УДК 621.9.04

Анализ кинематики полигонального формирования профиля поверхности в виде треугольника Рело при обработке долблением

Данилов А. А. Белорусский национальный технический университет

Полигональное формирование стороны треугольника Рело ABC в виде дуги AB окружности, радиус которой равен его ширине b, осуществляется производящей точкой M (вершиной режущего элемента), совершающей вращение $-B_1$ вокруг центра O этого треугольника и вращение B_2 с такой

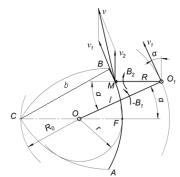


Схема к определению скорости движения профилирования треугольника Рело

же угловой скоростью вокруг своей оси O_1 по окружности радиусом R. Обозначим: r — радиус вписанной в треугольник Рело окружности; R_0 — радиус описанной вокруг его окружности; α — текущий угол поворота инструмента относи-тельно заготовки и вокруг своей оси; l = OO_1 ; v_1 — линейная скорость центра O_1 вращения инструмента вокруг оси O; v_2 — линейная скорость производящего элемента при вращении инструмента вокруг центра O_1 ; v — результирующая скорость производящего элемента относи-

тельно формируемой стороны треугольника Рело. Из рисунка, $\overrightarrow{v}=\overrightarrow{v_1}+\overrightarrow{v_2}$ или $v=\sqrt{v_1^2+v_2^2+2v_1v_2cos\alpha}$, где $v_1=2\pi ln$; $v_2=2\pi Rn$. Так как l=b, $R=\frac{b}{\sqrt{3}}$, то $v_1=2\pi bn$; $v_2=2\pi\frac{b}{\sqrt{3}}n$. Следовательно, $v=\sqrt{(2\pi bn)^2+(2\pi\frac{b}{\sqrt{3}}n)^2+2\cdot 2\pi bn\cdot 2\pi\frac{b}{\sqrt{3}}n\cos\alpha}$. (1)

Из (1) следует, что производящая точка M перемещается вдоль формируемой стороны AB треугольника Рело с переменной скоростью v, а для ее стабилизации изменение частоты вращения заготовки составляет приблизительно 3,3%, что практически не влияет на производительность. Следовательно, вращение заготовки в процессе обработки может осуществляться с постоянной скоростью, что существенно упрощает реализацию способа обработки деталей с профилем в виде треугольника Рело на универсальных зубодолбежных станках.