
УДК 539.893: 546.28.171.1

Исследование морфологии и фазового состава шихты для изготовления композитов на основе нитридной и оксидной керамики

Волосатиков В. И., Григорьев С. В., Сенченко Г. М. Белорусский национальный технический университет

Для работы в качестве режущего инструмента при рабочих температурах более 1000° С на предприятиях используются термостойкие керамические материалы на основе нитрида кремния. Для создания высокоплотных керамических материалов, обладающих нанодисперсной структурой и требуемым фазовым составом в исходную шихту необходимо вводить материалы, которые позволяют модифицировать физико-механические и технологические свойства керамики. Перспективным направлением модифицирования физико-механических и технологических свойств композиционных материалов на основе Si_3N_4 является введение в исходную шихту оксидов редкоземельных элементов. Шихту из порошков нитрида кремния с добавкой 5% (по массе) порошка оксида европия смешивали в смесителе в среде этилового спирта в течение 12 часов.

На рис. 1, a представлен внешний вид исходного порошка Eu_2O_3 , а на рис. 1, δ — порошок шихты, состоящей из субмикронного порошка Si_3N_4 с 5% порошка Eu_2O_3 .

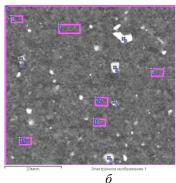


Рис. 1. Внешний вид порошка Eu_2O_3 и шихты Si_3N_4 с 5% Eu_2O_3 : a — исходный порошок Eu_2O_3 , δ — порошок шихты Si_3N_4 с 5% Eu_2O_3

Форма частиц порошка Eu_2O_3 осколочная с основной фракцией 5-10 мкм. При смешивании крупные частицы Eu_2O_3 размером более 10 мкм дробятся до размера порядка 5 мкм, размер порошка Si_3N_4 остается неизменным. Фазовый состав шихты состоит из - α и β - Si_3N_4 и Eu_2O_3 .