ}\text{C}))/2$	660
воды на первом		
участке ρ_1 , кг/м ³		
Средняя скорость во-	$W_1 = (W \rho'(300 ^{\circ}\text{C})) / \rho_1$	4,85
ды на первом участке		
<i>W</i> ₁, м / c		
Число Рейнольдса Re ₁	$Re_1 = W_1 O_{BHy} / v_1$	525 420
Число Нуссельта Nu ₁	$Nu_1 = 0.023 \text{ Re}_1^{0.8} \text{ Pr}_1^{0.4}$	867
Коэффициент тепло-	$\alpha_1^{\text{KOHB}} = \lambda_1 N u_1 / \mathcal{O}_{\text{BHy}}$	33 750
отдачи конвективный	,	
$\alpha_1^{\text{конв}}$, Bt/ $\mathbf{M}^2 \cdot \mathbf{K}$		
Эффективный коэф-	$\alpha_1^{3\dot{\Phi}} = \alpha_1^{\text{KOHB}} \mathcal{O}_{\text{BHy}} / \mathcal{O}_{\text{Hap}}$	27 420
фициент теплоотдачи		
$\alpha_1^{9\phi}$, BT/M ² · K		
Эффективный кон-	$\alpha_{\text{конд}} = 2\lambda_{\text{тр}} / \mathcal{O}_{\text{hap}} \ln(\mathcal{O}_{\text{вну}} / \mathcal{O}_{\text{hap}})$	12 040
дуктивный коэффи-		
циент теплоотдачи		
$\alpha_{\text{конд}}$, $B_T/M^2 \cdot K$		
Средний тепловой	Принят с последующим уточне-	305 000

поток q_1 , B_T/M^2	нием	
Коэффициент тепло-	$\alpha_{\text{кип}} = 4.34 \ q_1^{0.7} (\rho_s^{0.14} + 0.0137 \rho_s^2)$	57 190
отдачи при кипении		
$\alpha_{\text{кип}}$, $B_T/M^2 \cdot K$		

Наименование	Расчетная формула или источник	Величина
Коэффициент тепло-	$k_1 = 1/(1/\alpha_1^{9\dot{\Phi}} + 1/\alpha_{\text{конд}} + 1/\alpha_{\text{кип}})$	7315
передачи k_1 , Вт/м ² · К	, and the same	
Средний тепловой	$(Q_1)_{yr} = k_1 \Delta t_{cp}$	307 220
поток уточненный		
$(q_1)_{yr}, Br/m^2$		
Площадь поверхности	$F_1 = Q/2(q_1)_{yr}$	1221
теплообмена первого		
участка F_1 , м ²		
	Участок 2	
Мощность участка	<i>Q</i> /2	375
Q/2, MBT		
Энтальпия греющего	Параметры выхода из первого	1433
теплоносителя на вхо-	и входа во второй участок сов-	
де второго участка /1,	падают	
кДж/кг		
Температура грею-	Параметры выхода из первого и	315
щего теплоносителя	входа во второй участок совпа-	
на входе во второй	дают	
участок <i>t</i> ₁, °С		
Температура грею-	Задана	300
щего теплоносителя		
на выходе из второго		
участка рых оС		
Энтальпия греющего	Задана	1346
теплоносителя на вы-		
ходе из второго		
участка /вых, кДж/кг		
Больший температур-	$\Delta t_{\bar{0}} = t_1 - t_{\rm S}$	35
ный перепад Δt_{6} , °С		

Меньший температур-	$\Delta t_{\rm M} = t^{\rm BMX}_{\rm \Gamma III} - t_{\rm S}$	20
ный перепад $\Delta t_{\scriptscriptstyle{\mathbf{M}}}$ °С		
Средний температур-	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm f} - \Delta t_{\rm M}) / \ln(\Delta t_{\rm f} / \Delta t_{\rm M})$	26,8
ный перепад $\Delta t_{\rm cp}$, °С		

Наименование	Расчетная формула или источник	Величина
Средний коэффици-	$\lambda_2 = (\lambda'(315 ^{\circ}\text{C}) + \lambda'(300 ^{\circ}\text{C}))/2$	0,54
ент теплопроводно-		
сти воды на втором		
участке λ ₂ , Вт/м·К		
Средний коэффици-	$v_2 = (v'(315 \text{ °C}) + v'(300 \text{ °C}))/2$	$0,12 \cdot 10^{-6}$
ент кинематической		
вязкости на втором		
участке v_2 , m^2/c		
Среднее число	$Pr_2 = (Pr'(315 °C) + Pr'(300 °C))/2$	0,94
Прандтля Pr ₂		
Средняя плотность	$\rho_2 = (\rho'(315 ^{\circ}\text{C}) + \rho'(300 ^{\circ}\text{C}))/2$	696
воды на втором		
участке ρ_2 , кг/м ³		
Средняя скорость во-	$W_2 = (W \rho'(300 \text{ °C}))/\rho_2$	4,6
ды на втором участке		
<i>W</i> ₂ , м/c		
Число Рейнольдса Re ₂	$Re_2 = W_2 d_{\text{вну}} / v_2$	498 000
Число Нуссельта Nu ₂	$Nu_2 = 0.023 Re_2^{0.8} Pr_2^{0.4}$	811
Коэффициент тепло-	$\alpha_2^{\text{KOHB}} = \lambda_2 \text{NU}_2 / \mathcal{O}_{\text{BHy}}$	33 690
отдачи конвективный	-	
$\alpha_2^{\text{конв}}$, $\text{Bt/m}^2 \cdot \text{K}$		
Эффективный коэф-	$\alpha_2^{3\dot{\Phi}} = \alpha_2^{\text{KOHB}} \mathcal{O}_{\text{BHy}} / \mathcal{O}_{\text{Hap}}$	27 370
фициент теплоотдачи		
$\alpha_2^{9\phi}$, BT/M ² ·K		
Средний тепловой	Принят с последующим уточне-	185 000
поток q_2 , B_T/M^2	нием	
Коэффициент тепло-	$\alpha_{\text{KMII}} = 4.34 \ q_2^{0.7} (\rho_s^{0.14} + 0.0137 \rho_s^2)$	41 000
отдачи при кипении		

$\alpha_{\text{кип}}, \text{Вт/м}^2 \cdot \text{К}$		
Коэффициент тепло-	$k_2 = 1/(1/\alpha_2^{9\phi} + 1/\alpha_{\text{конд}} + 1/\alpha_{\text{кип}})$	6945
передачи k_2 , $Bт/м^2 \cdot K$	•	

Окончание табл. 5

Наименование	Расчетная формула или источник	Величина
Средний тепловой	$(q_2)_{yr} = k_2 \Delta t_{cp}$	186 130
поток уточненный		
$(q_2)_{yr}, Br/m^2$		
Площадь поверхности	$F_2 = Q/2(q_2)_{yr}$	2015
теплообмена второго		
участка F_2 , м ²		
Площадь поверхности	$F = 1.15(F_2 + F_2)$	3721
теплообмена с учетом		
коэффициента запаса		
F , \mathbf{M}^2		

Делим поверхность парогенератора на две равномощные части Q/2 и рассчитываем их поверхности раздельно, принимая без последующего уточнения, что это обеспечивает достаточную точность расчета. Использование среднего логарифмического температурного напора предполагает линейную связь теплового потока и температурного напора. Это условие нарушается при кипении, т. к. теплоотдача сильно зависит от передаваемого теплового потока. В пределах достаточно малого участка поверхности теплообмена поток меняется незначительно, поэтому коэффициент теплоотдачи при кипении можно считать постоянным, а расчет по среднему логарифмическому напору точным.

Обычно тепловой поток, принимается с последующим уточнением, поскольку определить его с первого раза затруднительно. Здесь используют последовательное приближение или итерации. Двух-трех итераций, как правило, достаточно.

Пример: пусть тепловой поток = 330 000 Вт/м², тогда $\alpha_{\text{кип}}$ = 61 490 Вт/м² · K, k_1 = 7364 Вт/м² · K, уточненный тепловой поток $k_1 \Delta t_{\text{cp}}$ = 309 300 Вт/м².

Расхождение значительное, поэтому повторим расчет, положив новое значение теплового потока 305 000 Bt/m² (новое значение должно быть близко к величине 309 300 Bt/м², но несколько меньше, т. к. с начальным приближением ошиблись в сторону увеличения). Тогда $\alpha_{\text{кип}} = 58\ 190\ \text{Bt/m²} \cdot \text{K}, \ k_1 = 7315\ \text{Bt/m²} \cdot \text{K}, \ \text{тепловой поток} = 307\ 220\ \text{Bt/m²}.$ Полученная величина 307 220 Bt/м² отличается от 305 000 Bt/м² менее чем на 1%. Точность устраивает, переходим к расчету площади поверхности участка, используя результат 307 220 Bt/м².

Замечания:

- а) первая оценка должна быть по возможности точной (использовать интуицию, опыт прежних расчетов, знание теплового напора);
- б) отклонения k значительно меньше по размаху, чем отклонения в оценке теплового потока;
- в) из всех тепловых сопротивлений наибольшее имеет стенка трубки (ее следует выбирать по возможности тонкой, помня, что разрыв трубки обойдется дорого, а замена парогенератора будет иметь самые жестокие последствия для экономики энергоблока).

Площадь поверхности теплообмена с учетом коэффициента запаса по результатам конструктивного расчета составит 3721 м².

5.4. Поверочный тепловой расчет ПГВ-1000 на частичной нагрузке

Иногда на блоке АЭС фиксируется отклонение рабочих параметров сверх заданных пределов нормальной эксплуатации, но не настолько большое, чтобы проводить остановку блока. На этот случай инструкциями предусмотрены уровни отклонения от норм показателей. Работа на определенном уровне отклонения ведется с ограничениями на продолжительность работы и/или мощность блока. Примером таких отклонений может быть снижение уровня котловой воды в парогенераторе, повышение проводимости пробы продувки из соляного отсека, отключение одного ГЦНА. Тепловые расчеты ПГ долж-

ны учитывать возможность работы на сниженном уровне мощности. Достаточно интересно, какие последствия это будет иметь, в том числе для безопасности реактора. Задача формулируется так: мощность по первому контуру снижена до 70 %, расход теплоносителя не изменился, давление во втором контуру не изменилось, провести тепловой расчет.

Исходные данные

Мощность парогенератора тепловая по первому конту-	
py \mathcal{O} , MBT	525
Расход греющего теплоносителя G, кг/с	4121
Давление абсолютное во втором контуре ρ_s , МПа	6,4
Температура во втором контуре t_s , °С	280
Площадь поверхности теплообмена F , м ²	3721
Скорость теплоносителя W, м/с	4,5

В задаче неизвестны температуры греющего теплоносителя на входе и выходе из ПГ. Поэтому температуру на входе задаем с последующим уточнением, температуру на выходе вычисляем по известной мощности. Далее выполняем тепловой расчет, вычисляем площадь, и, если площадь отличается от исходных данных (3721 м²) более чем на 5 %, корректируем температуру на входе. Затем повторяем расчет. Как и при конструктивном расчете, ограничиваемся делением поверхности теплообмена на две равномощные части, скорость теплоносителя считаем одинаковой для обеих частей. Данные расчета приведены в табл. 6.

Таблица 6 Алгоритм поверочного теплового расчета

Наименование	Расчетная формула или источник	Величина
Температура грею-	Выбираем с последующим	313
щего теплоносителя	уточнением	

на входе в парогенератор $f^{\text{вх}}_{\text{гш}}$, °С		
Энтальпия греющего	Таблица свойств воды на линии	1424
теплоносителя на вхо-	насыщения, <i>Г</i> ^{вх} гщ	
де /вх, кДж/кг		

Наименование	Расчетная формула или источник	Величина
Энтальпия греющего	$I_{\text{BMX}} = I_{\text{BX}} - Q/G$	1297
теплоносителя на вы-		
ходе /вых, кДж/кг		
Температура грею-	Таблица свойств воды на линии	291
щего теплоносителя	насыщения, /вых	
на выходе из пароге-		
нератора вых оС		
	Участок I	
Мощность участка	Q/2	263
<i>Q</i> /2, MB _T		
Температура грею-	$(l^{\text{BX}}_{\text{гщ}} + l^{\text{BbiX}}_{\text{гщ}})/2$	302
щего теплоносителя		
на выходе из первого		
участка <i>t</i> ₁, °С		
Температура грею-	Совпадает с температурой входа	313
щего теплоносителя		
на входе в первый		
участок Г ^{вх} гщ, °С		
Больший температур-	$\Delta t_{\rm 0} = t^{\rm BX}_{\rm rm} - t_{\rm S}$	33
ный перепад Δt_6 , °С		
Меньший температур-	$\Delta t_{\rm M} = t_1 - t_{\rm S}$	22
ный перепад $\Delta t_{\scriptscriptstyle{\mathrm{M}}}$ °С		
Средний температур-	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm 0} - \Delta t_{\rm M}) / \ln(\Delta t_{\rm 0} / \Delta t_{\rm M})$	27,1
ный перепад $\Delta t_{\rm cp}$, °С		
Средний коэффициент	$\lambda_1 = (\lambda'(313 \text{ °C}) + \lambda'(302 \text{ °C}))/2$	0,534
теплопроводности		
воды на первом		
участке λ₁, Вт/м ⋅ К		

Средний коэффициент	$v_1 = (v'(313 ^{\circ}\text{C}) + v'(302 ^{\circ}\text{C}))/2$	$0,12\cdot 10^{-6}$
кинематической вяз-		
кости на первом		
участке v_1 , M^2/c		
Среднее число	$Pr_1 = (Pr'(313 ^{\circ}C) + Pr'(302 ^{\circ}C))/2$	0,94
Прандтля Pr ₁		

Наименование	Расчетная формула или источник	Величина
Число Рейнольдса Re ₁	$Re_1 = Wd_{BHY}/v_1$	487 500
Число Нуссельта Nu ₁	$Nu_1 = 0.023 \text{ Re}_1^{0.8} \text{ Pr}_1^{0.4}$	797
Коэффициент тепло-	$\alpha_1^{\text{KOHB}} = \lambda_1 \text{NU}_1 / \mathcal{O}_{\text{BHy}}$	32 800
отдачи конвективный	-	
$\alpha_1^{\text{конв}}, \text{ BT/M}^2 \cdot \text{ K}$		
Эффективный коэф-	$\alpha_1^{3\phi} = \alpha_1^{\text{KOHB}} \mathcal{O}_{\text{BHY}} / \mathcal{O}_{\text{Hap}}$	26 650
фициент теплоотдачи		
$\alpha_1^{3\phi}$, BT/M ² · K		
Средний тепловой	Принят с последующим уточне-	187 000
поток <i>q</i> ₁ , Вт/м ²	нием	
Коэффициент тепло-	$\alpha_{\text{кип}} = 4.34 \ q_1^{0.7} (p_5^{0.14} + 0.0137 p_5^2)$	41 316
отдачи при кипении		
$\alpha_{\text{кип}}, \text{Bt/M}^2 \cdot \text{K}$		
Коэффициент тепло-	$k_1 = 1/(1/\alpha_1^{3\Phi} + 1/\alpha_{\text{конд}} + 1/\alpha_{\text{кип}})$	6910
передачи k_1 , $BT/м^2 \cdot K$		
Средний тепловой	$(Q_1)_{yr} = k_1 \Delta t_{cp}$	187 265
поток уточненный		
$(q_1)_{yr}, Br/M^2$		
Площадь поверхно-	$F_1 = Q/2(q_1)_{yr}$	1404
сти теплообмена пер-		
вого участка F_1 , м ²		
Участок 2		
Мощность участка	<i>Q</i> /2	262
<i>Q</i> /2, MB _T		
Температура грею-	Параметры выхода из первого	302
щего теплоносителя	и входа во второй участок сов-	
на входе во второй	падают	
участок <i>t</i> ₁, °С		

Больший температурный перепад Δt_6 , °С	$\Delta t_6 = t_1 - t_8$	22
Меньший температур- ный перепад Δt_{M_1} °C	$\Delta t_{\rm M} = t^{\rm BbIX}_{\rm FIII} - t_{\rm S}$	11
	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm 6} - \Delta t_{\rm M}) / \ln(\Delta t_{\rm 6} / \Delta t_{\rm M})$	15,9
ный перепад $\Delta t_{\rm cp}$, °С		

Окончание табл. 6

Наименование	Расчетная формула или источник	Величина
Средний коэффициент	$\lambda_2 = (\lambda'(302 ^{\circ}\text{C}) + \lambda'(291 ^{\circ}\text{C}))/2$	0,555
теплопроводности		
воды на втором		
участке λ_2 , $Bт/м \cdot K$		
Средний коэффициент	$v_2 = (v'(302 \text{ °C}) + v'(291 \text{ °C}))/2$	$0,12 \cdot 10^{-6}$
кинематической вяз-		
кости на втором		
участке v_2 , m^2/c		
Среднее число	$Pr_2 = (Pr'(302 °C) + Pr'(291 °C))/2$	0,89
Прандтля Pr ₂		
Число Нуссельта Nu ₂	$Nu_2 = 0.023 Re_1^{0.8} Pr_2^{0.4}$	780
Коэффициент тепло-	$\alpha_2^{\text{KOHB}} = \lambda_2 \text{Nu}_2 / \mathcal{O}_{\text{BHy}}$	33 280
отдачи конвективный		
$\alpha_2^{\text{конв}}$, $\text{Bt/m}^2 \cdot \text{K}$		
Эффективный коэф-	$\alpha_2^{9\phi} = \alpha_2^{\text{KOHB}} O_{\text{BHy}} / O_{\text{Hap}}$	27 040
фициент теплоотдачи		
$\alpha_2^{\circ \phi}$, BT/M ² · K		
Средний тепловой	Принят с последующим уточне-	100 000
поток q_2 , B_T/M^2	нием	
Коэффициент тепло-	$\alpha_{\text{кип}} = 4.34 \ q_2^{0.7} (\rho_s^{0.14} + 0.0137 \rho_s^2)$	26 658
отдачи при кипении		
$\alpha_{\text{кип}}, \text{Вт/м}^2 \cdot \text{К}$		
Коэффициент тепло-	$k_2 = 1/(1/\alpha_2^{3\Phi} + 1/\alpha_{\text{конд}} + 1/\alpha_{\text{кип}})$	6347
передачи k_2 , $B \tau / m^2 \cdot K$		
Средний тепловой	$(q_2)_{yr} = k_2 \Delta t_{cp}$	100 920
поток уточненный		
$(q_2)_{yr}, Br/m^2$		

Площадь поверхно-	$F_2 = Q/2(q_2)_{yr}$	2596
сти теплообмена вто-		
рого участка F_2 , м ²		
Площадь поверхно-	$F = F_2 + F_2$	4000
сти теплообмена рас-		
четная F , м ²		

Поскольку расчетная площадь больше заданной на 7,5 %, то следует увеличить температуру греющего теплоносителя на входе в ПГ и повторить расчет. Так как изменения температур в новом цикле расчетов невелики, параметры теплоносителя можно считать не изменившимися (соответственно не изменились и числа, табл. 7).

Таблица 7 Алгоритм поверочного числового расчета (продолжение)

Наименование	Расчетная формула или источник	Величина
Температура грею-	Выбираем с последующим	313
щего теплоносителя	уточнением	
на входе в парогене-		
ратор в ^{кх} гщ, °С		
Энтальпия греющего	Таблица свойств воды на линии	1424
теплоносителя на	насыщения, г	
входе $/_{\text{вх}}$, кДж/кг		
Энтальпия греющего	$I_{\text{BMX}} = I_{\text{BX}} - Q/G$	1297
теплоносителя на вы-		
ходе $/_{\text{вых}}$, кДж/кг		
Температура грею-	Таблица свойств воды на линии	291
щего теплоносителя	насыщения, /вых	
на выходе из пароге-		
нератора вых оС		
Температура грею-	Выбираем с последующим	314
щего теплоносителя	уточнением	
на входе в парогене-		
ратор ₽ ^{вх} гщ, °С		
Энтальпия греющего	Таблица свойств воды на линии	1427

теплоносителя на вхо-	насыщения, <i>І</i> ^{вх} гщ	
де / _{вх} , кДж/кг		
Энтальпия греющего	$I_{\text{BMX}} = I_{\text{BX}} - Q/G$	1300
теплоносителя на вы-		
ходе $/_{\scriptscriptstyle \rm BMX}$, кДж/кг		

Наименование	Расчетная формула или источник	Величина
Температура грею-	Таблица свойств воды на линии	292
щего теплоносителя	насыщения, /вых	
на выходе из пароге-		
нератора вых оС		
	Участок I	
Мощность участка	<i>Q</i> /2	263
Q/2, MBT		
Температура грею-	$\left(t^{\text{BX}}_{\text{\GammaIII}} + t^{\text{BbIX}}_{\text{\GammaIII}}\right)/2$	303
щего теплоносителя		
на выходе из первого		
участка <i>t</i> ₁, °С		
Температура грею-	Совпадает с температурой входа	314
щего теплоносителя		
на входе в первый		
участок р ^{вх} гщ, °С		
Больший температур-	$\Delta t_6 = t_{\text{rij}}^{\text{BX}} - t_{\text{S}}$	34
ный перепад Δt_6 , °С		
Меньший температур-	$\Delta t_{\rm M} = t_1 - t_{\rm S}$	23
ный перепад $\Delta t_{\scriptscriptstyle{\rm M}}$, °С		
Средний температур-	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm f} - \Delta t_{\rm m}) / \ln(\Delta t_{\rm f} / \Delta t_{\rm m})$	28,1
ный перепад Δt_{cp} , °С		
Средний тепловой	Принят с последующим уточне-	195 000
поток q_1 , B_T/M^2	нием	
Коэффициент тепло-	$\alpha_{\text{KMII}} = 4.34 \ q_1^{0.7} (\rho_s^{0.14} + 0.0137 \rho_s^2)$	42 545
отдачи при кипении	, ,	
$\alpha_{\text{кип}}, \text{BT/M}^2 \cdot \text{K}$		
Коэффициент тепло-	$k_1 = 1/(1/\alpha_1^{9\dot{\Phi}} + 1/\alpha_{\text{конд}} + 1/\alpha_{\text{кип}})$	6934

передачи k_1 , $B T/M^2 \cdot K$		
Средний тепловой	$(q_1)_{yr} = k_1 \Delta t_{cp}$	194 830
поток уточненный		
$(q_1)_{yr}, Br/m^2$		
Площадь поверхности	$F_1 = Q/2(q_1)_{yr}$	1350
теплообмена первого		
участка <i>F</i> ₁ , м ²		

Окончание табл. 7

Наименование	Расчетная формула или источник	Величина					
Участок 2							
Мощность участка Q/2, МВт	Q/2	262					
Температура греющего теплоносителя на входе во второй участок t_1 , °С	Параметры выхода из первого и входа во второй участок сов- падают	303					
Больший температурный перепад Δt_6 , °С	$\Delta t_{6} = t_{1} - t_{\mathbf{S}}$	23					
Меньший температурный перепад $\Delta t_{\scriptscriptstyle \rm M,I}$ °С	$\Delta t_{\rm M} = t^{\rm BbIX}_{\rm \Gamma III} - t_{\rm S}$	12					
Средний температурный перепад $\Delta t_{\rm cp}$, °С	$\Delta t_{\rm cp} = \psi(\Delta t_6 - \Delta t_{\rm M}) / \ln(\Delta t_6 / \Delta t_{\rm M})$	16,9					
Средний тепловой поток q_2 , BT/M^2	Принят с последующим уточнением	110 000					
Коэффициент теплоотдачи при кипении $\alpha_{\text{кип}}$, $B\text{T}/\text{M}^2$ · K	$\alpha_{\text{кип}} = 4.34 \ q_2^{0.7} (\rho_{\text{S}}^{0.14} + 0.0137 \rho_{\text{S}}^2)$	28 500					
Коэффициент тепло- передачи k_2 , $Bт/м^2 \cdot K$	$k_2 = 1/(1/\alpha_2^{9\phi} + 1/\alpha_{\text{конд}} + 1/\alpha_{\text{кип}})$	6447					
Средний тепловой поток уточненный $(q_2)_{yr}$, Br/m^2	$(q_2)_{\rm yr} = k_2 \Delta t_{\rm cp}$	108 960					
Площадь поверхности теплообмена второго участка F_2 , м ²	$F_2 = Q/2(q_2)_{yT}$	2405					

Площадь поверхности	$F = F_2 + F_2$	3755
теплообмена расчет-		
ная <i>F</i> , м ²		

В результате проделанной итерации достигнуто удовлетворительное совпадение расчетной и исходной площадей поверхности теплообмена. Как видно, снижение мощности на 30 % приведет к уменьшению температуры теплоносителя с 300 до 292 °C на выходе из парогенератора. Следовательно, управление реактором должно предусмотреть изменение реактивности вследствие снижения температуры теплоносителя на входе в реактор на 8 °C.

5.5. Поверочный тепловой расчет ПГВ-1000 в аварийном режиме

Парогенератор АЭС работает при давлении во втором контуре 6–7 МПа. Для предохранения устройства от превышения давления используется клапан, соединяющий паропровод с атмосферой. Известны случаи, когда после срабатывания клапана и сброса давления клапан не возвращался в исходное закрытое состояние (зависание клапана). Авария, связанная с обрывом паропровода, также может приводить к заметному снижению давления в ПГ. Важно понимать какие последствия вызовет инцидент, связанный со значительным понижением абсолютного давления во втором контуре ПГ. Задача теплового расчета ПГ в аварийном режиме: в парогенератор поступает теплоноситель с прежним расходом и температурой, давление во втором контуре установилось на уровне 1 МПа, как изменятся тепловые характеристики теплоносителя и ПГ.

Исходные данные

Расход греющего теплоносителя G, кг/с Температура греющего теплоносителя на входе в парогенератор $\mathcal{P}_{\text{гип}}^{\text{вх}}$, °С

4121

330

Давление абсолютное во втором контуре ρ_s , МПа	1
Температура во втором контуре t_s , °С	180
Площадь поверхности теплообмена F , M^2	3721
Число Нуссельта Nu	600

В задаче неизвестны температура греющего теплоносителя на выходе из ПГ и тепловая мощность. Поскольку температура второго контура упала на 100 °С, ясно, что температурный напор, тепловой поток возрастут как и мощность ПГ. Теплопередача при кипении станет очень большой в сравнении с теплопередачами конвекции и кондукции; ее можно не учитывать при расчете коэффициента теплопередачи. Следует проверить тепловой поток на условие критичности. Температуру теплоносителя на выходе задаем с последующим уточнением, вычисляем мощность ПГ тепловым расчетом и сравниваем ее с мощностью, полученной по расходу и разнице энтальпий теплоносителя. Если мощности не совпадают, корректируем температуру теплоносителя на выходе. Поскольку кипение исключено, разбиение поверхности на участки не требуется. Данные расчета приведены в табл. 8.

Таблица 8 Алгоритм поверочного теплового расчета (аварийный режим)

Наименование	Расчетная формула или источник	Величина
Температура грею-	Выбираем с последующим	230
щего теплоносителя	уточнением	
на выходе в пароге-		
нератор <i>п</i> ых оС		
Энтальпия греющего	Таблица свойств воды на линии	1528
теплоносителя на вхо-	насыщения, г	
де / _{вх} , кДж/кг		
Энтальпия греющего	Таблица свойств воды на линии	990
теплоносителя на вы-	насыщения, гых	
ходе $I_{\text{вых}}$, кДж/кг		

Мощность О, ГВт	$Q = G(i_{BX} - i_{BMX})$	2,22
Больший температур-	$\Delta t_{\rm G} = t^{\rm BX}_{\rm rm} - t_{\rm S}$	150
ный перепад Δt_6 , °С		
Меньший температур-	$\Delta t_{\rm M} = t_1 - t_{\rm S}$	50
ный перепад $\Delta t_{\scriptscriptstyle{\mathrm{M}}}$, °С		
Средний температур-	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm 0} - \Delta t_{\rm M}) / \ln(\Delta t_{\rm 0} / \Delta t_{\rm M})$	91
ный перепад $\Delta t_{\rm cp}$, °С		

Окончание табл. 8

Наименование	Расчетная формула или источник	Величина		
Средний коэффициент	$\lambda = (\lambda'(330 ^{\circ}\text{C}) + \lambda'(230 ^{\circ}\text{C}))/2$	0,565		
теплопроводности				
воды, Вт/м · К				
Коэффициент тепло-	$\alpha^{\text{kohb}} = \lambda N U / O_{\text{BHy}}$	26 080		
отдачи конвективный				
$\alpha^{\text{конв}}$, $\text{Bt/m}^2 \cdot \text{K}$				
Эффективный коэф-	$\alpha^{9\varphi} = \alpha^{\text{kohb}} O_{\text{BHy}} / O_{\text{hap}}$	21 190		
фициент теплоотдачи				
$\alpha^{9\phi}$, BT/M ² · K				
Коэффициент тепло-	$k = 1/(1/\alpha^{9\phi} + 1/\alpha_{\text{конд}})$	7678		
передачи <i>k</i> , Вт/м ² · К				
Средний тепловой	$Q = k\Delta t_{\rm cp}$	699 000		
поток q , B_T/M^2				
Мощность по расчету	Q = qF	2,6		
<i>Q</i> , ГВт				

Поскольку мощности отличаются на 17 %, скорректируем температуру теплоносителя на выходе и повторим вычисления (табл. 9).

Таблица 9

Наименование	Расчетная формула или источник	Величина
Температура грею-	Выбираем с последующим	220
щего теплоносителя	уточнением	
на выходе из пароге-		
нератора <i>вых</i> оС		

Энтальпия греющего	Таблица свойств воды на линии	944
теплоносителя на вы-	насыщения, г	
ходе $/_{\text{вых}}$, кДж/кг		
Мощность О, ГВт	$Q = G(I_{BX} - I_{Bbix})$	2,38
Больший температур-	$\Delta t_0 = t_{\text{rij}} - t_{\text{S}}$	150
ный перепад Δt_6 , °С		
Меньший температур-	$\Delta t_{\rm M} = t_1 - t_{\rm S}$	40
ный перепад $\Delta t_{\scriptscriptstyle{\rm M}}$, °С		

Окончание табл. 9

Наименование	Расчетная формула или источник	Величина		
Средний температур-	$\Delta t_{\rm cp} = \psi(\Delta t_{\rm 6} - \Delta t_{\rm M}) / \ln(\Delta t_{\rm 6} / \Delta t_{\rm M})$	83,2		
ный перепад $\Delta t_{\rm cp}$, °С				
Средний коэффициент	$\lambda = (\lambda'(330 ^{\circ}\text{C}) + \lambda'(220 ^{\circ}\text{C}))/2$	0,565		
теплопроводности				
воды, Вт/м · К				
Средний тепловой	$Q = k\Delta t_{\rm cp}$	639 000		
поток q , $B_T/м^2$				
Мощность по расчету	Q = qF	2,41		
<i>Q</i> , ГВт				

Проверим тепловой поток на критичность. Предположим, что для оценки можно использовать график [4] для определения критического потока при кипении в условиях большого объема, приведенный на рис. 8. Видно, что в нашем случае величина критического потока составит не менее 2,7 MBT/m^2 , что больше расчетного потока (0,64 MBT/m^2). Кризиса не будет. Отметим, что кризис может возникнуть локально, а потом распространиться по теплообменной поверхности. Следует оценить максимальные потоки. Максимум будет при входе греющего теплоносителя $k(330-220) = 0.84 MBT/m^2$.

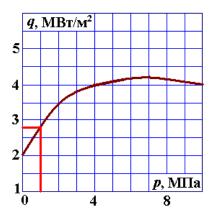


Рис. 8. Зависимость критического теплового потока от абсолютного давления

В результате проделанной итерации достигнуто удовлетворительное совпадение мощностей. Как видно, разгерметизация второго контура ведет к повышению мощности ПГ более чем в три раза и к уменьшению температуры теплоносителя с 300 до 220 °С на выходе из парогенератора. Следовательно, управление реактором должно предусмотреть изменение реактивности вследствие снижения температуры теплоносителя на входе в реактор на 80 °С.

5.6. Чертежи и схемы

В состав чертежей и схем курсового проекта необходимо включить чертеж общего вида в двух проекциях и схему усовершенствованной продувки.

На чертеж общего вида поместить технические характеристики: тепловая мощность $\Pi\Gamma$; расходы, температуры и давления сред, размеры и материал TOT; скорость теплоносителя в TOT и гидравлическое сопротивление, установленные расчетами и исходными данными. В качестве прототипов можно выбрать рис. $\Pi1$ – $\Pi5$.

В качестве прототипа схемы усовершенствованной продувки можно использовать рис. П6-П8, табл. П3-П5 и схемы,

применяющиеся на Калининской или Ростовской АЭС (новые блоки).

Список использованных источников

- 1. Трунов, Н. Б. Вперед по горизонтали [Электронный ресурс] / Н. Б. Трунов. 2012. Режим доступа: http:// atom-info.ru/news/air4713.htm. Дата доступа: 10.05.2012.
- 2. Восьмой Междунар. Семинар по горизонтальным парогенераторам, Подольск, 19–21 мая 2010. Подольск: ОКБ «ГИДРОПРЕСС», 2010.
- 3. Трунов, Н. Б. Гидродинамические и теплохимические процессы в парогенераторах АЭС с ВВЭР / Н. Б. Трунов, С. А. Логвинов, Ю. Г. Драгунов. М.: ИКЦ «Академкнига», 2001. 316 с.
- 4. Руководящий документ по стандартизации Министерства тяжелого, энергетического и транспортного машиностроения СССР: Тепловой и гидравлический расчет теплообменного оборудования АЭС: РД 24.035.05–89. Введ. 01.07.90. Л.: НПО ЦКТИ, 1991. 211 с.
- 5. Ягов, В. В. Незавершенные дискуссии о проблемах кипения жидкостей / В. В. Ягов // Вторая национальная российская конференция по теплообмену: материалы Междунар. научтехн. конф.: в 8 т. М.: Изд-во МЭИ, 1998. Т. 1. С. 80–87.

- 6. Парогенераторы реакторных установок ВВЭР для атомных электростанций / Б. И. Лукасевич [и др.]. М. : ИКЦ «Академкнига», 2004.-391 с.
- 7. Теплоэнергетика и теплотехника : справочная серия: в 4 т. / под общ. ред. А. В. Клименко, В. М. Зорина. 4-е изд., перераб. и доп. М. : Изд. дом МЭИ, 2007. T. 3. 518 с.

ПРИЛОЖЕНИЕ

Таблица П1

Свойства воды на линии насыщения

<i>t_s</i> , °C	<i>р_s,</i> 10 ⁻³ МПа	ρ, κг/м ³	/, кДж/кг	<i>c</i> _p , кДж/(кг · K)	<i>Г,</i> кДж/кг	λ, 10 ⁻³ Bτ/(м·K)	μ, 10 ⁻⁴ Πa·c	ν, 10 ⁻⁶ м ² /c	$a_{10^{-9}}$ m^2/c	Pr	σ, 10 ⁻³ Н/м
0,01	0,611	999,5	0,10	4,216	2500	564	17,93	1,7939	134	13,41	75,6
5,00	0,872	1000,0	20,96	4,196	2489	570	15,18	1,5182	136	11,18	74,9
10,00	1,227	1000,0	41,90	4,189	2477	578	13,06	1,3055	138	9,47	74,2
15,00	1,704	999,5	62,86	4,185	2465	587	11,37	1,1379	140	8,11	73,5
20,00	2,337	998,5	83,82	4,183	2453	596	10,02	1,0032	143	7,03	72,7
25,00	3,166	997,2	104,77	4,181	2442	606	8,906	0,8931	145	6,15	72,0
30,00	4,242	995,7	125,71	4,181	2430	615	7,981	0,8016	148	5,42	71,2
35,00	5,622	993,9	146,64	4,181	2418	624	7,202	0,7246	150	4,82	70,4
40,00	7,375	992,0	167,56	4,181	2406	632	6,540	0,6592	152	4,32	69,6
45,00	9,582	989,9	188,46	4,182	2394	640	5,970	0,6031	155	3,90	68,8
45,83	10,000	989,6	191,95	4,182	2392	641	5,883	0,5945	155	3,84	68,6
50,00	12,33	987,8	209,36	4,183	2382	646	5,477	0,5545	156	3,54	67,9
55,00	15,75	9854	230,25	4,184	2370	652	5,047	0,5122	158	3,24	67,1
60,00	19,92	982,9	251,15	4,186	2358	657	4,670	0,4751	160	2,98	66,2
60,09	20,00	982,9	251,53	4,186	2358	657	4,663	0,4744	160	2,97	66,2
65,00	25,01	980,4	272,06	4,189	2346	661	4,337	0,4424	161	2,75	65,4
69,13	30,00	978,1	289,32	4,191	2335	664	4,091	0,4183	162	2,58	64,4
70,00	31,16	977,7	292,98	4,192	2333	665	4,042	0,4135	162	2,55	64,5
75,00	38,55	974,8	313,91	4,195	2321	668	3,780	0,3878	163	2,37	63,6
75,89	40,00	974,3	317,63	4,196	2319	668	3,736	0,3835	163	2,35	63,4
80,00	47,36	971,8	334,87	4,199	2308	670	3,545	0,3648	164	2,22	62,7

<i>t</i> _S , °C	<i>р_s,</i> 10 ⁻³ МПа	ρ, κг/м ³	/, кДж/кг	<i>с</i> _р , кДж/(кг · К)	<i>Г,</i> кДж/кг	λ, 10 ⁻³ B τ/(M · K)	μ, 10 ⁻⁴ Πa·c	ν, 10 ⁻⁶ м ² / c	а, 10 ⁻⁹ м ² /с	Pr	σ, 10 ⁻³ H/м
81,35	50,00	970,9	340,52	4,200	2305	671	3,486	0,3591	164	2,18	62,4
85,00	57,80	968,6	355,86	4,203	2296	672	3,335	0,3443	165	2.09	61,8
85,96	60,00	968,0	359,87	4,204	2293	673	3,297	0,3406	165	2,06	61,6
89,96	70,00	965,4	376,71	4,207	2283	674	3,147	0,3260	166	1,96	60,8
90,00	70,11	965,4	376,87	4,207	2283	674	3,145	0,3258	166	1,96	60,8
93,51	80,00	962,4	391,66	4,211	2274	675	3,023	0,3140	166	1,89	60,2
95,00	84,53	961,9	397,92	4,212	2270	675	2,974	0,3092	167	1,86	59,9
96,72	90,00	960,8	405,15	4,214	2266	676	2,919	0,3039	167	1,82	59,5
99,63	100,00	958,7	417,45	4,218	22,58	677	2,830	0,2952	167	1,76	59,0
100,00	101,3	958,4	419,00	4,218	2257	677	2,819	0,2941	167	1,76	58,9
105,00	120,8	954,7	440,12	4,224	2244	678	2,678	0,2805	168	1,67	57,9
110,00	143,3	950,9	461,28	4,231	2230	679	2,549	0,2680	169	1,59	57,0
115,00	169,1	947,0	482,49	4,238	2216	679	2,430	0,2566	169	1,52	56,0
120,00	198,5	942,9	503,73	4,246	2202	680	2,322	0,2462	170	1,45	55,0
120,23	200,0	942,2	504,73	4,247	2202	680	2,317	0,2458	170	1,45	54,9
125,00	232,1	938,8	525,03	4,255	2188	681	2,222	0,2367	170	1,39	54,0
130,00	270,1	934,5	546,37	4,264	2174	681	2,129	0,2278	171	1,33	52,9
133,54	300,0	931,5	561,53	4,271	2163	682	2,068	0,2220	171	1,30	52,2
135,00	313,1	930,2	567,77	4,274	2159	682	2,044	0,2197	171	1,28	51,9
140,00	361,4	925,8	589,22	4,285	2144	682	1,964	0,2122	172	1,23	50,9
143,63	400,0	922,5	604,81	4,293	2133	682	1,910	0,2071	172	1,20	50,1
145,00	415,5	921,2	610,73	4,296	2129	682	1,890	0,2052	172	1,19	49,8
150,00	476,0	916,6	932,30	4,309	2113	682	1,821	0,1987	173	1,15	48,7
151,85	500,0	914,9	640,28	4,314	2108	682	1,797	0,1964	173	1,14	48,4

<i>t</i> _S , °C	<i>р_s,</i> 10 ⁻³ МПа	ρ, кг/м ³	/, кДж/кг	<i>c</i> _p , кДж/(кг · K)	<i>г,</i> кДж/кг	λ, 10 ⁻³ B τ/(м · K)	μ, 10 ⁻⁴ Πa·c	ν, 10 ⁻⁶ м ² / c	$a_{10^{-9}}$ m^2/c	Pr	σ, 10 ⁻³ Н/м
155,00	543,3	911,8	653,93	4,322	2098	682	1,757	0,1927	173	1,11	47,7
158,84	600,0	908,2	670,59	4,333	2085	681	1,711	0,1883	173	1,09	46,8
160,00	618,0	907,0	675,63	4,336	2081	681	1,697	0,1871	173	1,08	46,6
164,96	700,0	902,2	697,22	4,351	2065	680	1,641	0,1819	173	1,05	45,5
165,00	700,8	902,1	697,41	4,351	2065	680	1,641	0,1819	173	1,05	45,5
170,00	792,0	897,1	719,26	4,368	2048	679	1,588	0,1770	173	1,02	44,4
170,42	800,0	896,7	721,09	4,369	2047	679	1,584	0,1766	173	1,02	44,3
175,36	900,0	891,7	742,78	4,387	2030	678	1,535	0,1722	173	0,99	43,2
179,88	1000,0	886,9	762,73	4,404	2014	676	1,494	0,1684	173	0,97	42,2
180,00	1003,0	886,8	763,24	4,404	2013	676	1,493	0,1683	173	0,97	42,2
185,00	11,230	881,5	785,37	4,424	1995	674	1,449	0,1644	173	0,95	41,1
190,00	1255,0	876,1	807,61	4,445	1977	671	1,408	0,1608	172	0,93	40,0
195,00	1399,0	870,5	829,97	4,468	1958	669	1,370	0,1574	172	0,92	38,8
198,00	1500,0	8,668	844,72	4,484	1945	667	1,346	0,1553	171	0,91	38,1
200,00	1555	864,8	852,44	4,493	1938	665	1,334	0,1543	171	0,90	37,7
205,00	1725	858,9	875,05	4,519	1919	662	1,300	0,1513	171	0,89	36,5
210,00	1908	853,0	897,80	4,547	1898	658	1,268	0,1486	170	0,88	35,4
212,37	2000	850,1	908,63	4,562	1888	656	1,253	0,1474	169	0,87	34,8
215,00	2106	846,9	920,70	4,578	1877	654	1,238	0,1461	169	0,87	34,2
220,00	2320	840,6	943,76	4,610	1856	650	1,209	0,1438	168	0,86	33,1
223,94	2500	835,5	962,04	4,638	1838	646	1,187	0,1421	167	0,85	32,2
225,00	2550	834,1	966,99	4,645	1834	645	1,182	0,1416	166	0,85	31,9
230,00	2798	827,5	990,41	4,683	1811	640	1,155	0,1396	165	0,85	30,7

t_{s}	p_{S_i}	ρ,	j,	<i>C</i> _p ,	Γ,	λ,	μ,	ν,	a,	Pr	σ,
°С	10 ⁻³ M ∏a	кг/м ³	кДж/кг	кДж/(кг · К)	кДж/кг	$10^{-3} \text{Bt/(M} \cdot \text{K)}$	10 ⁻⁴ Πa⋅c	10 ⁻⁶ м ² /с	10 ⁻⁹ м ² /с	0.01	10 ⁻³ Н/м
233,84	3000	822,3	1008,50	4,714	1793	636	1,136	0,1382	164	0,84	29,8
235,00	3063	820,7	1014,01	4,724	1787	635	1,130	0,1377	164	0,84	29,6
240,00	3348	813,7	1037,82	4,768	1763	630	1,106	0,1360	162	0,84	28,4
242,54	3500	810,1	1049,99	4,791	1751	627	1,094	0,1351	162	0,84	27,8
245,00	3652	806,6	1061,85	4,815	1739	624	1,083	0,1343	161	0,84	27,2
250,00	3978	799,2	1086,10	4,867	1713	619	1,060	0,1327	159	0,83	26,1
250,33	4000	798,7	1087,73	4,871	1711	618	1,059	0,1326	159	0,83	26,0
255,00	4324	791,6	1110,60	4,923	1687	613	1,038	0,1312	157	0,83	24,9
257,41	4500	787,9	1122,53	4,952	1673	610	1,028	0,1305	156	0,83	24,3
260,00	4694	783,8	1135,37	4,984	1659	607	1,017	0,1297	155	0,84	23,7
263,92	5000	777,6	1154,96	5,036	1637	603	1,000	0,1286	154	0,84	22,8
265,00	5087	775,9	1160,41	5,051	1631	601	0,996	0,1283	153	0,84	22,5
269,94	5500	767,7	1185,46	5,124	1602	594	0,975	0,1270	151	0,84	21,4
270,00	5505	767,6	1185,76	5,125	1602	594	0,975	0,1270	151	0,84	21,3
275,00	5949	759,2	1211,43	5,205	1572	588	0,954	0,1257	149	0,85	20,2
275,56	6000	758,2	1214,32	5,215	1568	587	0,952	0,1256	148	0,85	20,0
280,00	6419	750,4	1237,45	5,294	1540	581	0,934	0,1245	146	0,85	19,0
280,83	6500	748,9	1241,81	5,310	1536	580	0,931	0,1243	146	0,85	18,8
285,00	6917	741,4	1263,86	5,393	1508	574	0,914	0,1233	143	0,86	17,8
285,80	7000	739,9	1268,13	5,410	1503	572	0,911	0,1231	143	0,86	17,7
290,00	7445	732,1	1290,70	5,504	1474	566	0,894	0,1222	140	0,87	16,7
290,51	7500	731,1	1293,44	5,516	1471	565	0,892	0,1221	140	0,87	16,6
294,98	8000	722,5	1317,83	5,627	1439	558	0,875	0,1211	137	0,88	15,5

<i>t</i> _s , °C	<i>р</i> _s , 10 ⁻³ М Па	ρ, κг/м ³	<i>i,</i> кДж/кг	<i>с</i> _{р,} кДж/(кг · К)	<i>Г,</i> кДж/кг	λ, 10 ⁻³ Bτ/(м · K)	μ, 10 ⁻⁴ Πa·c	ν, 10 ⁻⁶ м ² /с	$a_{10^{-9}}$ m^2/c	Pr	σ, 10 ^{–3} Н/м
295,00	8003	722,4	1318,00	5,628	1439	558	0,875	0,1211	137	0,88	15,5
299,24	8500	713,9	1341,56	5,745	1408	551	0,859	0,1203	134	0,90	14,5
300,00	8500	712,3	1345,83	5,768	1402	550	0,856	0,1201	134	0,90	14,4
303,31	9000	705,4	1364,59	5,871	1377	544	0,843	0,1195	131	0,91	13,6
305,00	9214	701,8	1374,24	5,928	1364	541	0,837	0,1193	130	0,92	13,2
307,22	9500	697,0	1387,04	6,006	1346	537	0,829	0,1189	128	0,93	12,7
310,00	9870	690,8	1403,31	6,111	1323	531	0,818	0,1185	126	0,94	12,1
310,96	10000	688,6	1409,00	6,150	1315	530	0,815	0,1183	125	0,95	11,9
314,57	10500	680,3	1430,52	6,305	1284	522	0,802	0,1178	122	0,97	11,1
315,00	10560	679,9	1433,12	6,325	1280	522	0,800	0,1178	121	0,97	11,0
318,04	11000	671,9	1451,67	6,472	1253	515	0,789	0,1174	118	0,99	10,3
320,00	11290	667,0	1463,78	6,576	1235	511	0,782	0,1172	117	1,01	9,9
321,40	11500	663,5	1472,51	6,654	1222	508	0,777	0,1171	115	1,02	9,6
324,64	12000	655,1	1493,08	6,853	1191	501	0,765	0,1168	112	1,05	8,9
325,00	12060	654,1	1495,41	6,876	1188	500	0,764	0,1167	111	1,05	8,8
327,77	12500	646,6	1513,42	7,070	1160	494	0,754	0,1165	108	1,08	8,2
330,00	12860	640,4	1528,13	7,243	117	489	0,745	0,1163	10	1,10	7,7
330,81	13000	638,1	1533,57	7,310	1128	487	0,742	0,1163	104	1,11	7,5
333,76	13500	629,5	1553,58	7,577	1096	480	0,731	0,1161	101	1,15	6,9
335,00	13710	625,8	1562,11	7,701	1082	477	0,726	0,1160	99	1,17	6,7
336,63	14000	620,9	1573,47	7,875	1064	474	0,719	0,1159	97	1,20	6,3
339,41	14500	612,2	1593,27	8,212	1031	467	0,708	0,1157	93	1,24	5,8

Окончание табл. П1

t_s ,	ρ_{S_l}	ρ,	j,	$\mathcal{C}_{\mathfrak{p}_i}$	r,	λ,	μ,	ν,	a,	Pr	σ,
°C	$10^{-3} \text{M}\Pi a$	кг/м ³	кДж/кг	кДж/(кг · К)	кДж/кг	$10^{-3} \text{Bt/(M} \cdot \text{K)}$	$10^{-4} \Pi \mathbf{a} \cdot \mathbf{c}$				10 ⁻³ H/M
340,00	14610	610,3	1597,53	8,290	1024	466	0,706	0,1156	92	1,26	5,6
342,12	15000	603,3	1613,01	8,595	998	461	0,697	0,1154	89	1,30	5,2
344,75	15500	594,5	1632,72	9,036	965	455	0,685	0,1152	85	1,36	4,7
345,00	15550	593,6	1634,61	9,082	962	454	0,684	0,1152	84	1,37	4,6
347,32	16000	585,1	1652,42	9,550	931	449	0,673	0,1150	80	1,43	4,2
349,82	16500	575,6	1672,13	10,157	895	444	0,660	0,1147	76	1,51	3,7
350,00	16540	574,8	1673,59	10,206	893	444	0,659	0,1147	76	1,52	3,7
352,26	17000	565,6	1691,60	10,887	859	439	0,647	0,1144	71	1,60	3,3
354,64	17500	555,2	1712,10	11,784	821	435	0,634	0,1141	66	1,72	2,8
355,00	17580	553,5	1715,32	11,941	815	434	0,631	0,1141	66	1,74	2,8
356,96	18000	544,2	1733,21	12,914	780	631	0,619	0,1138	61	1,86	2,4
359,23	18500	532,5	1755,11	14,384	737	427	0,604	0,1135	56	2,03	2,0
360,00	18670	528,2	1762,3	15,003	721	426	0,599	0,1134	54	2,11	1,9
361,44	19000	519,9	1778,06	16,379	691	425	0,589	0,1133	50	2,27	1,6
363,60	19500	506,0	1802,42	19,246	641	422	0,573	0,1132	43	2,61	1,3
365,00	19830	495,9	1819,53	21,939	605	421	0,562	0,1132	39	2,92	1,1
365,71	20000	490,5	1828,76	23,717	585	421	0,556	0,1133	36	3,13	1,0
367,77	20500	472,6	1858,01	31,630	522	420	0,538	0,1139	28	4,05	0,7
369,79	21000	451,1	1891,97	49,129	448	420	0,520	0,1152	19	6,08	0,4
370,00	21050	448,5	1895,99	52,282	439	420	0,518	0,1155	18	6,45	0,4
371,00	21310	434,9	1916,78	75,388	393		0,508	0,1169	13	9,12	0,3
372,00	21560	418,3	1941,72	133,051	337		0,498	0,1192			0,2
373,00	21820	395,9	1974,78	396,048	262		0,488	0,1233			0,1
374,00	22080	352,7	2038,92		112		0,478	0,1355			0,0

55

Свойства водяного пара на линии насыщения

t_{s_i}	p_{S_i}	ρ,	_ <i>i</i> ,	c_{p}	<i>r</i> ,	λ,	μ,	ν,	<i>a</i> ,	Pr	σ,
°C	10 ⁻¹ M ∏a	к г/ м ³	кДж/кг	кДж/(кг · К)	кДж/кг	$10^{-3} \text{Bt/(M} \cdot \text{K)}$	$10^{-5} \Pi \mathbf{a} \cdot \mathbf{c}$				10 ⁻³ Н/м
0,01	0,0061	0,00485	2500	1,861	2500	16,97	0,9158	188,8	188,0	1,00	75,6
5,00	0,0087	0,00679	2510	1,865	2489	17,38	0,9351	137,6	137,0	1,00	74,9
10,00	0,0123	0,00939	2519	1,869	2477	17,70	0,9500	101,1	101,0	1,00	74,2
15,00	0,0170	0,01282	2528	1,873	2465	17,97	0,9627	75,08	74,8	1,00	73,5
20,00	0,0234	0,01729	2537	1,877	2453	18,24	0,9745	56,37	56,2	1,00	72,7
25,00	0,0317	0,02304	2546	1,881	2442	18,52	0,9864	42,81	42,7	1,00	72,0
30,00	0,0424	0,03037	2555	1,885	2430	18,83	0,9989	32,89	32,9	1,00	71,2
35,00	0,0562	0,03966	2564	1,889	2418	19,17	1,0124	25,55	25,6	1,00	70,4
40,00	0,0738	0,05117	2573	1,895	2406	19,53	1,0268	20,07	20,1	1,00	69,6
45,00	0,0958	0,06547	2582	1,900	2394	19,93	1,0422	15,92	16,0	0,99	68,8
45,83	0,1000	0,06816	2584	1,901	2392	20,00	1,0449	15,33	15,4	0,99	68,6
50,00	0,1233	0,08303	2591	1,907	2382	20,34	1,0584	12,75	12,8	0,99	67,9
55,00	0,1574	0,1044	2600	1,914	2370	20,78	1,0751	10,30	10,4	0,99	67,1
60,00	0,1992	0,1302	2609	1,923	2358	21,22	1,0923	8,388	8,48	0,99	66,2
60,09	0,2000	0,1307	2609	1,923	2358	21,23	1,0926	8,358	8,45	0,99	66,2
65,00	0,2501	0,1612	2618	1,932	2346	21,68	1,1097	6,884	6,96	0,99	65,4
69,13	0,3000	0,1912	2625	1,941	2335	22,06	1,1242	5,880	5,95	0,99	64,6
70,00	0,3116	0,1981	2626	1,942	2333	22,14	1,1272	5,690	5,75	0,99	64,5
75,00	0,3855	0,2418	2635	1,954	2321	22,61	1,1447	4,734	4,79	0,99	63,6
75,89	0,4000	0,2503	2636	1,956	2319	22,70	1,1478	4,585	4,63	0,99	63,4
80,00	0,4736	0,2932	2643	1,967	2308	23,09	1,1620	3,963	4,00	0,99	62,7

t_{s_i} °C	<i>р_s,</i> 10 ⁻¹ М Па	ρ, кг/м ³	/, кДж/кг	<i>с</i> _p , кДж/(кг · К)	<i>Г,</i> кДж/кг	λ, 10 ⁻³ Bτ/(м·K)	μ, 10 ⁻⁵ Πa·c	ν, 10 ⁻⁷ м ² / c	$a_{10^{-7} \text{ m}^2/\text{c}}$	Pr	σ, 10 ⁻³ Н/м
81,35	0,5000	0,3085	2646	1,971	2305	23,22	1,1666	3,782	3,82	0,99	62,4
85,00	0,5780	0,3533	2652	1,981	2296	23,58	1,1791	3,337	2,37	0,99	61,8
85,96	0,6000	0,3659	2653	1,984	2293	23,67	1,1823	3,232	3,26	0,99	61,6
89,96	0,7000	0,4226	2660	1,997	2283	24,07	1,1959	2,830	2,85	0,99	60,8
90,00	0,7011	0,4232	2660	1,997	2283	24,07	1,1960	2,826	2,85	0,99	60,8
93,51	0,8000	0,4788	2666	2,009	2274	24,43	1,2078	2,522	2,54	0,99	60,2
95,00	0,8453	0,5041	2668	2,014	2270	24,58	1,2127	2,406	2,42	0,99	59,9
96,72	0,9000	0,5346	2671	2,020	2266	24,76	1,2184	2,279	2,29	0,99	59,5
99,63	1,0000	0,5900	2675	2,031	2258	25,06	1,2281	2,082	2,09	1,00	59,0
100,00	1,0130	0,5973	2676	2,033	2257	25,10	1,2293	2,058	2,07	1,00	58,9
105,00	1,2080	0,7040	2684	2,053	2244	25,64	1,2457	1,769	1,77	1,00	57,9
110,00	1,4330	0,8258	2691	2,075	2230	26,20	1,2621	1,528	1,53	1,00	57,0
115,00	1,6910	0,9642	2699	2,099	2216	26,78	1,2786	1,326	1,32	1,00	56,0
120,00	1,9850	1,1209	2706	2,124	2202	27,39	1,2951	1,155	1,15	1,00	55,0
120,23	2,0000	1,1287	2707	2,126	2202	27,42	1,2959	1,148	1,14	1,00	54,9
125,00	2,3210	1,2975	2713	2,152	2188	28,02	1,3118	1,011	1,00	1,01	54,0
130,00	2,7010	1,4958	2720	2,182	2174	28,68	1,3287	8,883	8,79	1,01	52,9
133,54	3,0000	1,6507	2725	2,204	2163	29,17	1,3409	8,123	8,02	1,01	52,2
135,00	3,1310	1,7180	2727	2,214	2159	29,37	1,3459	7,834	7,72	1,01	51,9
140,00	3,6140	1,9658	2733	2,248	2144	30,08	1,3633	6,935	6,81	1,02	50,9
143,63	4,0000	2,1629	2738	2,274	2133	30,61	1,3762	6,362	6,22	1,02	50,1
145,00	4,1550	2,2416	2740	2,284	2129	30,82	1,3810	6,161	6,02	1,02	49,8
150,00	4,760	2,5476	2746	2,323	2113	31,58	1,3990	5,491	5,34	1,03	48,7

t_{s}	p_{s_i}	ρ,	i,	c_{p}	Γ,	λ,	μ,	ν,	a,	Pr	σ,
°C	10 ⁻¹ M ∏a	$\kappa \Gamma / \mathbf{M}^3$	кДж/кг	$\kappaДж/(\kappa\Gamma\cdot K)$	кДж/кг	10 ⁻³ Вт/(м·К)	$10^{-5}\Pi a \cdot c$	$10^{-7} \mathrm{m}^2/\mathrm{c}$	$10^{-7} \mathrm{m}^2/\mathrm{c}$	гі	10 ⁻³ H/M
151,85	5,000	2,6687	2748	2,338	2108	31,86	1,4057	5,267	5,11	1,03	48,4
155,00	5,433	2,8862	2752	2,365	2098	32,36	1,4172	4,910	4,74	1,04	47,7
158,84	6,000	3,1698	2756	2,398	2085	32,97	1,4312	4,515	4,34	1,04	46,8
160,00	6,180	3,2598	2757	2,409	2081	33,16	1,4355	4,404	4,22	1,04	46,6
164,96	7,000	3,6675	2762	2,455	2065	33,97	1,4538	3,964	3,77	1,05	45,5
165,00	7,008	3,6712	2762	2,456	2065	33,97	1,4540	3,960	3,77	1,05	45,5
170,00	7,920	4,1232	2767	2,506	2048	34,80	1,4725	3,571	3,37	1,06	44,4
170,42	8,000	4,1627	2768	2,510	2047	3487	1,4740	3,541	3,34	1,06	44,3
175,36	9,000	4,6558	2772	2,563	2030	35,71	1,4923	3,205	2,99	1,07	43,2
179,88	10,000	5,1476	2776	2,615	2014	36,48	1,5090	2,931	2,71	1,08	42,2
180,00	10,030	5,1607	2777	2,616	2013	36,50	1,5094	2,925	2,70	1,08	42,2
185,00	11,230	5,7528	2781	2,676	1995	37,37	1,5277	2,656	2,43	1,09	41,1
190,00	12,550	6,3983	2784	2,740	1977	38,25	1,5458	2,416	2,18	1,11	40,0
195,00	13,990	7,1011	2788	2,808	1958	39,14	1,5637	2,202	1,96	1,12	38,8
198,29	15,000	7,5960	2790	2,855	1945	39,73	1,5753	2,074	1,83	1,13	38,1
200,00	15,550	7,8651	2791	2,880	1938	40,05	1,5814	2,011	1,77	1,14	37,7
205,00	17,25	8,6946	2794	2,957	1919	40,97	1,5988	1,839	1,59	1,15	36,5
210,00	19,08	9,5941	2796	3,039	1898	41,91	1,6160	1,684	1,44	1,17	35,4
212,37	20,00	10,0460	2797	3,079	1888	42,36	1,6240	1,617	1,37	1,18	34,8
215,00	21,06	10,569	2798	3,126	1877	42,88	1,6330	1,545	1,30	1,19	34,2
220,00	23,20	11,623	2800	3,218	1856	43,87	1,6499	1,419	1,17	1,21	33,1
223,94	25,00	12,514	2800	3,295	1838	44,68	1,6631	1,329	1,08	1,23	32,2
225,00	25,50	12,764	2801	3,316	1834	44,90	1,6667	1,306	1,06	1,23	31,9
230,00	27,98	13,996	2801	3,421	1811	45,98	1,6836	1,203	0,96	1,25	30,7

t_{s_i}	p_{s_i}	ρ,	i,	c_{p}	r,	λ,	μ,	ν,	<i>a</i> ,	Pr	σ,
°C	10 ⁻¹ M Πa	кг/м ³	кДж/кг	кДж/(кг · К)	кДж/кг	10 ⁻³ Вт/(м·К)	$10^{-5} \Pi \mathbf{a} \cdot \mathbf{c}$		$10^{-7} \mathrm{m}^2/\mathrm{c}$		10 ⁻³ Н/м
233,84	30,00	15,009	2801	3,506	1793	46,83	1,6967	1,131	0,89	1,27	29,8
235,00	30,63	15,328	2801	3,533	1787	47,10	1,7007	1,110	0,87	1,28	29,6
240,00	33,48	16,765	2801	3,653	1763	48,27	1,7881	1,025	0,79	1,30	28,4
242,54	35,00	17,538	2801	3,716	1751	48,89	1,7271	0,985	0,75	1,31	27,8
245,00	36,52	18,316	2800	3,780	1739	49,51	1,7359	0,948	0,72	1,33	27,2
250,00	39,78	19,990	2799	3,918	1713	50,81	1,7543	0,878	0,65	1,35	26,1
250,33	40,00	20,106	2799	3,927	1711	50,90	1,7555	0,873	0,64	1,35	26,0
255,00	43,24	21,796	2797	4,065	1687	52,19	1,7732	0,814	0,59	1,38	24,9
257,41	45,00	22,718	2796	4,140	1673	52,88	1,7827	0,75	0,56	1,40	24,3
260,00	46,94	23,744	2795	4,224	1659	53,65	1,7929	0,755	0,54	1,41	23,7
263,92	50,00	25,379	2792	4,357	1637	54,85	1,8089	0,713	0,50	1,44	22,8
265,00	50,87	25,848	2791	4,395	1631	55,19	1,8134	0,702	0,49	1,44	22,5
269,94	55,00	28,091	2788	4,579	1602	56,81	1,8345	0,653	0,44	1,48	21,4
270,00	55,05	28,119	2788	4,581	1602	56,83	1,8347	0,652	0,44	1,48	21,3
275,00	59,49	30,572	2783	4,783	1572	58,58	1,8569	0,607	0,40	1,52	20,2
275,56	60,00	30,859	2783	4,807	1568	58,79	1,8594	0,603	0,40	1,52	20,0
280,00	64,19	33,224	2778	5,004	1540	60,45	1,8799	0,566	0,36	1,56	19,0
280,83	65,00	33,686	2777	5,043	1535	60,77	1,8838	0,559	0,36	1,56	18,8
285,00	69,17	36,095	2772	5,247	1508	62,46	1,9037	0,527	0,33	1,60	17,8
285,80	70,00	36,577	2771	5,288	1503	62,79	1,9076	0,522	0,32	1,61	17,7
290,00	74,45	39,206	2765	5,515	1474	64,62	1,9282	0,492	0,30	1,65	16,7
290,51	75,00	39,537	2764	5,544	1471	64,85	1,9307	0,488	0,30	1,65	16,6
294,98	80,00	42,569	2757	5,812	1439	66,96	1,9533	0,459	0,27	1,70	15,5
295,00	80,03	42,584	2757	5,813	1439	66,97	1,9534	0,459	0,27	1,70	15,5

t_{s_i}	p_{s_i}	ρ,	i,	c_{p}	r,	λ,	μ,	ν,	<i>a</i> ,	Pr	σ,
°C	$10^{-1} \text{M}\Pi \text{a}$	к г/м ³	кДж/кг	кДж/(кг · К)	кДж/кг	$10^{-3} \text{Bt/(m \cdot K)}$	$10^{-5} \Pi \mathbf{a} \cdot \mathbf{c}$				10 ⁻³ Н/м
299,24	85,00	45,678	2749	6,094	1408	69,15	1,9752	0,432	0,25	1,74	14,5
300,00	85,92	46,257	2748	6,147	1402	69,56	1,9792	0,428	0,24	1,75	14,4
303,31	90,00	48,871	2741	6,392	1377	71,42	1,9966	0,408	0,23	1,79	13,6
305,00	92,14	50,261	2738	6,525	1364	72,43	2,0056	0,399	0,22	1,81	13,2
307,22	95,00	52,153	2733	6,709	1346	73,81	2,0175	0,387	0,21	1,83	12,7
310,00	98,70	54,640	2726	6,956	1323	75,66	2,0327	0,372	0,20	1,87	12,1
310,96	100,00	55,531	2724	7,047	1315	76,33	2,0381	0,367	0,20	1,88	11,9
314,57	105,00	59,012	2715	7,409	1284	79,02	2,0583	0,349	0,18	1,93	11,1
315,00	105,60	59,445	2714	7,455	1280	79,36	2,0608	0,347	0,18	1,94	11,0
318,04	110,00	62,604	2705	7,799	1253	81,89	2,0785	0,332	0,17	1,98	10,3
320,00	112,90	64,740	2699	8,039	1235	83,65	2,0902	0,323	0,16	2,01	9,9
321,40	115,00	66,316	2695	8,221	1222	84,97	2,0987	0,317	0,16	2,03	9,6
324,64	120,00	70,158	2684	8,680	1191	88,29	2,1192	0,302	0,15	2,08	8,9
325,00	120,60	70,605	2683	8,734	1188	88,69	2,1216	0,300	0,14	2,09	8,8
327,77	125,00	74,141	2673	9,181	1160	91,89	2,1403	0,289	0,13	2,14	8,2
330,00	128,6	77,141	2665	9,577	1137	94,70	2,1561	0,280	0,13	2,18	7,7
330,81	130,0	78,277	2662	9,732	1128	95,79	2,1621	0,276	0,13	2,20	7,5
333,76	135,0	82,580	2650	10,340	1096	100,02	2,1858	0,265	0,12	2,26	6,9
335,00	137,1	84,478	2645	10,619	1082	101,94	2,1953	0,260	0,11	2,29	6,7
336,63	140,0	87,065	2637	11,012	1064	104,62	2,2094	0,254	0,11	2,33	6,3
339,41	145,0	91,749	2625	11,757	1031	109,61	2,2354	0,244	0,10	2,40	5,8
340,00	146,1	92,788	2622	11,928	1024	100,75	2,2413	0,242	0,10	2,41	5,6
342,12	150,0	96,651	2611	12,580	998	117,42	2,2635	0,234	0,10	2,43	5,2

Окончание табл. П2

t_s	p_{s_i}	ρ,	i,	c_{p}	r,	λ,	μ,	ν,	<i>a</i> ,	Pr	σ,
°C	$10^{-1} \text{M}\Pi \text{a}$	к г/ м ³	кДж/кг	кДж/(кг · К)	кДж/кг	$10^{-3} \text{Bt/(M} \cdot \text{K)}$	10 ⁻⁵ ∏a⋅c	10 ⁻⁷ м ² /с	$10^{-7} \text{ m}^2/\text{c}$		10 ^{−3} H/m
344,75	155,0	101,79	2598	13,488	965	122,81	2,2940	0,225	0,09	2,52	4,7
345,00	155,5	102,30	2596	13,581	962	123,30	2,2971	0,224	0,09	2,53	4,6
347,32	160,0	107,20	2583	14,528	931	128,04	2,3274	0,217	0,08	2,64	4,2
349,82	165,0	112,89	2568	15,839	895	133,92	2,3639	0,209	0,07	2,80	3,7
350,00	165,4	113,32	2566	15,950	893	134,40	2,3667	0,209	0,07	2,81	3,7
352,26	170,0	118,98	2551	17,525	859	141,13	2,4039	0,202	0,07	2,99	3,3
354,64	175,0	125,57	2533	19,609	821	150,24	2,4480	0,195	0,06	3,20	2,8
355,00	175,8	126,64	2530	19,972	815	151,85	2,4552	0,194	0,66	3,23	2,8
356,96	180,0	132,75	2513	22,180	780	161,73	2,4964	0,188	0,05	3,42	2,4
359,23	185,0	140,63	2492	25,438	737	176,02	2,5495	0,181	0,05	3,68	2,0
360,00	186,7	143,55	2484	26,787	721	181,69	2,5692	0,179	0,05	3,79	1,9
361,44	190,0	149,34	2469	29,734	691	193,43	2,6078	0,175	0,04	4,01	1,6
363,60	195,0	159,11	2443	35,690	641	214,26	2,6717	0,168	0,04	4,45	1,3
365,00	198,3	166,28	2424	41,075	605	229,97	2,7170	0,163	0,03	4,85	1,1
365,71	200,0	172,26	2414	44,527	585	238,70	2,7414	0,161	0,03	5,11	1,0
367,77	205,0	183,37	2380	59,038	522	266,94	2,8173	0,154	0,02	6,23	0,7
369,70	210,0	199,57	2340	87,310	448	299,08	2,8999	0,145	0,02	8,47	0,4
370,00	210,5	201,57	2335	91,977	439	302,73	2,9090	0,144	0,02	8,84	0,4
371,00	213,1	212,15	2310	123,353	393	320,75	2,9538	0,139	0,01	11,36	0,3
372,00	215,6	225,55	2279	188,120	337	340,05	3,0010	0,133	0,01	16,60	0,2
373,00	218,2	244,71	2237	400,267	262	360,66	3,0507	0,125	0,004	33,86	0,1
374,00	220,8	286,90	2151		112	382,63	3,1031	0,108	_	_	0,0

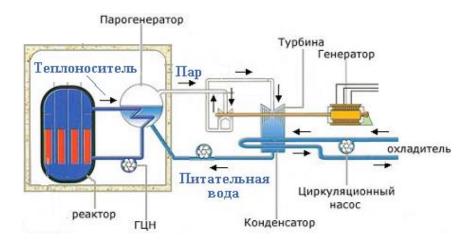


Рис. П1. Парогенератор на АЭС

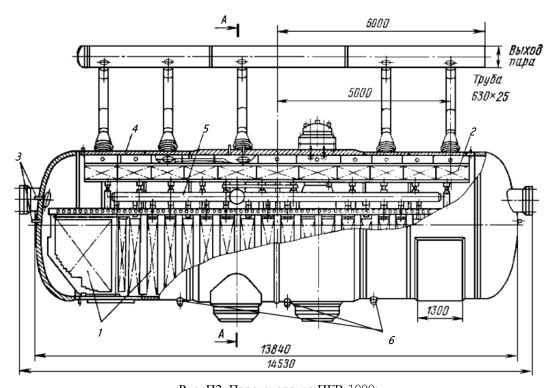


Рис. П2. Парогенератор ПГВ-1000: 1 — трубные пучки; 2 — сепаратор жалюзийный; 3 — штуцера уровнемеров; 4 — корпус; 5 — питательный коллектор; 6 — патрубки продувки [7]

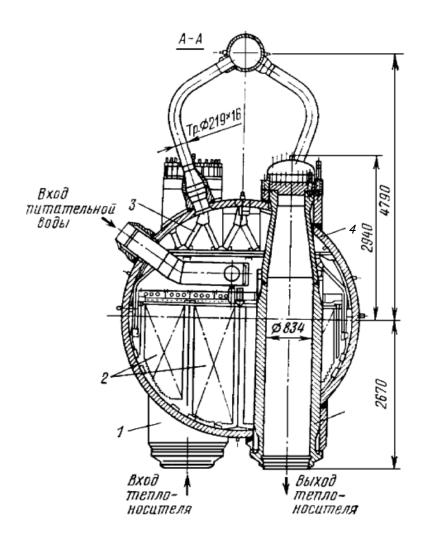


Рис. ПЗ. Парогенератор ПГВ-1000: 7 — горячий коллектор; 2 — трубные пучки; 3 — сепаратор жалюзийный; 4 — корпус; 5 — холодный коллектор [7]

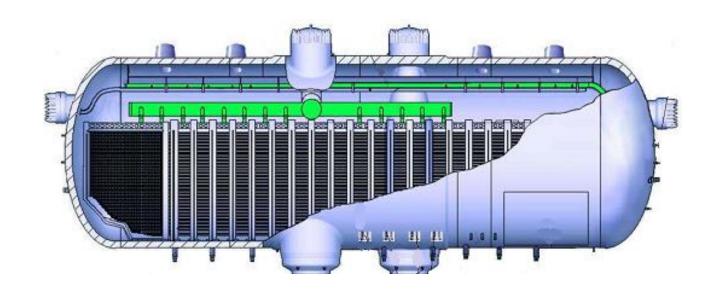


Рис. П4. Парогенератор ПГВ-1000 [2]

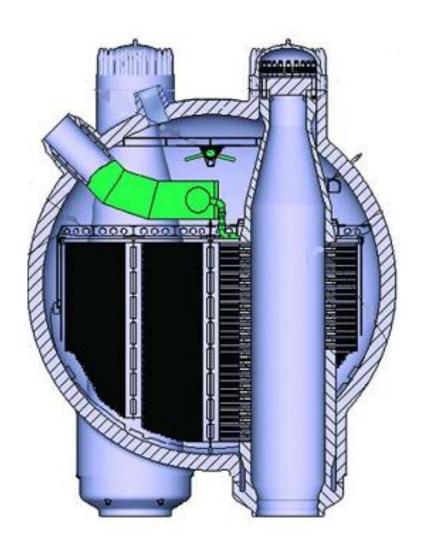


Рис. П
5. Парогенератор ПГВ-1000 МКП [2]

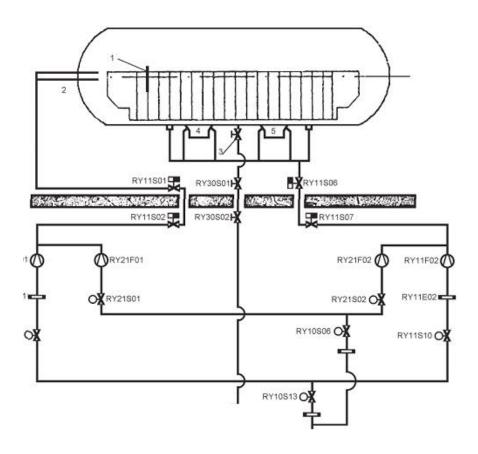


Рис. Пб. Система продувки парогенератора ПГВ-1000: 1 – экран солевого отсека; 2 – трубопроводы постоянной продувки из солевого отсека; 3 – дренаж; 4 – патрубки продувки с днища и карманов

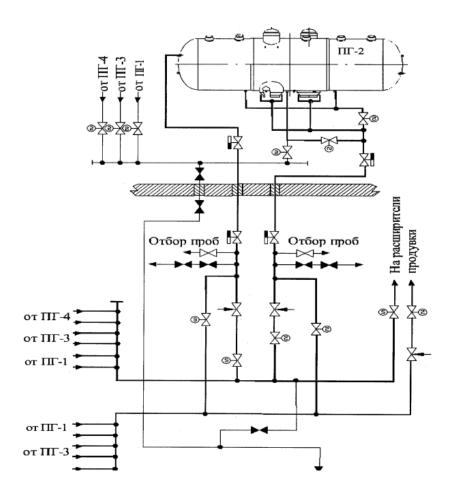


Рис. П7. Система продувки парогенератора Ростовской АЭС

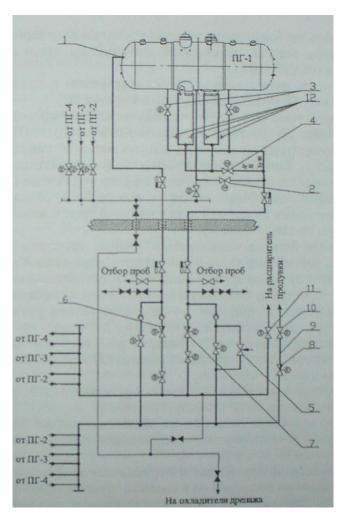


Рис. П8. Модернизированная система продувки парогенератора [6]: 1 — трубопровод постоянной продувки из солевого отсека; 2 — арматура вне бокса ПГ; 3, 4 — электроприводная арматура из нержавеющей стали; 5 — ручная арматура для прогрева коллектора периодической продувки; 6 — запорно-регулирующий клапан (ЗРК) диапазона 0—30 т/ч; 7 — ЗРК диапазона 0—10 т/ч; 8 — электроприводная ЗРК диапазона 0—40 т/ч; 9 — коллектор периодической продувки; 10 — электроприводная арматура дополнительно к 11; 11 — арматура; 12 — температурные датчики проходимости (на расстоянии не менее 1000 мм от штуцеров патрубки продувки с днища и карманов

На блоках 1, 2, 3 Калининской АЭС внедрен оперативный контроль трубопроводов периодической продувки «торцов» и «карманов» ПГ. Температурные датчики накладного типа установлены непосредственно на линиях, по которым осуществляется периодическая продувка нижней образующей корпуса (НОК) ПГ. Результаты измерения выводятся с помощью штатных средств АСУ ТП на БЩУ-1, 2 и БПУ-3 для контроля со стороны оперативного и инженерно-технического персонала.

Температурный контроль позволяет:

- оперативно определять проходимость штуцеров продувки НОК ПГ, следить за наличием отложений в «карманах» коллекторов 1-го контура ПГ и эффективностью их продувки:
 - выявлять неплотности запорной арматуры;
- контролировать прогрев линий продувки непосредственно перед подачей большого расхода.

Внедренный автоматизированный регламент продувки позволил в течение 1997—2004 гг. на блоках 1 и 2 Калининской АЭС не производить химических отмывок трубчатки ПГ, с переносом сроков промывки по результатам внутренних осмотров техрешением, согласованным с ОКБ «Гидропрессом».

В 2004—2005 гг. на всех ПГ блоков 1, 2 проведена химическая отмывка. Осмотры «отмытых» ПГ в последующий ППР показали, что удельная загрязненность ПГ не растет, скопления шлама в «критической» зоне 2—4 решетки «горячего» опускного канала и других зонах ПГ отсутствуют.

Таблица $\Pi 3$ Регламентные расходы продувочной воды блоков 1, 2, 3 Калининской АЭС

Наименование линии продувки	Блок <i>1, 2</i>	Блок З
Непрерывная продувка из патрубков	0,5–2, 0 т/ч	0,5-2,0 т/ч
НОК ПГ и штуцеров «карманов» кол-		
лекторов		

Непрерывная продувка «солевого»	более	не менее
отсека холодного торца ПГ	7,0 т/ч	7,5 т/ч
-		т

Окончание табл. П3

Наименование линии продувки	Б лок 1, 2	Блок З
Периодическая продувка из линий про-	максимально	15-20 т/ч
дувки НОК ПГ и «карманов» коллек-	возможный	
торов как совместно, так и раздельно,	расход	
а также продувка «солевых» отсеков	(по факту	
по линии периодической продувки	более 11,5 т/ч)	

Таблица П4

Параметры серийной РУ ВВЭР-1000

Характеристика	Значение
Номинальная тепловая мощность, МВт	753
Максимальная тепловая мощность, МВт (107 % от нтм)	806
Паропроизводительность, т/ч	1470
Давление пара, МПа	6,27
Температура пара, °С	278,5
Температура теплоносителя на входе, °С	321 ± 5
Температура теплоносителя на выходе, °С	291
Температура питательной воды, °С	220 ± 5
Влажность пара, % м., не более	0,2
Расход теплоносителя, т/ч	21 500
Давление теплоносителя К1 на входе в ПГ, МПа	$15,64 \pm 0,3$
Расход непрерывной продувки через патрубок Ду 100	15
на холодном днище, т/ч	
Расход периодической продувки через патрубок Ду 100	40
на холодном днище, т/ч	
Расход периодической продувки из патрубков Ду 50 на	25
корпусе и штуцеров Д _у 30 из карманов коллекторов, т/ч	
Расход непрерывной продувки из патрубков Ду 50 на	5
корпусе и штуцеров Ду 30 из карманов коллекторов, т/ч	

Гидравлическое сопротивление по К1 при номинальной	0,13
производительности, МПа, не более	

Таблица П5

Параметры некоторых РУ ВВЭР

Параметр	B -491	B -428	B -320
Мощность тепловая	3200	3000	3000
номинальная, МВт			
Паропроизводитель-	1600 × 4	1470 × 4	1470 × 4
ность номинальная,			
т/ч			
Температура пара, °С	287	278,5	278,5
Время работы на но-	8400	7000	7000
минальной мощности			
в год, ч			
Срок службы, лет	60	40	30
Давление в реакторе,	16,2	15,7	15,7
МПа			
Температура на вы-	329.7 ± 5	320–321	320
ходе из реактора, °С			
Температура на входе	298,6	289,7	289,7
в реактор, ℃			
Расход теплоносителя	$85\ 600 \pm 2900$	86 000	84 800
через реактор, м ³ /ч			
Парогенератор	ПГВ-1000 МКП	ПГВ-1000 М	ПГВ-1000 М
Диаметр корпуса па-	4,2	4,0	4,0
рогенератора внут-			
ренний, м			

Учебное издание

ПАРОГЕНЕРАТОРЫ АТОМНЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ

Методические указания по выполнению курсового проекта для студентов специальности 1-43 01 08 «Паротурбинные установки атомных электрических станций»

Составители: СОРОКИН Владимир Владимирович КАРНИЦКИЙ Николай Борисович

Редактор *Т. В. Грищенкова* Компьютерная верстка *Н. А. Школьниковой*

Подписано в печать 09.01.2013. Формат $60\times84^{-1}/_{16}$. Бумага офсетная. Ризография. Усл. печ. л. 4,24. Уч.-изд. л. 3,32. Тираж 100. Заказ 727.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Пр. Независимости, 65. 220013, г. Минск.