УДК 621.181

Снижение выбросов в ГТУ различного назначения

Дегтяренко Д. В. Научный руководитель – д.т.н., профессор КАРНИЦКИЙ Н. Б.

В настоящее время загрязнение окружающей среды носит глобальный характер, поскольку вредные компоненты негативно влияют на здоровье населения, фауну и флору. Это влияние не ограничивается прилегающей территорией, а распространяется на сотни и тысячи километров. Поступления в атмосферу с продуктами сгорания ГТУ оцениваются следующими величинами: оксиды азота - 140, оксид углерода - 210, углекислый газ - 81,5 тыс.т/год. Взвешенная концентрация загрязняющих веществ при этом составляет: оксидов азота - 180 мг/м³, оксида углерода - 250 мг/м³, в связи с чем значительно выросли расходы на охрану окружающей среды. [1]

Показатели выбросов оксидов азота и углерода с продуктами сгорания для некоторых ГТУ указаны в таблице, из которой видно, что у различных турбоустановок мощность выбросов оксидов азота, наиболее сильно влияющие на здоровье человека и экологию, значительно отличается между собой. Концентрация оксидов азота в установках без регенерации ниже, чем в регенеративных установках, поскольку в них температура воздуха на входе в камеру сгорания выше.

Таблица 1 – Показатели выбросов для некоторых ГТУ

таолица т тюказатели выоросов для пекоторых т т у									
Тип ГТУ	Расход продуктов сгорания, нм ³ /с			Мощность выброса NO_x , Γ/c			Мощность выброса СО, г/с		
ГТ-700-5, ГТ-6-750, ГТН-6, ГТ-750-	35,4	35,4	37,1	6,89	6,89	3,57	1,72	1,72	5,35
6, ГПА-Ц-6,3, ГПУ-6, ГПА-Ц-8	37,1	45,6	47,1	3,57	15,5	3,04	5,35	2,66	6,52
ГТК-10, ГПУ-10, ГТН-10И, ГТНР-10	23,3	47,8	66,5	2,41	4,83	22,6	5,18	6,58	2,58
ГТК-16, ГТН-16, ГТН-16М-1, ГПА-	68,1	40,6	66,6	4,3	7,68	11,7	1,84	1,92	1,95
Ц-16, ГПУ-16, ГТН-25И, ГТН-25,	79,2	67,4	66,6	7,57	11,6	6,88	1,51	12,9	13,8
ГТН-25-1, Коберра-182, Центавр	80,5	76,2	92,5	7,73	6,4	12,7	30,9	0,73	2,63
	117,3	80,2	60,7	13,4	12,5	7,84	39,2	37,8	8,13
	12,9			1,66			0,62		

Согласно [2], при работе на природном газе концентрация оксидов азота не должна превышать $150~{\rm Mr/hm^3}$, оксидов углерода - $100~{\rm Mr/hm^3}$. Современные ГТУ выбрасывают оксиды азота с концентрацией в пределах $70\text{-}100~{\rm Mr/hm^3}$.

К методам снижения вредных выбросов с продуктами сгорания относят: впрыск воды или ввод пара в камеру сгорания для снижения максимальной температуры газов в зоне горения, использование химической очистки дымовых газов, модернизацию камер сгорания и их горелочных устройств и т.д. Недостатки первого метода: большой расход воды, необходимость её специальной предварительной очистки от механических примесей и солей жесткости. Примерный суточный расход воды только на один агрегат может доходить до 50-60 м³/сут, что вызывает необходимость отказаться в некоторых случаях от этого метода снижения выбросов NO_x.

Методы химической очистки дымовых газов от оксидов азота делят на три группы:

- 1. Окислительные. Основаны на окислении оксида азота в диоксид с последующим его поглощением разного рода поглотителями;
- 2. Восстановительные. Основаны на восстановлении оксида азота до азота и кислорода с применением разного рода катализаторов;
- 3. Сорбционные. Основаны на поглощении оксидов азота разного рода сорбентами (например, адсорбция диоксида азота торфом, водными растворами щелочей и т.п.).

Применительно к ГТУ на газопроводах, основными направлениями борьбы с вредными выбросами с продуктами сгорания следует считать разного рода реконструкции камер сгорания, специальную организацию процесса сжигания топлива, включая метод

предварительного смешения определенной порции воздуха и топлива перед подачей их в камеру сгорания и т.п.

Многочисленные исследования процессов горения топлива в камерах сгорания ГТУ показывают, что основным направлением по снижению выбросов оксидов азота следует считать уменьшение объема зон горения с максимальным уровнем температуры. Это происходит, прежде всего, из-за повышения качества процесса смесеобразования, обеднения рабочей смеси на участках формирования фронта пламени, организации ступенчатого подвода топлива и воздуха по длине камеры сгорания.

Так, реконструкция камер сгорания на агрегатах типа ГТК-10 за счет установки новых регистров и изменения диаметра отверстий в горелках, перераспределение воздушных потоков первичного воздуха, использовании «микрофакельного» горения, проведенные на ряде компрессорных станциях предприятия «Мострансгаз» позволили снизить содержание NO_x, в выхлопных газах более чем в два раза. [3]

В последние годы активно работают над созданием двухзонных камер сгорания: в первичную зону горения воздух подается в меньшем количестве, чем это теоретически необходимо для горения (α_1 =0,80-0,90), в результате чего происходит снижение максимальной температуры горения в зоне факела, снижение содержания кислорода в ядре факела и, как следствие, уменьшение скорости образования оксидов азота. Во вторую зону горения вводится уже избыточное количество воздуха (α_2 >2). Из-за разбавления продуктов сгорания воздухом, последующее горение протекает также при более низкой температуре, вследствие чего во вторичной зоне горения оксиды азота практически не образуются. Применение двухстадийного горения топлива в камерах сгорания ГТУ позволяет снизить выход оксидов азота до 45-50% от начального выхода при сжигании природного газа, однако оно связано с разработкой достаточно сложной конструкции камеры сгорания, что не в полной мере компенсируется снижением эмиссии NO_x .[4]

В настоящее время наиболее простым и дешевым способом снижения выбросов оксидов азота с продуктами сгорания считаается способ, основанный на предварительном смешении топлива с воздухом (обедненная смесь) до подачи компонентов в зону горения, то есть качество предварительной подготовки топливо воздушной смеси является основным направлением по снижению образования NO_x при сжигании природного газа в камерах сгорания $\Gamma T Y$, что подтверждается работой $\Gamma T Y$ на магистральных газопроводах.

Литература

- 1. РД 51-162-92 «Каталог удельных выбросов загрязняющих веществ газотурбинных установок ГПА. ВНИИГАЗ, 1993 (2004).
- 2. ГОСТ ИСО 11042-1-2001 «Установки газотурбинные. Методы определения выбросов вредных веществ».
- 3. Газотурбинные технологии. Специализированно-аналитический журнал. Издательство «Медиа Гранд».
- 4. Манушин Э. А. Газовые турбины. Проблемы и перспективы. М.: Энергоатомиздат, 1986 168 с.