Кане М.М., Медведев А.И.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РЕЖИМОВ ЗУБОФРЕЗЕРОВАНИЯ ЦИЛИНДРИЧЕСКИХ ШЕСТЕРЕН ЧЕРВЯЧНОЙ ФРЕЗОЙ НА НЕКОТОРЫЕ ПАРАМЕТРЫ КАЧЕСТВА ПОВЕРХНОСТЕЙ ЗУБЬЕВ

Белорусский национальный технический университет

Минск, Беларусь

B статье рассмотрены методика и основные результаты экспериментального исследования влияния режимов зубофрезерования цилиндрических шестерен на параметр шероховатости Rа и микротвердость $H_{\rm m}$ поверхностей зубьев. Показана возможность моделирования указанных взаимосвязей статистическими методами. Установлены форма и характеристики принятых моделей.

Задачи исследования.

Как показано в [1] при зубофрезеровании цилиндрических шестерен в зоне резания действуют различные силовые и тепловые процессы, влияющие на формирование геометрических и физико-механических характеристик качества поверхностей обработанных зубьев.

Анализ пооперационного изменения характеристик качества поверхностей зубьев при обработке цилиндрических шестерен [2] показывает, что имеет место технологическое наследование этих характеристик на основных операциях обработки зубьев. В результате при зубонарезании формируется до 54% дисперсии этих характеристик для шестерен, прошедших операции зубофрезерования, шевингования, XTO, зубохонингования, зубообкатки. Знание взаимосвязей указанных характеристик с режимами зубофрезерования открывает возможность управления ими как при зубонарезании, так и в готовых зубчатых колесах.

Основные результаты.

В данной статье показаны результаты выполненного нами исследования влияния скорости резания V, м/мин и подачи S, мм/мин на такие характеристики качества поверхности зубьев цилиндрических шестерен при зубофрезеровании, как параметр шероховатости поверхностей зубьев Rа (мкм) и их микротвердость H_{μ} , МПа. Исследование было выполнено для прямозубых шестерен ($m=4\,$ мм , z=30) из стали 25ХГТ, характерной для автотракторостроения.

Сначала нами было выполнено исследование формы корреляционных зависимостей рассматриваемых параметров качества зубчатых колес от режимов зубофрезерования по схеме полного факторного эксперимента ($\Pi\Phi$) с добавлением 5-и опытов в центре плана. Использованная при этом матрица планирования эксперимента приведена в таблице 1.

Анализ полученных линий регрессии (рис. 1 и , а также критериев адекватности модели (критерия Фишера F и средней относительной ошибки уравнения регрессии $\varepsilon_{\rm cp.}$ [3]) позволил установить, что взаимосвязи Ra с V и S с достаточной точностью можно считать линейными, а H_{μ} с V и S – нелинейными. Поэтому в дальнейшем более углубленные исследования указанных линейных взаимосвязей нами были выполнены по схеме $\Pi\Phi\Theta$ (первые 4 опыта в табл. , а нелинейных зависимостей – по схеме рототабельного центрального композиционного планирования (РЦКП), матрица которого приведена в таблице 2.

Выбор интервалов изменения режимов зубофрезерования цилиндрических шестерен производился нами с учетом рекомендаций технической литературы [4], производственного опыта и возможностей зуборезного оборудования. Принятые интервалы изменения режимов зубофрезерования в выполненных исследованиях показаны в таблице 3.

Таблица 1 – Матрица эксперимента при предварительном исследовании взаимосвязей параметров качества поверхностей зубьев шестерен с режимами зубофрезерования

Номер	Факторы		Результаты параллельных опытов			
опыта	X_1	X_2	Y_{j1}	Y_{j2}	Y_{j3}	
1	-1	-1	Y ₁₁	Y ₁₂	Y_{13}	
2	+1	-1	Y ₂₁	Y ₂₂	Y_{23}	
3	-1	+1	Y ₃₁	Y ₃₂	Y_{33}	
4	+1	+1	Y ₄₁	Y ₄₂	Y_{43}	
	Окончание таблицы 1					
5	0	-1	Y ₅₁	Y ₅₂	Y ₅₃	
6	-1	0	Y ₆₁	Y ₆₂	Y ₆₃	
7	+1	0	Y ₇₁	Y ₇₂	Y ₇₃	
8	0	+1	Y ₈₁	Y ₈₂	Y ₈₃	
9	0	0	Y_{91}	Y ₉₂	Y ₉₃	

 X_1 – скорость резания V, м/мин

 X_2 – подача S, мм/мин

(-- нижний уровень факторов X_1 и X_2 (+- верхний уровень факторов X_1 и X_2

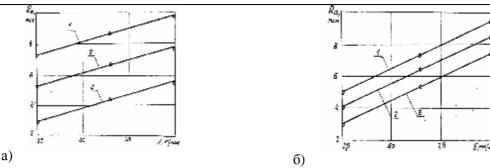

(0) – средний уровень факторов X_1 и X_2

Таблица 2 – Матрица РЦКП эксперимента

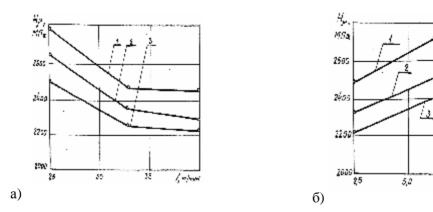

Система опытов	Номер опыта	X_1	X_2	X_1X_2	X_1^2	X_2^2		ельных ог	1
			1	-		1	Y_{j1}	Y_{j2}	Y _{j3}
Полный		-1	-1	+1	+1	+1	Y ₁₁	Y_{12}	Y ₁₃
факторный		+1	-1	-1	+1	+1	\mathbf{Y}_{21}	Y_{22}	Y_{23}
эксперимент		-1	+1	-1	+1	+1	Y_{31}	Y_{32}	Y_{33}
(N)		+1	+1	+1	+1	+1	Y ₄₁	Y ₄₂	Y ₄₃
Опыты в		+1,41	0	0	2,0	0	Y ₅₁	Y_{52}	Y_{53}
«звездных		-1,41	0	0	2,0	0	Y ₆₁	Y_{62}	Y_{63}
точках»		0	+1,41	0	0	2,0	Y_{71}	Y_{72}	Y_{73}
(N)		0	-1,41	0	0	2,0	Y_{81}	Y ₈₂	Y_{83}
Опыты		0	0	0	0	0	Y ₉₁	Y ₉₂	Y_{93}
		0	0	0	0	0	Y _{10 1}	Y_{102}	Y _{10 3}
в центре плана		0	0	0	0	0	Y _{11 1}	Y _{11 2}	Y _{11 3}
(N ₀)		0	0	0	0	0	Y _{12 1}	Y _{12 2}	Y ₁₂₃
(140)		0	0	0	0	0	Y _{13 1}	Y _{13 2}	Y _{13 3}

Таблица 3 – Основные характеристики планов экспериментов

Характеристика плана эксперимента	Х ₁ (V, м/мин)	X ₂ (S, мм/мин)
Основной уровень	32,8	6,25
Интервал варьирования	7,6	3,75
Верхний уровень	40,4	10,0
Нижний уровень	25,2	2,5

а) — от скорости резания при подачах 1-10 мм/мин; 2-5 мм/мин; 3-2,5 мм/мин; б) — от подачи при скоростях резания: 1-40 м/мин; 2-31,4 м/мин; 3-25,2 м/мин Рисунок 1- Графики зависимости величины Ra от режимов зубофрезерования (материал деталей — сталь 25XГТ)

а) — от скорости резания при подачах 1 — 10 мм/мин; 2 — 5 мм/мин; 3 — 2,5 мм/мин; б) — от подачи при скоростях резания: 1 — 25,2 м/мин; 2 — 31,4 м/мин; 3 — 40 м/мин Рисунок 2 — Графики зависимости величины H_{μ} от режимов зубофрезерования (материал деталей — сталь 25ХГТ)

При исследовании линейной зависимости $R_{\rm a}=f(V,S)$ ее аппроксимация производилась с помощью полинома первой степени вида

$$R_a = b_0 + b_1 V + b_2 S (1)$$

При исследовании нелинейной зависимости $H_{\mu} = f(V,S)$ ее аппроксимация производилась с помощью полинома второй степени вида

$$H_{\mu} = b_0 + b_1 V + b_2 S + b_{12} V S + b_{11} V^2 + b_{22} S^2$$
 (2)

Анализ полученных экспериментальных данных помимо расчетов коэффициентов уравнений (1) и (2), включал также оценку адекватности полученных зависимостей, значимости коэффициентов этих уравнений, степени влияния того или иного параметра режима резания на рассмотренные параметры качества поверхностей зубьев шестерен. Последняя оценка выполнялась с помощью коэффициентов влияния, рассчитанных по данным табл.3 и значениям коэффициентов уравнений (1) и (2)

$$A_V = \frac{2|b_1|}{\Delta V} \tag{3}$$

$$A_{S} = \frac{2 \mid b_{2} \mid}{\Delta S} \tag{4}$$

где b_1 , b_2 — коэффициенты уравнений (3) и (4); ΔV , ΔS — шаги варьирования V и S согласно табл. 3.

Чем больше значение коэффициента влияния, тем в большей степени соответствующий параметр режимов резания влияет на данную характеристику качества поверхностей зубьев.

Основные результаты выполненного исследования приведены в табл. 4.

Таблица 4 – Экспериментальные зависимости характеристик качества поверхностей зубьев Ra и H_m от режимов зубофрезерования V и S

Характеристика качества	Вид зависимости	Коэффициенты
поверхностей зубьев	y = f(V,S)	влияния
Параметр шероховатости	Ra = 2.55 + 0.065V + 0.27S	$A_V = 0.017$
Ra, мкм	Ra = 2,33 + 0,003 + 0,273	$A_{\rm S} = 0.144$
Микротвердость	$H_u = 2085-12V+26S+0,13VS+0,03V^2+1,2S^2$	$A_{V} = 3,2$
Н _и , МПа	$\Pi_{\mu} = 2085 - 12 \text{ V} + 208 + 0,13 \text{ V} + 0,03 \text{ V} + 1,2 \text{ S}$	$A_{\rm S} = 13.9$

Выполненные расчеты подтвердили адекватность найденных зависимостей опытным данным, достоверность коэффициентов этих уравнений. В то же время установлено, что зависимость $H_{\mu} = f(V,S)$ с несколько меньшей, но достаточной точностью ($\varepsilon_{\rm cp.} = 8,7-26,5\%$) может быть описана и полиномом первой степени.

Выводы.

- 1. Между параметрами качества поверхностей зубьев цилиндрических шестерен (параметром шероховатости Ra, мкм и микротвердостью H_{μ} , МПа) и режимами зубофрезерования червячными фрезами (скоростью резания V, м/мин и подачей S, мм/мин) существуют устойчивые взаимосвязи, которые могут быть описаны полиноминальными моделями с использованием методов планирования экспериментов.
- 2. Зависимость $R_{\rm a}=f(V,S)$ в наилучшей степени может быть описана полиномом первой степени, зависимость $H_{\mu}=f(V,S)$ полиномом второй степени. Хотя для описания второй зависимости может быть использован и полиномом первой степени.
 - 3. Рост V вызывает увеличение R_a и уменьшение H_u . Рост S вызывает увеличение R_a и H_u .
- 4. Подача S оказывает от 4,3 до 8,5 раз большее влияние на Ra и H_{μ} , чем скорость резания V.
- 5. Предложенные методы исследования и найденные зависимости могут быть использованы для выбора режимов зубофрезерования цилиндрических шестерен червячными фрезами, обеспечивающих требуемые значения характеристик качества поверхностей зубьев $RauH_{u}$.

ЛИТЕРАТУРА

- 1. Кане М.М., Медведев А.И. Анализ факторов, влияющих на параметры качества поверхностей зубьев цилиндрических шестерен при их нарезании червячной фрезой.// Республ. межведомств. сб. научн. трудов «Машиностроение». -Минск, БНТУ. -2014. -№28, с. 48 50.
- 2. Кане М.М., Медведев А.И. Изменение параметров качества поверхности зубьев цилиндрических зубчатых колес на различных операциях их изготовления // Вестник машиностроения, 1997, №7, с. 3-7.
- 3. Кане М.М. Основы научных исследований в технологии машиностроения / М.М. Кане: Учебн. пособие для вузов. –Минск: Вышэйшая школа, 1987. -231 с.
- 4. Фингер М.Л. Цилиндрические зубчатые колеса. Теория и практика изготовления / М.Л. Фингер. –М.: Научная книга, 2005. -368 с.