УДК 621.311

ОПРЕДЕЛЕНИЕ СОПРОТИВЛЕНИЯ ШУНТА ПРИ НЕСИММЕТРИЧНОМ КОРОТКОМ ЗАМЫКАНИИ И ПРЕДЕЛЬНОГО ВРЕМЕНИ ОТКЛЮЧЕНИЯ ПОВРЕЖДЕННОЙ ЛИНИИИ ЭЛЕКТРОПЕРЕДАЧИ

Москалёв Н.В.

Научный руководитель – м.т.н., старший преподаватель Волков А.А.

Постановка задачи. Для схемы электрической сети, представленной на рисунке 1, требуется определить предельное время отключения короткого замыкания (КЗ) на линии 2-7 вблизи узла 2.

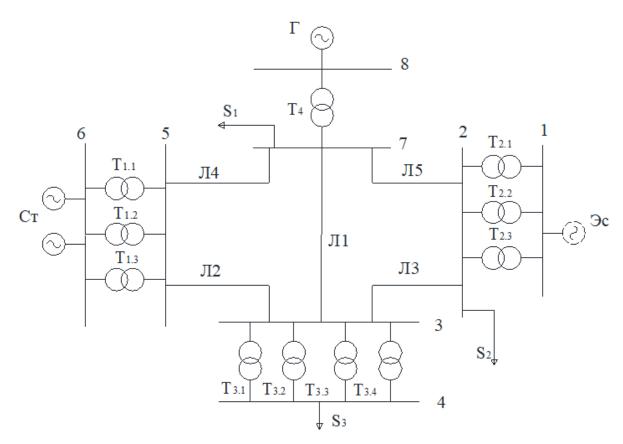


Рисунок 1 – Схема электрической сети

При этом расчёты необходимо выполнить для следующих видов КЗ:

- 1- трёхфазное КЗ;
- 2- двухфазное КЗ;
- 3- двухфазное КЗ на землю;
- 4- однофазное КЗ.

Исходный установившийся режим рассчитан в программе MUSTANG, результаты расчётов представлены на рисунках 2 и 3.

Название	N	Код	Upac	dU	Рн	Qн	Pd	Qc	Uнорм	Nсхн	Uном	Рг	Qг	Рш	Qш	Qmin	Qmax
бу	1	1100	115,00						110,00		110,00	-602,1	171,2			-10000	10000
	2	11	342,47	3,2	85,00	60,00			330,00		330,00						
	3	11	343,10	7,5					330,00		330,00						
	4	11	10,39	4,1	90,00	65,00			10,00		10,00						
	5	11	346,86	13,2					330,00		330,00						
	6	11	20,00	16,6					20,00		20,00						
	7	11	345,12	8,6	140,00	60,00			330,00		330,00						
	8	1010	20,00	13,3					20,00		20,00	300,0	27,4			-10000	10000
	9	1010	20,58	28,9					20,00		20,00	640,0	155,7			-10000	100000

Рисунок 2 - Результаты расчёта узлов в программе MUSTANG

Н	łазвани:	Has	Ni	Nj	Nπ	Назі	Ui	Pij	Qij	Iij	Ppi	Qr	Uj	Pji	Qji	Iji	Ppj	Qpj	dРн	dQн	dРобщ	dQобщ	Ркор/Ртрхх	Qг/Qтрхх	Кт	dКт
			5	6		T1	346,9	-638,2	26,9	1,06			20,0	640,0	15,4	18,48			0,68	37,50	1,77	42,30	1,10	4,80	17,350	
		бу	2	1		T2	342,5	603,8	-130,5	1,04			115,0	-602,1	171,2	3,14			0,65	35,92	1,64	40,66	0,99	4,74	3,017	
			3	4		T3	343,1	90,7	76,1	0,20			10,4	-90,0	-65,0	6,17			0,36	8,78	0,69	11,08	0,33	2,31	31,430	
			7	8		T4	345,1	-299,2	-0,9	0,50			20,0	300,0	27,4	8,70			0,46	24,91	0,82	26,51	0,36	1,59	17,350	
			7	3		Л1	345,1	53,1	-20,7	0,10			343,1	-52,4	-32,3	0,10			0,19	1,06	0,74	-52,97	0,55	-54,03		
			5	3		Л2	346,9	351,9	-7,4	0,59			343,1	-347,5	-0,9	0,58			4,12	34,92	4,37	-8,32	0,25	-43,24		
			2	3		ЛЗ	342,5	-305,6	31,7	0,52			343,1	309,2	-42,9	0,53			3,33	22,78	3,60	-11,24	0,27	-34,02		
			7	5		Л4	345,1	-284,0	-1,6	0,48			346,9	286,4	-19,5	0,48			2,15	22,89	2,34	-21,10	0,19	-43,99		
			7	2		Л5	345,1	390,1	-36,8	0,66			342,5	-383,2	38,9	0,65			6,53	36,00	6,87	2,04	0,35	-33,96		
			6	9			20,0	-640,0	-15,4	18,48			20,6	640,0	155,7	18,48				140,33		140,33				

Рисунок 3 - Результаты расчёта ветвей в программе MUSTANG

K3 моделируется включением шунта в месте K3, значение которого зависит от вида K3. Для трёхфазного K3 автоматика представлена на рисунке 4, предельное время отключения t=0,156 с.

Пояснение	N	Логика		Фактор	Ni	Nj	Nπ	Уставка	T1	Кв	Zk1	Zk2
			T2	Действие	Ni	Nj	Nπ	Парам1	Парам2	Парам3		
				Время								
			0,100	Шунт	7				0,001			
			0,256	Отключить связь	7	2						
			0,256	Шунт	7				-0,001			

Рисунок 4 - Автоматика для расчёта предельного времени отключения КЗ

Для несимметричного КЗ программа MUSTANG значение сопротивления аварийного шунта не считает, поэтому следует воспользоваться программой RASTRWIN.

Порядок расчёта:

- 1 для начала нужно экспортировать режим из mustang в формат ЦДУ (УР->экспорт в формат ЦДУ);
 - 2 затем в rastrwin экспортировать этот файл (файлы -> экспорт -> экспорт цду);
- 3 далее, открыть ветви и узлы (пересчитывать коэффициенты трансформации трансформаторов и менять узлы местами при них не нужно, так как это делает последняя версия rastrwin);
- 4 для корректной работы режима требуется его сохранить в формате. rst и открыть заново;
- 5 затем открываем вкладки ветви/несим/ид и узлы/несим/ид (открыть -> несимметрия);
- 6 задаем параметры элементов схемы замещения обратной и нулевой последовательности, если элементы не заданы, то нужно запустить макрос MakeNonSymm.rbs (расчёты->макро->открыть-> rastrwin3->macro->ткз-> MakeNonSymm.rbs) нажимаем кнопку пуск и после появления строки «сгенерированы данные по несимметрии» окно можно смело закрывать, задаём сопротивления обратной последовательности генераторов из исходных данных курсовой работы в окне генераторы(ИД). Т.к. в нашей курсовой работе отсутствовали данные сопротивления нулевой последовательности генератора, найдем их по формуле. В практических расчетах сопротивление нулевой последовательности можно рассчитать по формуле:

$$X_0 = (0,15-0,6) X_2;$$

7 – далее нужно рассчитать токи КЗ, для этого нажимаем кнопку

8 – после этого нужно произвести расчёт шунта, для этого воспользуемся кнопкой . В появившемся окне нужно нажать кнопку расчёт, предварительно выбрав тип и место повреждения. В этом же окне в поле «результат» получаем сопротивления последовательностей, которые программа использует для расчёта шунта для данного типа КЗ. На рисунке 5 представлен пример расчёта шунта для двухфазного КЗ на землю.

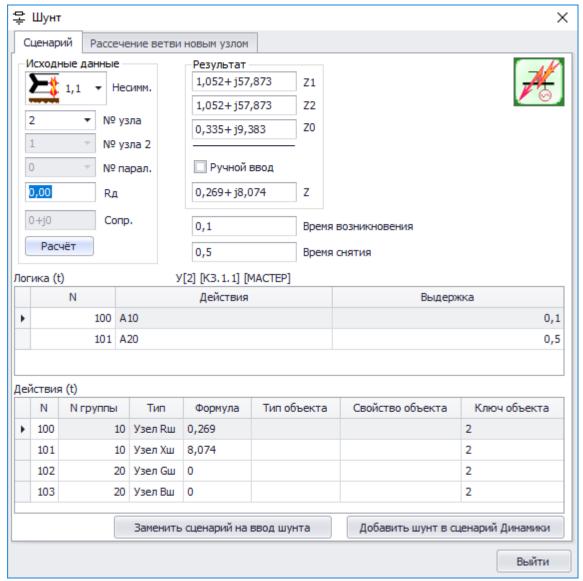


Рисунок 5 - Окно расчёта шунта в программе RASTRWIN для двухфазного КЗ на землю

9 — сопротивление шунтов выводятся в окне Действия. Затем в программе mustang для режима расчёта динамической устойчивости изменяем параметры автоматики так, как показано на рисунке 6.

i	Пояснение	N	Логика		Фактор	Ni	Nj	Nn	Уставка	T1	Кв	Zk1	Zk2
ĺ				T2	Действие	Ni	Nj	Nn	Парам1	Парам2	Парам3		
ĺ		100			Время						100-103		
				0,100	Шунт	7			0,269	8,074			
ĺ				0,317	Отключить связь	7	2						
ĺ				0,317	Шунт	7			-0,269	-8,074			

Рисунок 6 - Пример параметров автоматики в программе MUSTANG для двухфазного КЗ на землю

На рисунках 7-10 показаны зависимости электрической мощности электростанций при разных видах K3.

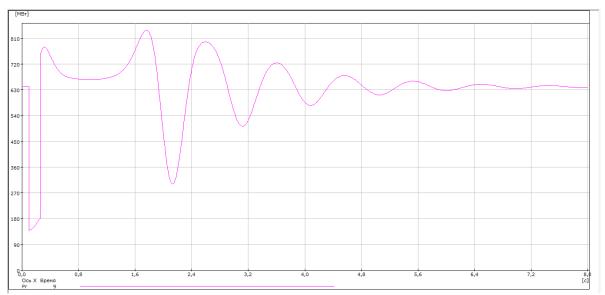


Рисунок 7 - Переходный процесс при трёхфазном КЗ

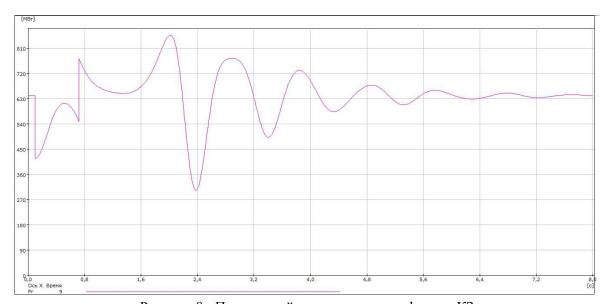


Рисунок 8 - Переходный процесс при двухфазном КЗ

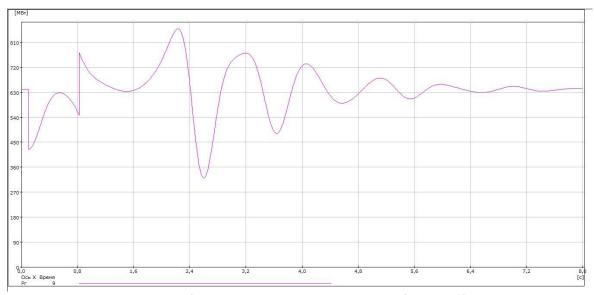


Рисунок 9 - Переходный процесс при однофазном КЗ

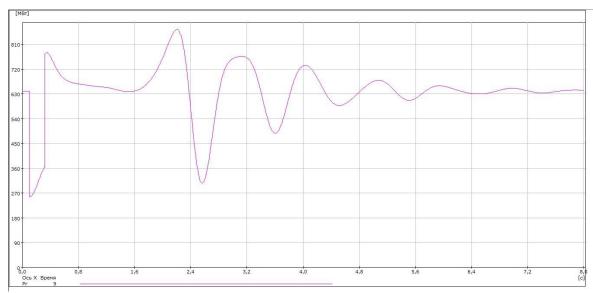


Рисунок 10 - Переходный процесс при двухфазном КЗ на землю

Таблица 1

Вид короткого замыкания	Сопротивление шунта, Ом. $R+jX$	Предельное время отключения, с. $t_{\rm пp}$
Трехфазное	0	0,156
Двухфазное	1,052+ <i>j</i> 57,873	0,619
Однофазное	1,387+ <i>j</i> 67,256	0,723
Двухфазное на землю	0,269+j8,074	0,217

Анализируя проделанную работу сделал вывод о том, что наибольшее предельное время отключения в случае однофазного КЗ, чуть меньшее время для двухфазного КЗ, затем двухфазное на землю и самым малым предельным временем отключения обладает трехфазное КЗ.