Е.С. ГОЛУБЦОВА, д-р техн. наук (БНТУ), Н.Б. КАЛЕДИНА (БГТУ), Н.Б. БАЗЫЛЕВ, канд. физ.-мат. наук (ИТМО им. А.В. Лыкова НАН Беларуси)

ВЛИЯНИЕ СОСТАВА ЗАЩИТНОГО ГАЗА НА СВОЙСТВА НИЗКОЛЕГИРОВАННЫХ И УГЛЕРОДИСТЫХ СТАЛЕЙ ПОСЛЕ СВАРКИ. СООБЩЕНИЕ 1. ВЛИЯНИЕ СОСТАВА ЗАЩИТНОГО ГАЗА НА КАЧЕСТВО СВАРНЫХ СОЕДИНЕНИЙ

В качестве защитных газов при дуговой сварке плавлением ТИГ и МИГ/МАГ применяют инертные газы (Ar, He), активные газы (CO₂, N₂) либо смеси этих газов (Ar + He, Ar + N₂, Ar + H₂, Ar + CO₂). Выбор газа осуществляют исходя из способа сварки, свойств свариваемого металла, а также требований к сварным соединениям. Состав защитного газа является наиболее важным фактором, влияющим на образование брызг. Использование чистого CO₂ в качестве защитного газа приводит к образованию большого количества брызг (результат нестабильности дуги). К тому же увеличивается количество исходных дефектов в металле шва, что неблагоприятно сказывается на качественных характеристиках и механических свойствах сварных соединений [1, 2].

Очевидно, что чем больше размер брызг, тем большее количество теплоты они содержат и чем больше содержание CO_2 в смеси с аргоном, тем больше брызг в процессе МАГ-сварки.

В таблице 1 показано, как доля брызг с диаметром более 0,8 мм увеличивается с ростом процента CO₂ в смеси с аргоном.

Таблица 1 – Количество крупных брызг в зависимости от содержания CO₂ в аргоне

Содержание CO_2 в аргоне % (x)	10	20	30	40	50	60	70	80	90	100
Количество брызг > 0,8 мм % (у)	25,9	40	56,4	56,5	63,5	61,1	68,2	75,2	78	80

Зависимость количества брызг > 0,8 мм (y) от содержания CO_2 %, (x) попытаемся представить в виде функции

$$y = a_1 u^2 + b_1 u + c_1, (1)$$

где $u = \frac{x - \overline{x}}{h}$: \overline{x} – среднее значение количества брызг в %; h – шаг, равный 10 %.

Для получения зависимости (1) воспользуемся методикой работы [3].

Коэффициенты уравнения (1) рассчитаем по формулам: (при четном числе данных *N*)

$$a_1 = \frac{1}{12H_2} [3\sum_{k=1}^N y_k (2k - N - 1)^2 - (N^2 - 1)\sum_{k=1}^N y_k];$$
(2)

$$b_1 = \frac{1}{2H_1} \sum_{k=1}^{N} y_k (2k - N - 1); \qquad (3)$$

$$c_1 = \overline{y} - \frac{H_1}{N} a_1. \tag{4}$$

Значения H_1 и H_2 можно, в свою очередь, рассчитать по формулам:

$$H_1 = \frac{N(N^2 - 1)}{12};$$
 (5)

$$H_2 = \frac{N(N^2 - 1)(N^4 - 4)}{180},\tag{6}$$

N = 2M; M = 5.

Значения H_1 и H_2 можно также найти в таблице X при N = 10 [3]. В конкретном случае при N = 10 $2H_1(N) = 165$; $12H_2(N) = 6336$.

Для упрощения расчетов коэффициентов *a*₁, *b*₁ и *c*₁ представим таблицу 1 в виде таблицы 2.

k	$x_1, \%$	<i>y</i> ₁ , %	l = 2k - 8	yl	yl^2
1	10	25,9	-9	-223,1	2097,9
2	20	40,0	-7	-280	1960,0
3	30	56,4	-5	-282	1410,0
4	40	56,5	-3	-169,5	508,5
5	50	63,5	-1	-63,5	63,5
6	60	61,1	1	+61,1	61,1
7	70	68,2	3	+204,6	613,8
8	80	75,2	5	+376	1280,0
9	90	78,0	7	+546	3827,0
10	100	80,0	9	+720	6480,0
<i>N</i> = 10	550	604,8	_	879,6	18896,8

Таблица 2 – Исходные данные для расчета коэффициентов a_1, b_1 и c_1

В результате $a_1 = -0,563, b_1 = 5,33, c_1 = 64,63$. Уравнение (1) запишем в виде

$$y = -0,563u^2 + 5,33u + 64,63.$$
(7)

Проверка адекватности этого уравнения подтвердила эту гипотезу, т.к. дисперсия адекватности

$$S_{ay}^{2} = \frac{\sum_{k=1}^{N} (y_{u} - y_{p})^{2}}{N - m},$$
(8)

где m – число значимых коэффициентов уравнения (7), а y_p – расчетное значение у в n-й строке оказалась равной

$$S_{ay}^2 = \frac{146,329}{10-3} = 20,904,$$

критерий Фишера $F = \frac{S_{ay}^2}{S_y^2} = \frac{20,904}{9,145} = 2,286 < F_{\kappa p} = 3,4$ при

 $\alpha = 0,05; f_1 = 7; f_2 = 9; S_y^2 = (3,024)^2 = 9,145,$ где S_y^2 – дисперсия опытов, S_y – ошибка опытов (5 % от \overline{y}).

Напомним, $u = \frac{x - \bar{x}}{h} = \frac{x - 55}{10} = 0,1x - 5,5$.

Пользуясь уравнением (7), можно рассчитать значение y при любой доле CO₂ (%).

По данным таблицы 1 можно представить зависимость между y (% размера брызг) и x (долей CO₂, %) в виде линейного уравнения

$$y = a + bx, \tag{9}$$

т.е. в виде линейной корреляции между у и х.

Для этого по формуле рассчитаем коэффициент парной корреляции *r*_{xy}

$$r_{xy} = \frac{\sum_{i}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}^{N} (x_{i} - \bar{x})^{2} \sum_{i}^{N} (y_{i} - \bar{y})^{2}}},$$
(10)

где \bar{x} и \bar{y} – среднее значение доли CO₂ и количества крупных брызг (%). Он оказался равным $r_{xy} = 0.9455 > r_{xy} = 0.7079$ даже при $\alpha = 0.01; f = N = 10.$

Коэффициент уравнения (9) а и b рассчитали по формулам:

$$b = \frac{\sum_{i}^{N} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i}^{N} (x_{i} - \bar{x})^{2}} = 0,53, \qquad (11)$$

$$a = \overline{y} - b\overline{x} = 31,14. \tag{12}$$

Следовательно, выражение (9) можно представить в виде

$$y = 31,14 + 0,53x. \tag{13}$$

Это уравнение также адекватно, т.к. дисперсия адекватности $S_{ay}^2 = \frac{309,339}{10-2} = 38,042$, а $F = \frac{38,042}{9,145} = 4,16 < F_{\kappa p} = 5,5$ при

 $\alpha = 0,01; f_1 = 8 \text{ M} f_2 = 9.$

Еще более точную зависимость между у и х в данном случае можно представить в виде

$$y = 9,886x^{0,463}.$$
 (14)

Здесь
$$S_{ay}^2 = \frac{137,8807}{10-2} = 17,2, a$$
 $F = \frac{17,2}{9,145} = 1,825 < F_{\kappa p} = 3,1$ при

 $\alpha = 0,05; f_1 = 8; f_2 = 9.$

Графическое представление полученных моделей (13) и (14) приведено на рисунке 1.

Рисунок 1 – Графическое представление моделей (13) и (14)

Список литературы

1. Дмитрик, В.В. К образованию брызг расплавленного металла при дуговой сварке в среде углекислого газа / В.В. Дмитрик, А.В. Глушко // Энергосбережение. Энергетика. Энергоаудит. – № 12 (94). – 2011. – С. 43–49.

2. Сливинский, А.А. Теплофизические особенности импульсной дуговой сварки неплавящимся электродом в защитных газах (обзор) / А.А. Сливинский, Л.А. Жданов, В.В. Коротенко // Автоматическая сварка. – № 11. – 2015. – С. 32–38.

3. Румшиский, Л.З. Математическая обработка результатов эксперимента. Справочное пособие / Л.З. Румшиский. – М: Наука, 1971. – 192 с.