Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Теплогазоснабжение и вентиляция»

РАСЧЕТ ЦИКЛОНА СТФ-Ц

Методические указания к выполнению расчетно-графической работы

> Минск БНТУ 2011

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Теплогазоснабжение и вентиляция»

РАСЧЕТ ЦИКЛОНА СТФ-Ц

Методические указания к выполнению расчетно-графической работы для студентов специальности 1-70 04 02 «Теплогазоснабжение, вентиляция и охрана воздушного бассейна»

Минск БНТУ 2011 УДК 628.511 (075.8) ББК 30н Р 24

Составители: В.Д. Сизов, В.Н. Короткий, И.С. Бракович

Рецензенты: С.Л. Ровин, В.И. Глуховский

Цель методических указаний – помочь студентам в самостоятельном выполнении расчетно-графической работы в соответствии с программой дисциплины «Очистка вентиляционного воздуха и ресурсосбережение».

Рассматриваются вопросы расчета технических характеристик циклона СТФ-Ц в зависимости от вида пыли, даются рекомендации по выполнению работы, ее составу и объему. Приводится список рекомендуемой литературы и приложения, которые включают табличные и графические данные, необходимые для выполнения расчетов.

Предназначено для студентов V и VI курсов.

ОГЛАВЛЕНИЕ

Введение	4
1. ОБЩИЕ ПОЛОЖЕНИЯ	5
2. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ И ПАРАМЕТРЫ	
ЦИКЛОНОВ СТФ-Ц	10
3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ	12
3.1. Цель и исходные данные для выполнения работы	12
3.2. Порядок проведения расчетов	13
3.3. Пример выполнения работы	20
Заключение	30
Литература	30
Приложения	31

Введение

Целью изучения материалов, изложенных в данном издании, является ознакомление на практических занятиях с разработанным специалистами БНТУ циклоном СТФ-Ц для очистки газовых выбросов предприятий от пыли и его техническими характеристиками. Студенты должны научиться правильно оценивать состав пылегазовых выбросов, по физико-химическим свойствам пыли и расходам загрязненного воздуха подбирать соответствующий размер циклона, рассчитывать его остальные технические характеристики с целью наиболее эффективной очистки выбросов от пыли.

Приведенный пример расчета параметров циклона позволит студентам верно производить необходимые вычисления и оценивать эффективность работы циклона.

Методические указания разработаны в соответствии с учебной программой дисциплины «Очистка вентиляционных выбросов и ресурсосбережение».

1. ОБЩИЕ ПОЛОЖЕНИЯ

Очистка от пыли необходима во многих случаях: соблюдение санитарно-гигиенических требований для обеспечения комфортного проживания населения и создание безопасных условий для эффективной работы производственного персонала на рабочих местах, защиты вентиляционного оборудования (например, калориферов, воздухоохладителей, вентиляторов и т. д.); очистки промышленных технологических выбросов и т. п.

Название (тип) пылеулавливающего аппарата зависит от механизма отделения частиц пыли от воздушно-газового потока. При гравитационном осаждении частицы аэрозолей осаждаются из потока загрязненного воздуха под действием силы тяжести. Для этого необходимо создать соответствующий режим движения загрязненного воздуха в аппарате с учетом размера частиц, их плотности и т. д.

Инерционное осаждение основано на том, что частицы пыли и взвешивающая среда ввиду значительной разности плотностей обладают различной инерцией. Частицы пыли, двигаясь по инерции, отделяются от газовой среды в результате столкновения с препятствием.

Осаждение под действием центробежной силы происходит при криволинейном движении загрязненного пылевоздушного потока. Под действием возникающих центробежных сил аэрозольные частицы отбрасываются на периферию аппарата и осаждаются в пылеприемный бункер.

Эффект зацепления. Частицы аэрозолей, взвешенные в воздушной среде, задерживаются в узких, извилистых каналах и порах при прохождении пылегазового потока через фильтровальные материалы.

Мокрая очистка. Смачивание поверхности элементов аппаратов водой или другой жидкостью способствует задержанию пылевых частиц на данной поверхности.

Осаждение в электрическом поле. Проходя электрическое поле, частицы аэрозолей получают заряд. Двигаясь к электродам противоположного знака, они осаждаются на них.

В практике улавливания пылевых частиц находят применение и другие методы: укрупнение частиц в акустическом поле, термофорез, фотофорез, воздействие магнитного поля, биологическая очистка. В устройствах для очистки аэрозольных выбросов наряду с

основным механизмом улавливания обычно используются и другие закономерности. Благодаря этому общая и фракционная эффективность аппарата достигает более высокого уровня.

Наибольшее распространение в системах пылеочистки получили циклоны, т. е. аппараты, работающие по принципу осаждения под действием центробежной силы. Циклоны широко применяются для очистки от пыли вентиляционных и технологических выбросов во всех отраслях народного хозяйства.

Принцип работы циклона заключается в спиралевидном закручивании потока запыленного воздуха в цилиндрической части циклона, где под действием центробежной силы частицы пыли прижимаются к стенкам циклона и под влиянием сил тяжести опускаются вниз в бункерное устройство, из которого пыль периодически удаляется через пылевой затвор. Преимущества циклонов: простота устройства и обслуживания, сравнительно небольшое аэродинамическое сопротивление, высокая производительность и небольшая стоимость. К недостаткам необходимо отнести малое улавливание пылевых частиц размером менее 5 мкм.

Эффективность очистки газа в циклонах в основном определяется дисперсным составом и плотностью частиц улавливаемой пыли, а также вязкостью газа, зависящей от его температуры. При уменьшении диаметра циклона и повышении до определенного предела скорости газа в циклоне эффективность очистки возрастает. Поэтому, диаметры серийно выпускаемых циклонов не превышают 5 м. В СНГ для циклонов принят стандартизированный ряд внутренних диаметров D: 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2400 и 3000 мм.

Конструктивно циклоны могут быть выполнены одиночными, групповыми и батарейными. Среди одиночных и групповых циклонов наибольшее распространение получили циклоны НИИОГаза типов ЦН и СК-ЦН производительностью $600-230\ 000\ \text{м}^3/\text{ч}$, а среди батарейных циклонов – БЦ, ПБЦ производительностью от 12 000 до $480\ 000\ \text{m}^3/\text{ч}$.

В институте НИИОГаз разработан ряд конструкций цилиндрических и конических циклонов. Широкое распространение получили цилиндрические циклоны ЦН-11, ЦН-15, ЦН-15у, ЦН-24 (рис. 1). Цифровое обозначение циклона соответствует углу наклона крышки аппарата и патрубка, подводящего запыленный поток. Для дан-

ных циклонов характерна удлиненная цилиндрическая часть корпуса. Циклон ЦН-15у имеет укороченную коническую часть. Его применяют при ограничении по высоте и он имеет несколько худшие показатели, чем ЦН-15.

К коническим циклонам НИИОГаз относятся аппараты СДК-ЦН-33, СК-ЦН-34, СК-ЦН-34м (рис. 2). Циклоны имеют удлиненную коническую часть и спиральный входной патрубок. Они предназначаются в основном для улавливания сажи и отличаются высокой эффективностью очистки.

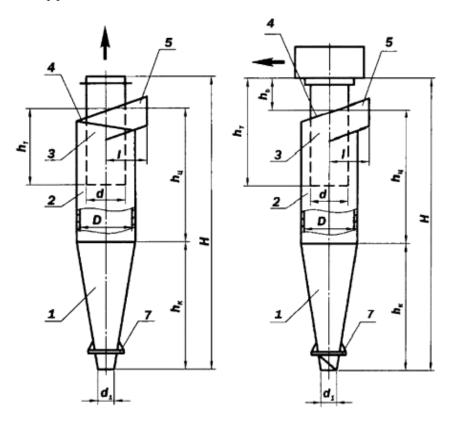


Рис. 1. Циклон ЦН: I – конус; 2 – цилиндр; 3 – выхлопная труба; 4 – винтовая крышка; 5 – входной патрубок; 6 – улитка; 7 – опорный фланец

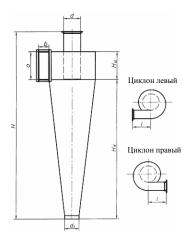


Рис. 2. Циклон СК ЦН

Циклоны СИОТ (Свердловский институт охраны труда) полностью лишены цилиндрической части (рис. 3). Выхлопная труба опущена в верхнюю часть конуса. Входной патрубок имеет треугольное сечение. При установке циклона на всасывающей линии вентилятора очищенный газ (воздух) выходит из аппарата через раскручиватель с винтовой крышкой, а при установке на нагнетательной линии — через шахту с колпаком или раскручивателем в виде плоского шита.

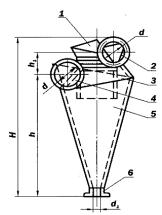


Рис. 3. Циклон СИОТ:

I – раскручиватель с винтовой крышкой; 2, 4 – выходной и входной патрубок; 3 – крышка корпуса; 5 – корпус; 6 – пылеотводящий патрубок

Циклоны ВЦНИИОТ (г. Москва) отличаются наличием обратного конуса (рис. 4). Пылегазовый проток проходит в бункер через кольцевую щель между двумя соосными конусными поверхностями. Обеспыленный газ (воздух) возвращается в корпус циклона через отверстие в вершине внутреннего конуса.

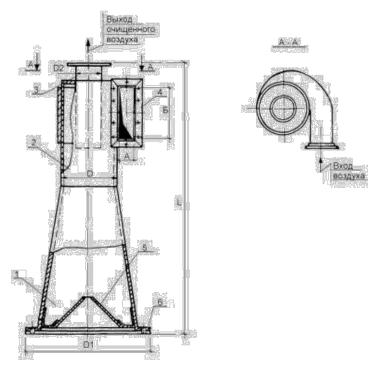


Рис. 4. Циклон ВЦНИИОТ:

I — обратный конус; 2 — цилиндр; 3 — выхлопная труба; 4 — входной патрубок; 5 — коническая вставка (внутренний конус); 6 — присоединительный фланец

2. КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ И ПАРАМЕТРЫ ЦИКЛОНОВ СТФ-Ц

В методических указаниях представлены конструктивные особенности, методика подбора и расчета нового циклона типа СТФ-Ц, разработанного на уровне изобретения кафедрой «Теплогазоснабжение и вентиляция» БНТУ (патент № 3781) применительно к газовым выбросам асфальтобетонных заводов (АБЗ).

Принципиальное отличие в работе этой модели циклона от известных заключается в том, что устройство позволяет повысить эффективность очистки запыленных потоков до 5 % в зависимости от гранулометрического состава пылей, увеличить срок эксплуатации циклонов на 10–15 % за счет уменьшения истирания его рабочих поверхностей вследствие разделения пыли на фракции при их движении и сепарации в рабочем пространстве циклона, предотвратить налипание мелких частиц на рабочие поверхности циклона при конденсации водяных паров вследствие наличия изолирующего пространства между корпусом и кожухом.

Этот циклон предназначен для очистки отходящих газов от средне- и мелкодисперсной пыли, образующейся в результате дробления, сортировки, пересыпки, истирания минералов и продуктов их переработки с содержанием до 15 % слипающихся веществ.

Областью преимущественного применения циклона типа СТФ-Ц являются пылеулавливающие системы асфальтобетонного производства.

Характерно, что улавливание пыли на технологическом оборудовании АБЗ обусловлено не только обеспечением требуемых санитарных норм, но и экономическими соображениями. Количество уловленной пыли достигает 10 % производительности оборудования и она в дальнейшем используется как дополнительный технологический продукт.

Принципиальная схема циклона СТФ-Ц представлена на рис. 5. Циклон содержит цилиндрическо-конический корпус, состоящий из цилиндрической I и конической 2 частей. К цилиндрической части корпуса присоединены входной патрубок 3 и выходной 4, а к конической части через диафрагму 5 — внутренняя секция 6 бункера. Корпус I расположен в кожухе 7. Образованное между ними пространство 8 соединено через отверстия 9 в стенке кожуха с внешней секцией I0 бункера. По всей боковой поверхности цилиндрической

части корпуса равномерно расположены отверстия 11. Внутренняя секция 6 и внешняя секция 10 бункера снабжены люками с запорными устройствами 12. Между диафрагмой 5 и конической частью 2 кожуха расположено кольцевое отверстие 13.

Циклон работает следующим образом. Запыленный поток поступает в циклон через тангенциальный входной патрубок 3, имеющий угол наклона к горизонту 0–15°. В полости корпуса 1 циклона происходит спиралеобразное движение потока с перемещением его от входного патрубка 3 до открытого сечения выходного патрубка 4. При этом часть частиц пыли под действием центробежных сил устремляется к стенке 1 цилиндрической части корпуса и через отверстия 11 попадает в пространство 8 между корпусом и кожухом 7 и далее через отверстия 9 в секцию 10 бункера. Оставшаяся часть частиц, не попавшая в отверстия 11, увлекается потоком в нижнюю коническую часть 2 корпуса циклона и далее через отверстие 13 попадает во внутреннюю секцию 6 бункера. Очищенный поток удаляется через выходной патрубок 4, а пыль секции 6 и 10 бункера через люки с запорными устройствами 12 направляется в пылесборник.

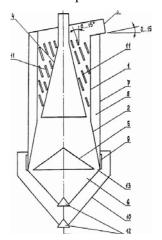


Рис. 5. Циклон СТФ-Ц:

1 – цилиндрическая часть корпуса циклона; 2 – коническая часть корпуса циклона; 3 – входной патрубок; 4 – выходной патрубок; 5 – диафрагма;

6 – внутренняя секция бункера; 7 – кожух циклона; 8 – пространство между корпусом и кожухом циклона; 9 – отверстия в кожухе; 10 – внешняя секция бункера; 11 – отверстия в цилиндрической части корпуса; 12 – запорное устройство; 13 – кольцевое отверстие

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Предлагаемая методика расчета циклона СТФ-Ц несколько отличается от стандартной. А именно, определение общей эффективности отдельного циклона и системы, состоящей из нескольких циклонов, можно проводить как по эмпирическим формулам, полученным на основании экспериментальных данных, так и по расчетным зависимостям, основывающимся на фракционной эффективности циклона и фракционном составе пыли.

При расчетах циклона определяют его диаметр, общие размеры, гидравлическое сопротивление и коэффициент очистки. Последний можно рассчитать используя теоретические зависимости. Для этого в каждом конкретном случае необходимо знать фракционный состав пыли, ее физико-механические свойства, находить интегрально-функциональное распределение пыли по размерам в вероятностно-логарифмической системе координат.

3.1. Цель и исходные данные для выполнения работы

Цель работы: подобрать по заданным исходным данным циклон, определить его основные размеры, а также установить его эффективность очистки (фракционную и общую).

Исходные данные для выполнения работы

Номер исходных данных (N) – последние две цифры в номере зачетной книжки студента (либо номер по порядку в списке группы обучения).

- 1. Расход газа (воздуха), поступающего в циклон первой ступени очистки при производительности АБЗ 25 т/ч, $L = 3000 + 1000 \text{N} \, (\text{м}^3/\text{ч})$.
 - 2. Концентрация пыли на входе в циклон $\mu = 50 + 5N (\Gamma/M^3)$.
- 3. Температура поступающего в аппарат газа (воздуха) t = 150 + 5N (°C).
 - 4. Пыль кварцевая с плотностью частиц $\rho_n = 2000 + 10 \text{N} \ (\text{кг/м}^3)$.
- 5. Дисперсный состав пыли характеризуется данными, приведенными в табл. 1.

Размер частиц фракции d_i , мкм	<1	1–3	3–5	5–7	7–10	10–15	15–20	20–30	30–40	40–60
Выход фракции по массе p_i , %	1,98	5,24	8,07	3,41	8,52	13,14	11,44	17,70	11,80	18,70

Дисперсный состав пыли

Принципиальная схема системы двухступенчатой очистки приведена на рис. 6.

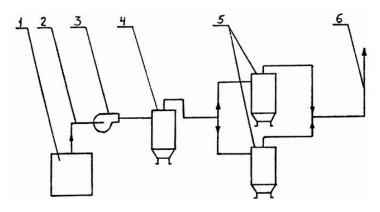


Рис. 6. Принципиальная схема системы пылеочистки для АБЗ 1 – технологическое оборудование АБЗ; 2 – трубопровод забора загрязненных газов; 3 – вентилятор; 4 – циклон СТФ-Ц первой ступени очистки; 5 – циклоны СТФ-Ц второй ступени очистки; 6 – трубопровод выброса в атмосферу очищенных газов

3.2. Порядок проведения расчетов

- 1. По заданным исходным данным $(L, \, \text{м}^3/\text{ч})$ подбирают циклон СТФ-Ц и задаются его размерами (прил. A).
 - 2. Определяют скорость газа во входном сечении циклона.
 - 3. Определяют скорость газа в корпусе циклона.

- 4. На основании исходных данных выполняют оценку дисперсного состава пыли.
- 5. Определяют эффективность циклона $\eta_{\scriptscriptstyle \parallel}$ по известному уравнению регрессии.
- 6. Определяют параметр фракционной эффективности циклона СТФ-Ц и с учетом его значения находят фракционную эффективность η_{ϕ} пылеулавливания.
- 7. Определяют общую эффективность пылеулавливания циклона СТФ-II.
 - 8. Определяют потерю давления в циклоне.
 - 9. Определяют мощность, необходимую для работы пылеулавителя.

Процесс осаждения в пылеуловителях типа циклон наиболее полно характеризуется фракционной эффективностью. В общем виде величина фракционной эффективности осаждения пыли устройством показывает, какая доля частиц определенного размера улавливается. Зная эти величины можно определить общую эффективность устройства при осаждении в нем любой пыли известного гранулометрического состава.

Фракционная эффективность [1, 2]

$$\eta_{\Phi}(d) = 1 - \exp(-a \cdot d^{\alpha}), \tag{1}$$

где d – определяющий размер фракции;

a – параметр, подлежащий определению по формуле (9);

 $\alpha = 1,4$ — параметр, рекомендуемый для циклонов и пылеуловителей, при значении критерия Fr = 150...250.

$$Fr = \omega^2 \cdot R/g$$
,

где ω – угловая скорость вращения газа в пылеулавливающем устройстве;

R — средний радиус криволинейного канала устройства (вращения вихря);

g – ускорение свободного падения.

При изменении Fr от 50 до 150 параметр α находится в пределах от 1,4 до 1,7. Промежуточные значения параметра α могут быть найдены интерполированием.

Плотность частиц различных пылей асфальто-бетонного производства составляет $2500-2800 \text{ кг/м}^3$.

В практике оценки дисперсных составов пылей и фракционной эффективности широко используется формула Розина–Раммлера [1, 3]

$$P(d) = \exp\left[-\left(\frac{d}{d_{\rho}}\right)^{n}\right],\tag{2}$$

где d_e – размер частиц, соответствующих суммарному выходу по плюсу $P = 0.368 \ (36.8 \ \%)$;

n — параметр, характеризующий однородность смеси частиц по фракциям.

Если в формуле (2) принять $1/d_e^n = b$, тогда

$$P(d) = \exp(-b \cdot d^n). \tag{3}$$

Отсюда дифференциальная функция распределения частиц по фракциям имеет вид

$$f_1(d) = n \cdot b \cdot d^{n-1} \cdot \exp(-b \cdot d^n). \tag{4}$$

Если требуется определить фракционную эффективность пылеуловителя по гранулометрической характеристике еще не исследованной пыли, то параметры ее дифференциальной характеристики определяются следующим образом.

Из формул (2) и (3) следует, что если им удовлетворяет гранулометрический состав пыли, подлежащей улавливанию в различных устройствах, то для графического изображения зависимостей P = f(d) удобно пользоваться специальной сеткой (см. рис. 9), при построении которой для оси абсцисс применена обычная логарифмическая шкала, а по оси ординат отложены преобразованные значения P в двойном логарифмическом масштабе. Построенная таким образом прямая линия имеет угловой коэффициент n, который характеризует однородность смеси частиц по фракциям. По этому графику можно также определить размер частиц d_e , соответствующий суммарному выходу P = 0.368 (36,8%).

Параметры d_e и n могут быть определены по данным о суммарных выходах двух фракций P_1 и P_2 с достаточно большим различием в значениях их размеров d_1 и d_2 . В случае, когда суммарные выходы по плюсу выражены в %, искомые параметры вычисляются по следующим формулам:

$$\frac{\lg(\lg\frac{100}{P_1}) - \lg(\lg\frac{100}{P_2})}{\lg d_1 - \lg d_2};$$
 (5)

$$d_e = \frac{d_1}{\sqrt{2,302 \cdot \lg \frac{100}{P_1}}} = \frac{d_2}{\sqrt{2,302 \cdot \lg \frac{100}{P_2}}}.$$
 (6)

Общая эффективность циклона $\eta_{\scriptscriptstyle \rm II}$ определяется по следующему уравнению регрессии:

$$\eta_{II} = 103,1 - 3,39 w - 0,253 \mu + 0,021 w \mu + 0,114 w^2,$$
 (7)

где w – скорость потока на входе в циклон, м/с;

 μ – концентрация пыли на входе в циклон, г/м³.

После подстановки в уравнение общей эффективности формул (1) и (4) имеем также

$$\eta_{II} = b \cdot n \cdot \int_{0}^{\infty} d^{n-1} \cdot \exp(-b \cdot d^{n}) \cdot (1 - \exp(-a \cdot d^{\alpha})) \overline{d} d.$$
 (8)

Параметр фракционной эффективности a определяется по эмпирической формуле

$$a = 0.58 \eta_{II}^{9}$$
 (9)

В том случае, если система пылеочистки состоит не из одной, а из нескольких ступеней, тогда фракционная эффективность пылеулавливающей системы, состоящей из нескольких одинаковых последовательно установленных циклонов определяется по формуле

$$\eta_{\text{doc}} = 1 - \exp(-\kappa \cdot a \cdot d^{\alpha}), \tag{10}$$

где κ — количество ступеней улавливания.

Фракционная эффективность системы из последовательно установленных пылеуловителей различной эффективности

$$\eta_{\phi c} = 1 - \exp(-\sum_{i=1}^{K} a_i \cdot d^{\alpha}),$$
(11)

где a_i — параметр фракционной эффективности каждого из циклонов в отдельности.

С целью упрощения расчетов для определения фракционной эффективности η_{ϕ} пылеуловителей по формуле (1) используется номограмма (рис. 7), где в качестве исходных данных применены размер частиц d и параметр фракционной эффективности a.

Расчетная общая эффективность η_{up} циклона вычисляется как сумма произведений фракционных эффективностей $\eta_{\phi i}$ на массовые выходы p_i фракций пыли, поступающей на очистку,

$$\eta_{\text{up}} = \frac{1}{100} \sum_{i=1}^{m} p_i \eta_{\phi i}$$
 (12)

Эффективность пылеулавливающей системы, состоящей из нескольких последовательно установленных циклонов, определяется по формуле

$$\eta_{IIC} = 1 - (1 - \eta_{II1}) \cdot (1 - \eta_{II2}) \dots (1 - \eta_{IIi}), \tag{13}$$

где $\eta_{u1}, \eta_{u2}, \ \eta_{ui}$ — эффективности первого, второго и последующих циклонов.

Также необходимо учитывать некоторое снижение эффективности пылеочистки последующих ступеней по сравнению с ее расчетными значениями для одиночных циклонов.

Работа циклонов характеризуется их гидравлическим сопротивлением (потерями давления). Гидравлическое сопротивление ΔP (Па) представляет собой разность полных давлений на входе в циклон и на выходе из него. Величина потерь давления определяется по формуле

$$\Delta P = \zeta_{II} \frac{\rho_{\Gamma} \cdot w_{II}^2}{2},\tag{14}$$

где $w_{\rm u}$ – скорость потока в корпусе циклона, м/с;

 $\rho_{\rm r}$ – плотность газа, кг/м³;

 $\xi_{\rm u}$ — коэффициент сопротивления, отнесенный к скорости в циклоне, устанавливается экспериментально. Для циклонов типа СТФ-Ц $\xi_{\rm u}=215$.

При определении перепада давлений ΔP , может измеряться скорость потока w на входе в циклон. Тогда коэффициент гидравлического сопротивления циклона, отнесенный к скорости в его входном сечении:

$$\zeta = \frac{2 \cdot \Delta P}{\rho_r \cdot w^2}.\tag{15}$$

По окончании расчета полученные значения эффективности очистки и аэродинамического сопротивления сопоставляются с требуемыми. В случае необходимости производится пересчет с изменением типажа циклона или системы очистки.

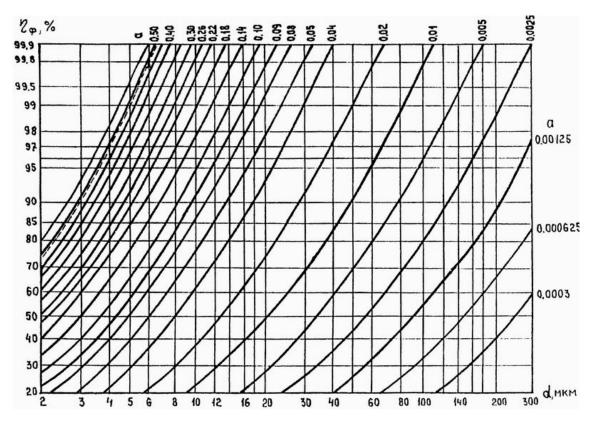


Рис. 7. Номограмма для определения фракционной эффективности циклона СТФ-Ц

3.3. Пример выполнения работы

Задание: подобрать по заданным исходным данным циклон СТФ-Ц, определить его эффективности (фракционную и общую) при работе в первой ступени очистки, рассчитать эффективность пылеулавливания системы из двух ступеней очистки и потери давления в ней, оценить затраты мощности на пылеулавливание.

Исходные данные:

- 1. Расход газа (воздуха), поступающего в циклон первой ступени очистки при производительности АБЗ 25 т/ч, $L = 8000 \text{ м}^3/\text{ч}$ (2,22 м $^3/\text{c}$).
 - 2. Концентрация пыли на входе в циклон $\mu = 90 \text{ г/м}^3$.
 - 3. Температура поступающего в аппарат газа (воздуха) $t = 180 \, ^{\circ}\text{C}$.
 - 4. Пыль кварцевая с плотностью частиц $\rho_{\pi} = 2650 \text{ кг/м}^3$.
- 5. Дисперсный состав пыли характеризуется данными, привеленными в табл. 1.

Последовательность расчета:

- 1. По данным прил. А для расхода $L = 8000 \text{ м}^3/\text{ч}$ выбираем циклон СТФ-Ц со следующими размерами (рис. 8):
 - 1) внутренний диаметр циклона D = 800 мм;
 - 2) внутренний диаметр выхлопной трубы циклона d = 480 мм;
 - 3) внутренний диаметр пылевыпускного отверстия $d_1 = 240$ мм;
 - 4) высота входного патрубка a = 526 мм;
 - 5) ширина входного патрубка b = 160 мм;
 - 6) ширина входного патрубка на входе $b_1 = 208$ мм;
 - 7) длина входного патрубка l = 480 мм;
 - 8) высота выхлопной трубы h = 1688мм;
 - 9) высота цилиндрической части корпуса циклона $h_1 = 1104$ мм;
 - 10) высота конической части $h_2 = 784$ мм;
 - 11) диаметр конической части выхлопной трубы $d_2 = 660$ мм;
 - 12) диаметр конической части корпуса циклона $d_3 = 952$ мм;
 - 13) диаметр колпака $d_4 = 640$ мм;
 - 14) высота внутреннего бункера $h_3 = 480$ мм;
 - 15) высота наружного бункера $h_4 = 570$ мм;
 - 16) диаметр наружного бункера $d_5 = 1140$ мм;
 - 17) диаметр наружного корпуса $D_1 = 960$ мм;
 - 18) высота выхлопного патрубка верхней улитки $a_1 = 528$ мм;

- 19) ширина выхлопного патрубка верхней улитки $b_2=208$ мм; 20) диаметр выхлопной трубы верхней улитки $d_6=230$ мм; 21) полная высота циклона H=3648 мм;
- 22) толщина стенки циклона S = 5 мм.

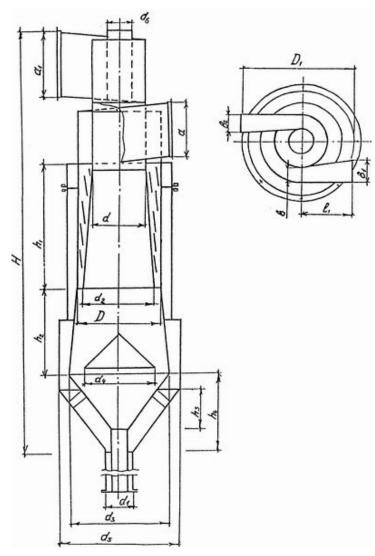


Рис. 8. Конструктивные параметры циклона СТФ-Ц

2. Скорость газа во входном сечении циклона

$$w = \frac{L}{3600 F} = \frac{8000}{3600 \cdot 0,526 \cdot 0,208} \cong 20 \text{ m/c},$$

где $F = a \cdot b_1$ – площадь входного отверстия циклона, м².

3. Условная скорость газа в корпусе циклона

$$w_{\text{II}} = \frac{4L}{\pi \cdot D_1^2} = \frac{4 \cdot 8000}{3600 \cdot 3,14 \cdot 0,96^2} \cong 3,1 \text{ M/c}.$$

- 4. На основании данных табл. 1 выполним оценку дисперсного состава пыли, которая необходима для установления фракционной и общей эффективности циклона.
- 4.1. По табл. 1 определяем исходные данные для вычисления параметров функций распределения частиц по фракциям. При этом находим суммарные выходы по плюсу P(d) и минусу $P_1(d)$, выходы фракций на единицу длины интервала $p_i/\Delta d$. Табл. 2 заполняется следующим образом. Начальный суммарный выход по минусу $P_1(d)$ принимается равным 100 %, а начальный выход по плюсу P(d) равен выходу по массе самой крупной фракции 18,7 %. Далее ячейки заполняются согласно методике, приведенной в табл. 2. Для заполнения графы 6 необходимо определить Δd (мкм) разность крайних диаметров частиц одного интервала, т. е. $\Delta d = d_{\text{max}} d_{\text{min}}$.

Полученные данные сводим в табл. 2.

4.2. Руководствуясь расчетными данными (табл. 2) строим график суммарных выходов по плюсу P = f(d) (см. рис. 9). Из этого построения следует, что определяющий размер частиц $d_e = 32$ мкм (для P = 36,8 %), а коэффициент неоднородности смеси частиц по фракциям, как угловой коэффициент прямой на рис. 9, $n = \text{tg}\alpha = 36,8/32 = 1,15$.

Таблица 2 Исходные данные для определения параметров функций распределения частиц по фракциям $P_i(d)$ и $f_1(d)=p_i/\Delta d$

	Размер	Средний	Выход	Суммарные вы	Выход фракций	
	частиц фракции d_i , мкм	размер фракций <i>d</i> , мкм	фракции по массе, p_i , %	по плюсу $P(d)$ по минусу $P_1(d)$		на единицу длины интервала $p_i/\Delta d$, %/мкм
	1	2	3	4	4 5	
Α	40–60	50	18,70	(A3) 18,70	100	0,94
Б	30–40	35	11,80	(A4 + B3) 30,50	(A5 – A4) 81,30	1,18
В	20-30	25	17,70	(64 + 83) 48,20	(A5 - B4) 69,50	1,77
Γ	15–20	17,50	11,44	$(B4 + \Gamma 3)$ 59,64	(A5 – B4) 51,80	2,29
Д	10–15	12,50	13,14	$(\Gamma 4 + Д3)$ 72,73	$(A5 - \Gamma 4)$ 40,36	2,63
Е	7–10	8,50	8,52	(Д4 + Е3) 81,30	(А5 – Д4) 27,22	2,84
Ж	5–7	6	3,41	(Е4 + Ж3) 84,71	(A5 – E4) 18,70	1,70
3	3–5	4	8,07	($ ($ $ $	(А5 – Ж4) 15,29	4,04
И	1–3	2	5,24	(34 + И3) 98,02	(A5 - 34) 7,22	2,62
К	< 1	0,5	1,98	(И4 + К3) 100	(A5 - H4 = K3) 1,98	1,98

4.3. Размер частиц d_e может быть также вычислен по формуле (6). Для этого необходимо и достаточно знать два значения P_1 и P_2 , соответствующие размерам фракций d_1 и d_2 . Из расчета (табл. 2) имеем для $d_1=50$ мкм — $P_1=18,7$ % и для $d_2=8,5$ мкм — $P_2=81,3$ %. По этим данным, воспользовавшись формулой (5), вычисляем коэффициент неоднородности смеси

$$d_e = \frac{d_2}{\sqrt{2,302 \cdot \lg \frac{100}{P_2}}} = \frac{8,5}{1,18} = 32,2 \text{ MKM}.$$

По формуле (6) размер частиц

$$n = \frac{\lg(\lg\frac{100}{P_1}) - \lg(\lg\frac{100}{P_2})}{\lg d_1 - \lg d_2} = \frac{\lg(\lg\frac{100}{18,7}) - \lg(\lg\frac{100}{81,3})}{\lg 50 - \lg 8,5} = 1,18.$$

4.4. Параметр дифференциальной функции распределения (4)

$$b = \frac{1}{d_e^n} = \frac{1}{32,2^{1,18}} = 0,017.$$

Тогда интегральная и дифференциальная функции распределения частиц пыли по фракциям будут соответствовать формулам (2–4):

$$P = \exp[-(\frac{d}{32,2})^{1,18}]$$
или $P = \exp(-0.017 \cdot d^{1,18});$
$$f_1(d) = \frac{P_i}{\Delta d} = 0.02 \cdot d^{0.18} \cdot \exp(-0.017 \cdot d^{1,18}).$$

5. Согласно формуле (7) общая эффективность циклона СТФ-Ц (первая ступень)

$$\eta_{\text{II}1} = 103,1 - 3,39 \cdot w - 0,253 \cdot \mu + 0,021 \cdot w \cdot \mu + 0,114 \cdot w^2 =$$

$$= 103,1 - 3,39 \cdot 20 - 0,253 \cdot 90 + 0,021 \cdot 20 \cdot 90 + 0,114 \cdot 20^2 = 95,93 \%,$$

или в долях единицы $\eta_{u1} = 0.959$.

6. Параметр a_1 фракционной эффективности циклона СТФ-Ц первой ступени очистки можно определить по формуле (9)

$$a_1 = 0.58\eta_1^9 = 0.58 \cdot 0.959^9 = 0.40.$$

7. Пользуясь формулой (1) для заданных размеров частиц пыли (табл. 2) можно определить фракционную эффективность $\eta_{\phi i}$ первой ступени очистки.

Полученные результаты сведены в табл. 3.

Таблица 3 Результаты определения фракционной эффективности

Средний	Выход	Первая ступень с	очистки	Система из 2 ступеней		
pазмер фракции d , мкм	фракции по массе p_i , %	Фракционная эффективность $\eta_{\phi i}$	$p_i\eta_{\phi i}$	Фракционная эффективность $\eta_{\phi ci}$	$p_i\eta_{\phi ci}$	
50	18,70	1	18,70	1	18,70	
35	11,80	1	11,80	1	11,80	
25	17,70	1	17,70	1	17,70	
17,50	11,44	1	11,44	1	11,44	
12,50	13,14	1	13,14	1	13,14	
8,50	8,52	1	8,52	1	8,52	
6	3,41	0,994	3,39	0,998	3,40	
4	8,07	0,940	7,59	0,970	7,83	
2	5,24	0,670	3,51	0,730	3,83	
0,5	1,98	0,147	0,29	0,171	0,34	

8. Расчетная общая эффективность циклона первой ступени находится как сумма произведения фракционных эффективностей $\eta_{\phi i}$ на массовые выходы p_i фракций пыли. Согласно формуле (12) и данным табл. 3

$$\eta_{\mathbf{I}\mathbf{I}1} = \frac{1}{100} \sum_{i=1}^{m} p_i \cdot \eta_{\phi i},$$

$$\eta_{\text{u1}} = 0.187 + 0.118 + 0.177 + 0.114 +$$

$$+0.131 + 0.085 + 0.034 + 0.076 + 0.035 + 0.003 = 0.960.$$

Таким образом, общая эффективность циклона СТФ-Ц (первая ступень), вычисленная на основании данных об его фракционной эффективности, составляет $\eta_{\rm ul} = 0.960$.

9. На основании формулы (14) потери давления в циклоне СТФ-Ц (первая ступень очистки)

$$\Delta P_1 = \zeta_{II} \cdot \frac{\rho_{\Gamma} \cdot w_{II}^2}{2} = 215 \cdot \frac{0,779 \cdot 3,1^2}{2} = 805 \,\text{Ha},$$

где $\zeta_{\rm u} = 215$ — коэффициент сопротивления циклона;

- $ho_{\Gamma}=0.779$ плотность газа при t=180 °C и B = 760 мм рт. ст. (без учета поправки на влажность газа, т. к. с ее увеличением ho_{Γ} уменьшается).
- 10. Основываясь на данных о фракционной эффективности η_{ϕ} циклона СТФ-Ц (см. табл. 3) и его общей эффективности η_{π^1} , определяем концентрацию пыли на выходе из первой ступени очистки

$$\mu_2 = \mu - \eta_{\text{H}1} \cdot \mu = 90 - 0.96 \cdot 90 = 3.6 \text{ г/м.}^3$$

Таким образом, на работу первой ступени очистки, состоящей из одного циклона СТФ-Ц, потери давления составляют 805 Па, а концентрация пыли на выходе -3.6 г/м^3 при общей эффективности 96 %.

- 11. На первой стадии проектирования для второй ступени очистки используем два параллельно соединенных между собой циклона СТФ-Ц того же типоразмера (см. пункт 1 настоящего расчета). Скорость газа на входе в каждый из циклонов СТФ-Ц второй ступени составит $w_2 = w/2 = 10$ м/с. Для получения наибольшей общей эффективности второй ступени скорость w_2 не должна превышать 8 м/с. Тогда в трубопроводе, соединяющем первую и вторую ступени очистки, можно сделать отвод в атмосферу 20 % запыленного газа с концентрацией $\mu_2 = 3.6 \text{ г/м}^3$. Такое решение представляется целесообразным только в том случае, если суммарные пылевые выбросы из отвода и второй ступени очистки не будут превышать допустимую концентрацию пыли в воздухе (ПДК). Учитывая, что во вторую ступень очистки поступает аэросмесь с относительно малой концентрацией ($\mu_2 = 3.6 \text{ г/m}^3$), примем скорость потока на ее входе $w_2 = 10$ м/с и выполним все расчеты для указанной скорости потока. Общая эффективность пылеулавливания во второй ступени будет несколько меньше, чем для случая, когда скорость оптимальная $(w_2 = 7...8 \text{ m/c}).$
- 12. По методике, изложенной в пункте 4 настоящего расчета, проводим оценку дисперсного состава пыли на входе во вторую ступень очистки. В результате расчетов имеем $d_e = 2.6$ мкм, b = 0.17.
 - 13. Общая эффективность второй ступени очистки (7)

$$\eta_{u2} = 103, 1 - 3, 39 \cdot 10 - 0, 253 \cdot 3, 6 + 0, 021 \cdot 10 \cdot 3, 6 + 0, 114 \cdot 10^2 = 80, 45 \ \%,$$

или в долях единицы $\eta_{112} = 0.805$.

14. Параметр фракционной эффективности (9)

$$a_2 = 0.58 \,\eta_{\text{II}2}^9 = 0.58 \cdot 0.805^9 = 0.082.$$

Тогда суммарный параметр фракционной эффективности системы из двух ступеней очистки

$$a = a_1 + a_2 = 0.40 + 0.082 = 0.482.$$

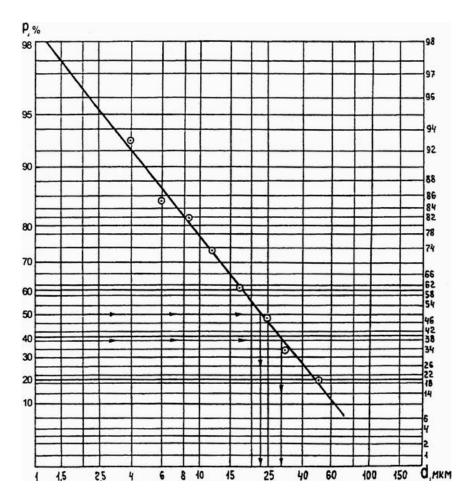


Рис. 9. Зависимость суммарного выхода P по плюсу от размера d частиц

Для определения фракционной эффективности системы из двух ступеней последовательно соединенных циклонов СТФ-Ц разной общей эффективности также можно воспользоваться формулой (11), которая для рассмотренного случая принимает вид

$$\eta_{\phi c} = 1 - \exp(-0.482 \cdot d^{1.4}).$$

Полученные результаты сведены в табл. 3.

Общая эффективность системы пылеулавливания из двух ступеней очистки, составленной из одного циклона СТФ-Ц первой ступени и двух циклонов того же типоразмера второй ступени, согласно формуле (13) $\eta_{\rm up}=0,967$. При этом пылевые выбросы в атмосферу будут составлять $2,97~{\rm r/m}^3$. Расчеты дают общую эффективность системы $\eta_{\rm uc}=0,99$, что соответствует выбросам в атмосферу $1,0~{\rm r/m}^3$. Таким образом, вторая ступень очистки обеспечивает уменьшение пылевых выбросов с $3,6~{\rm r/m}^3$ до $1,0...2,97~{\rm r/m}^3$.

15. Потери давления во второй ступени очистки при условии скорости газа в корпусе циклона $w_2 = w_1/2 = 3,1/2 = 1,55$ м/с

$$\Delta P_2 = \zeta \cdot \frac{\rho_{\Gamma} \cdot w_2^2}{2} = 215 \cdot \frac{0,779 \cdot 1,55^2}{2} = 201 \,\text{Ha}.$$

16. Суммарные потери давления в двух ступенях очистки

$$\Sigma P = \Delta P_1 + \Delta P_2 = 805 + 201 = 1006 \,\Pi a.$$

17. Полученное значение потерь давления характеризует сопротивление непосредственно очистных агрегатов. Потери давления всей системы очистки будут включать потери в очистных агрегатах и в системе воздуховодов, воздухозаборных устройствах и др. На основании данных об общих потерях давления и расходе воздуха проводится подбор воздуходувной машины (прил. Б).

Таким образом, применение двухступенчатой системы очистки сухого пылеулавливания обеспечивает эффективность пылеочистки от кварцевой пыли на 97–99 %. При этом в атмосферу выбрасывается аэросмесь с концентрацией 1,0–2,97 г/м³, содержащая частицы кварцевой пыли размером менее 2 мкм (\approx 56 %), 2–4 мкм (\approx 39 %), 4–6 мкм (\approx 5 %). Надо отметить, что частицы размером 6 мкм улавливаются в этой системе на 99,8 %, размером 4 мкм на 97 %, размером 2 мкм на 73 % и размером менее 1 мкм всего лишь на 17,1 %.

В итоге вторая ступень очистки из двух циклонов СТФ-Ц обеспечивает снижение запыленности газовых выбросов с 3,6 до 2,97 г/м³, что позволяет выполнить требования норм ПДВ.

ЗАКЛЮЧЕНИЕ

Методические указания к проведению расчетно-графической работы «Расчет циклона СТФ-Ц» дают возможность студентам специальности «Теплогазоснабжение, вентиляция и охрана воздушного бассейна» изучить теоретические положения по подбору циклонов и на практике подобрать по соответствующим пылегазовым выбросам циклон с конкретными техническими характеристиками для обеспечения эффективности очистки газовых выбросов.

Литература

- 1. Коузов, П.А. Основы анализа дисперсного состава промышленных пылей и измельченных материалов / П.А. Коузов. 3-е изд., перераб. Л.: Химия, 1987. 264 с.: ил.
- 2. Банит, Φ .Г. Пылеулавливание и очистка газов в промышленности строительных материалов / Φ .Г. Банит, А.Д. Мальгин. М.: Стройиздат, 1979. 351 с.: ил.
- 3. Кислов, Н.В. Аэродинамика измельченного торфа / Н.В. Кислов. Минск: Наука и техника, 1987. 147 с.
- 4. Теплогазоснабжение и вентиляция: курсовое и дипломное проектирование / под ред. проф. Б.М. Хрусталева. Минск: ДизайнПРО, 1997. 384 с.: с ил.
- 5. Рекомендации по проектированию и расчету пылеуловителей типа циклон для предприятий стройиндустрии / Н.В. Кислов [и др.]. Минск: Технопринт, 2001.-40 с.: ил.
- 6. Алиев, Г.М.-А. Техника пылеулавливания и очистки промышленных газов: справочник / Г.М.-А. Алиев. М.: Металлургия, 1986. 544 с.: ил.
- 7. Очистка промышленных газов от пыли / В.Н. Ужов [и др.]. М.: Химия, 1981. 392 с.: ил.
- 8. Внутренние санитарно-технические устройства: в 3 ч. / под. ред. Н.Н. Павлова и Ю.И. Шиллера. Ч.2: Вентиляция и кондиционирование воздуха. 4-е изд., перераб. и доп. М.: Стройиздат, 1992. 416 с.: ил. (Справочник проектировщика).
 - 9. Циклон: патент Респ. Беларусь № 3781 от 28.09.1998 г.

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ А

Типаж циклонов СТФ-Ц

№	L , ${ m M}^3/{ m H}$	Внут- ренний диа- метр циклона <i>D</i> , мм	Внутренний диаметр выхлопной трубы d_{Tp} , мм	Внутренний диаметр пылевыпускного отверстия d_1 , мм	Высота входного патрубка a = 0.56 D, мм	Ширина входного патрубка $b=0,2\ D,$ мм	Ширина входного патрубка на входе $b_1 = 0,36$ D , мм	Длина входно-го патрубка $l = 0,6 D,$ мм	Высота выхлоп- ной трубы $h = 2,11 \ D,$ мм	Высота цилин- дриче- ской части корпуса циклона $h_1 = 1,38$ D , мм	Высота конической части $h_2 = 0.98$ D , мм
	1	2	3	4	5	6	7	8	9	10	11
1	3000	500	300	170	330	100	130	300	1055	690	490
2	6000	700	420	220	462	140	182	420	1477	966	686
3	8000	800	480	240	528	160	208	480	1688	1104	784
4	12000	1000	600	300	660	200	260	600	2110	1380	980
5	18000	1200	720	360	792	240	312	720	2532	1656	1176
6	28000	1500	900	450	990	300	390	900	3165	2070	1470
7	32000	1600	960	480	1050	320	416	960	3376	2200	1570
8	40000	1800	1080	540	1188	360	468	1080	3798	2484	1760

№	Диа- метр кони- ческой части выхлоп хлоп- ной трубы d_2 , мм	Диаметр конической части корпуса циклона $d_3 = 1,19 D$, мм	Диаметр колпака $d_4 = 0.8$ D , мм	Высота внут-реннего бункера <i>h</i> 3, мм	Высота наруж ного бункера h_4 , мм	Диа- метр наруж ного бунке- ра d_5 , мм	Диа- метр наруж- ного корпу- са D_1 , мм	Высота выхлоп- ного патрубка верхней улитки a_1 , мм	Ширина выхлопного патрубка верхней улитки b_2 , мм	Диаметр выхлоп- ной трубы верхней улитки d_6 , мм	Пол- ная высо- та цик- лона <i>H</i> , м	Тол- щина стен- ки цик- лона <i>S</i> , м
	12	13	14	15	16	17	18	19	20	21	22	23
1	400	595	400	300	360	715	600	330	130	140	2280	3
2	590	833	560	420	500	1000	640	462	182	200	3192	3
3	660	952	640	480	570	1140	960	528	208	230	3648	5
4	850	1190	800	560	720	1430	1230	660	260	276	4560	5
5	1000	1428	960	710	860	1710	1440	792	312	350	5472	6
6	1340	1785	1200	900	1070	2140	1700	990	390	420	6840	6
7	1400	1904	1280	950	1150	2290	1800	1056	416	450	7296	6
8	1600	2142	1440	1070	1300	2570	2000	1188	468	500	8208	8

ПРИЛОЖЕНИЕ Б

ПОДБОР ВОЗДУХОДУВНОЙ МАШИНЫ

Воздуходувную машину подбирают руководствуясь значением расхода воздуха и общими потерями давления в системе [8]. Общие потери давления слагаются из потерь давления, полученных при расчете установки, и потерь давления на неучтенные сопротивления, связанные с качеством оборудования и монтажа. Величину неучтенных потерь давления принимают равной 10–15 % от суммарных потерь давления, полученных при расчете:

$$\Delta P = (1, 1 \cdots 1, 15) \cdot \sum \Delta P_i \tag{B1}$$

Требуемый расход воздуха

$$L = L' \cdot m, \tag{62}$$

где m — коэффициент, учитывающий потери воздуха через загрузочное устройство. Для шлюзовых питателей барабанного типа m=1,10...1,20.

Требуемую мощность электродвигателя воздуходувной машины

$$N = \frac{L \cdot P}{1000 \cdot \eta_{\text{B.M}} \cdot \eta_{\text{np}}} \cdot k_1, \kappa Bm$$

где $\eta_{\text{в.м}}$ – КПД воздуходувной машины, определяемый по графикухарактеристике [8];

 $\eta_{np}- K\Pi Д$ передачи;

 k_1 – коэффициент запаса мощности на пусковой момент, выбирают по прилагаемой таблице.

КПД передачи и коэффициент запаса мощности

N, кВт	k_1	Вид передачи	$\eta_{\pi p}$
< 0,5	1,5	Непосредственная посадка на вал	1,0
0,51–1	1,3	электродвигателя	
1,01–2	1,2	Соединение валов вентилятора	0,98
2,01-5	1,15	и электродвигателя при помощи муфты	
> 5	1,10	Клиноременная	0,95
		Плоскоременная	0,90

Учебное издание

РАСЧЕТ ЦИКЛОНА СТФ-Ц

Методические указания к выполнению расчетно-графической работы для студентов специальности 1-70 04 02 «Теплогазоснабжение, вентиляция и охрана воздушного бассейна»

Составители: СИЗОВ Валерий Дмитриевич КОРОТКИЙ Владимир Николаевич БРАКОВИЧ Игорь Сергеевич

Редактор Е.О. Коржуева Компьютерная верстка А.Г. Занкевич

Подписано в печать 05.10. 2011. Формат $60\times84^1/_{16}$. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 2,03. Уч.-изд. л. 1,59. Тираж 100. Заказ 332.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск. Министерство образования Республики Беларусь