Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра физики

СПЕКТР АТОМА ВОДОРОДА

Методические указания к лабораторной работе по физике для студентов инженерно-технических специальностей

> Минск БНТУ 2011

УДК 537.226 (076.5) ББК 22.3я7 К 39

Составители: П.Г. Кужир, Н.П. Юркевич, Г.К. Савчук

Рецензенты: *М.А. Князев, В.А. Потачиц*

В работе описываются закономерности формирования спектра атома водорода. Представлены сведения об уравнении Шредингера и волновых функциях, квантовых числах, собственных значениях энергии электрона в атоме водорода.

Методические указания к лабораторной работе предназначены для студентов инженерно-технических специальностей всех форм обучения.

Цель работы: изучить спектр излучения атома водорода, рассчитать энергии стационарных состояний для серии Бальмера.

Приборы и принадлежности: спектрометр, водородная лампа, блок питания.

Постулаты Бора

Все вещества состоят из атомов и молекул. Структура атома была экспериментально установлена Резерфордом в 1911 г. По Резерфорду в центре атома находится положительно заряженное ядро, в котором сосредоточена основная масса атома, а вокруг ядра движутся отрицательно заряженные электроны. В целом атом электрически нейтрален, так как ядра химических элементов, состоящие из положительно заряженных протонов и нейтральных нейтронов, имеют положительный заряд равный по модулю заряду всех электронов атома. Число электронов в электрически нейтральном атоме равно числу протонов в ядре.

Простейшим атомом является атом водорода. Ядро атома водорода состоит из одного протона, в электрическом поле которого движется один электрон.

Энергетическим уровнем называется значение энергии, которой обладает электрон в атоме. Энергетическое состояние атома водорода определяется тем, какой энергетический уровень занимает его электрон. Энергетические уровни и возможные переходы из одного энергетического состояния в другое в атоме водорода были впервые объяснены с помощью постулатов Бора.

Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные состояния, находясь в которых атом не излучает.

Второй постулат Бора (правило частот): при переходе электрона из одного стационарного состояния в другое излучается или поглощается один фотон с энергией

$$hv_{kn} = \left| E_k - E_n \right|,\tag{1}$$

где n, k – номера энергетических уровней электрона в атоме;

 v_{kn} – частота фотона; $h = 6.63 \cdot 10^{-34} \, \text{Дж} \cdot \text{с} - \text{постоянная} \, \text{Планка}.$

При $E_k > E_n$ происходит излучение фотона, при $E_k < E_n$ его поглощение.

Фотон – это квант энергии электромагнитного излучения.

Электромагнитное излучение имеет двойственную природу. С одной стороны, электромагнитное излучение может проявлять корпускулярные свойства и рассматриваться как поток световых частиц (фотонов). С другой стороны, электромагнитное излучение – это волны, характеризующиеся интенсивностью излучения J и частотой ν или длиной волны λ .

Интенсивностью излучения Ј называется средняя энергия, излучаемая в единицу времени с единицы площади поверхности вещества.

Зависимость интенсивности излучения Ј от частоты излучения у представляет собой оптический спектр электромагнитного излучения

Спектральные излучения линии атома водорода (рис. 1, а) возникают при переходах электрона с более высоких энергетических уровней на более низкие энергетические уровни.

Переходы электрона с низких на более высокие энергетические уровни приводят к возникновению линий поглощения, которые в совокупности образуют спектр **поглощения** (рис. $1, \delta$).

J

Рис. 1. Вид спектров: a — излучения; δ — поглощения

Частоты линий спектров поглощения и излучения совпадают, так как любой атом, в том числе и атом водорода, излучает и поглощает только на определенных частотах.

Спектральные серии атома водорода

Соотношение (1) позволяет получить серии излучения атома водорода (рис. 2).

Серией называется совокупность линий излучения с частотами \mathbf{v}_k , полученная при переходе электрона атома с более высоких энергетических уровней на более низкий общий энергетический уровень.

Для атома водорода характерны следующие серии излучения: серия Лаймана, серия Бальмера, серия Пашена, серия Брекета, серия Пфунда и т. д.

Серия Лаймана соответствует переходам электрона в атоме водорода с более высоких на основной (первый) энергетический уровень:

$$v_k = R \left(\frac{1}{1^2} - \frac{1}{k^2} \right),$$

где $k = 2, 3, 4, \dots$ — порядковые номера энергетических уровней, лежащих выше основного;

 $R = 3,29 \ 10^{15} \ \mathrm{c}^{-1}$ — постоянная Ридберга.

Серия Лаймана находится в ультрафиолетовой области.

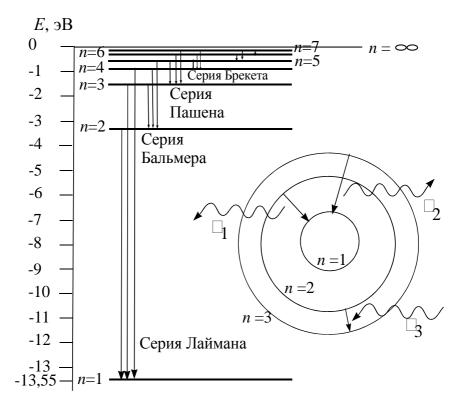


Рис. 2. Уровни энергии стационарных состояний электрона в атоме водорода и схема боровских круговых орбит с переходами между ними при излучении (v_1 и v_2) и поглощении (v_3) фотонов

Серия Бальмера, лежащая в видимом диапазоне спектра, соответствует переходам электрона с более высоких уровней на второй энергетический уровень:

$$v_k = R\left(\frac{1}{2^2} - \frac{1}{k^2}\right),$$

где k = 3, 4, 5... — порядковые номера энергетических уровней, лежащих выше второго энергетического уровня.

Затем следуют серии, лежащие в инфракрасной области:

серия Пашена:
$$v_k = R\left(\frac{1}{3^2} - \frac{1}{k^2}\right), k = 4, 5, 6,...$$

серия Брекета:
$$v_k = R\left(\frac{1}{4^2} - \frac{1}{k^2}\right), k = 5, 6, 7, \dots$$

серия Пфунда:
$$v_k = R\left(\frac{1}{5^2} - \frac{1}{k^2}\right), \ k = 6, 7, 8, \dots$$

серия Хэмфри:
$$v_k = R\left(\frac{1}{6^2} - \frac{1}{k^2}\right), k = 7, 8, 9...$$

Графически некоторые из перечисленных серий изображены на рис. 2. Уровни энергии на рис. 2 изображены горизонтальными линиями в определенном масштабе. Линии, соединяющие отдельные уровни энергии, дают представление о спектральных линиях, излучаемых атомом при изменении его энергии.

Уравнение Шредингера. Волновые функции

Французский ученый Луи де Бройль, развивая представления о двойственной корпускулярно-волновой природе света, в 1923 г. выдвинул гипотезу об универсальности корпускулярно-волнового дуализма.

Де Бройль утверждал, что не только фотоны, но и электроны и любые другие микрочастицы наряду с корпускулярными обладают также и волновыми свойствами. Согласно де Бройлю, электрон с одной стороны имеет корпускулярные

характеристики (энергию, импульс), с другой стороны – волновые характеристики – частоту и длину волны.

В. Гайзенберг, учитывая волновые свойства микрочастиц, в 1927 г. пришел к выводу, что для микрочастицы невозможно с заданной точностью одновременно определить координату и проекцию импульса. Согласно соотношению неопределенностей Гайзенберга, микрочастица не может одновременно иметь определенную координату и определенную соответствующую ей проекцию импульса. При этом произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка \hbar

$$\Delta x \Delta p_x \geq \hbar ,$$

$$\Delta y \Delta p_y \geq \hbar$$
,

$$\Delta z \Delta p_z \geq \hbar$$
,

где Δx , Δy , Δz — неопределенность определения координат x, y, z; Δp_x , Δp_y , Δp_z — неопределенность определения проекций импульса на оси координат x, y, z;

$$\hbar = \frac{h}{2\pi} = 1,05 \cdot 10^{-34}$$
 Дж·с.

Из гипотезы де Бройля и соотношений неопределенностей Гейзенберга следует, что законы классической механики не применимы для описания микрообъектов. Так, при точном определении координаты частицы $\Delta x \to 0$, а $\Delta p_x \to \infty$.

Для описания движения и взаимодействия микрочастиц с учетом их волновых свойств используется основное уравнение квантовой механики – уравнение Шредингера.

Уравнение Шредингера для стационарных состояний атома водорода имеет вид

$$-\frac{\hbar^2}{2m} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right) + U\Psi = E\Psi , \qquad (2)$$

где $\Psi(x, y, z)$ – волновая функция;

x, y, z – координаты электрона;

m — масса покоя электрона;

E – полная энергия электрона;

U — потенциальная энергия, которой обладает электрон в атоме водорода.

Основное уравнение квантовой механики является уравнением относительно волновой функции Ψ (x, y,z), **квадрат модуля** $|\Psi|^2$ которой определяет вероятность нахождения электрона в данной области пространства.

Волновая функция не позволяет определить местонахождения электрона в пространстве или траекторию его движения. С помощью волновой функции можно лишь указать, с какой вероятностью электрон может быть обнаружен в различных точках пространства.

Решение уравнения Шредингера позволяет получить собственные значения энергии электрона в атоме и спектр его излучения.

Собственными значениями энергии электрона называются такие значения полной энергии E, при которых волновые функции Ψ удовлетворяют уравнению Шредингера. Только собственные значения энергии наблюдаются на опыте.

Совокупность собственных значений энергии электрона образует энергетический спектр электрона.

Электрон в атоме водорода взаимодействует с ядром. Сила взаимодействия определяется по закону Кулона

$$F = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{r^2},$$

где e — заряд электрона,

r – расстояние от ядра до электрона;

 ϵ_0 – электрическая постоянная.

Потенциальная энергия U электрона в атоме водорода

$$U = -\frac{1}{4\pi\varepsilon_0} \frac{e^2}{r}.$$

Оператором Лапласа Δ называется оператор вида

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$

Тогда уравнение Шредингера (2) для атома водорода может быть записано как

$$\Delta\Psi + \frac{2m}{\hbar^2} (E + \frac{e^2}{4\pi\epsilon_0 r}) \Psi = 0.$$
 (3)

Из решения уравнения (3) получаем волновые функции и собственные значения энергии электрона в атоме водорода. По виду волновых функций можно определить распределение электронной плотности, а собственные значения энергии позволяют рассчитать энергетический спектр электрона в атоме водорода. Кроме этого, решение уравнения Шредингера (3) позволяет получить набор квантовых чисел, которыми описывается энергетическое состояние электрона в центрально-симметричном кулоновском поле ядра атома. Точное решение уравнения (3) представляет собой сложную задачу, поэтому ниже будут рассмотрены только его основные результаты.

Квантовые числа. Принцип Паули

Из решения уравнения Шредингера (3) следует, что энергия электрона в атоме водорода принимает дискретные значения или квантуется:

$$E_n = -\frac{me^4}{8h^2\varepsilon_0^2} \cdot \frac{1}{n^2},$$

где $n = 1, 2, 3, \dots$ – порядковый номер энергетического уровня.

Число *п* называется главным квантовым числом.

Основным состоянием электрона в атоме водорода называется наименьшее значение энергии равное $E_1 = -13,55$ эВ при n = 1.

Согласно решению уравнения (3) энергетическое состояние отдельного электрона в атоме описывается четырьмя квантовыми числами:

1) **главное квантовое число** n = 1, 2, 3... указывает на квантованность (дискретность) энергии электрона в атоме:

$$E_n = -\frac{E_1}{n^2},$$

а также определяет номер электронной оболочки атома.

2) орбитальное квантовое число $l=0,\ 1,\ 2,\ 3...\ (n-1)$ указывает на квантованность механического орбитального момента импульса L_l электрона в атоме:

$$L_l = \hbar \sqrt{l(l+1)} .$$

Орбитальное квантовое число характеризует форму электронного облака.

Для каждой электронной оболочки с номером n возможно (n-1) энер-гетических состояний, определяемых значениями орбитального квантового числа, которые принято обозначать следующим образом: l=0-s-состояние, l=1-p-состояние, l=2-d-состояние, l=3-f-состояние и т.д.

Волновые функции, полученные при решении уравнения Шредингера (3), позволяют определить форму распределения электронной плотности в атоме водорода для различных энергетических состояний (рис. 3), определяемых квантовым числом I.

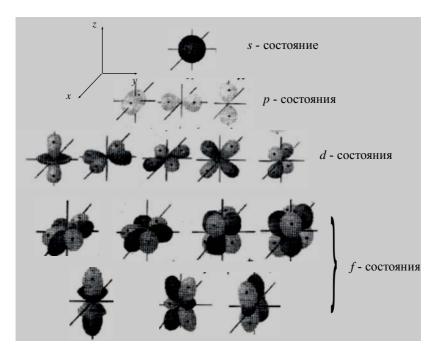


Рис. 3. Формы распределения электронной плотности для различных энергетических состояний электрона в атоме водорода

3) магнитное квантовое число m определяет состояния электрона, различающиеся целочисленными значениями проекций орбитальных моментов L_z на направление z магнитного поля:

$$L_{\tau} = \hbar m$$
,

где m=-l, -(l-1), ..., -1, 0, ..., (l-1), l. Для каждого значения l возможно (2l+1) различных состояний электрона в атоме. Магнитное квантовое число показывает число возможных ориентаций орбитального момента (рис. 4), т.е. возможные ориентации электронного облака в пространстве относительно направления магнитного поля.

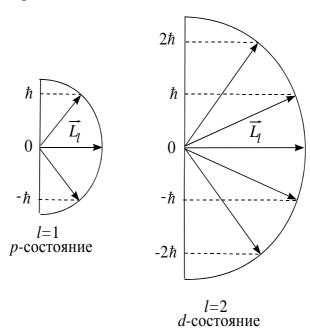


Рис. 4. Пространственное квантование орбитального момента импульса в магнитном поле

Пространственным квантованием называется дискретное изменение ориентации орбитального момента относительно магнитного поля.

4) **спиновое квантовое число** m_s характеризует квантованность **проекции** собственного механического момента

импульса электрона L_{sz} на направление магнитного поля: $L_{sz} = m_s \hbar$. Собственный механический момент импульса электрона L_s называется **спином** и принимает значение равное $L_s = \hbar \sqrt{s(s+1)}$, где $s = \frac{1}{2}$. Спиновое квантовое число m_s принимает два значения: $+\frac{1}{2}$ при ориентации проекции спина по направлению поля и $-\frac{1}{2}$ при ориентации проекции спина против поля. Спиновое квантовое число определяет число возможных ориентаций спина в пространстве относительно направления магнитного поля.

Согласно принципу запрета Паули в любом атоме не может быть двух электронов, находящихся в одинаковых стационарных состояниях, все квантовые числа которых совпадают. Принцип Паули позволяет определить число электронов, обладающих в атоме заданными значениями квантовых чисел. Число электронов, находящихся в состояниях, определяемых главным квантовым числом n, равно $2n^2$. Число электронов, определяемых двумя квантовыми числами n и l, равно 2(2l+1). В состоянии, заданном тремя квантовыми числами (n, l, m) может находиться только два электрона. Поэтому при l=0 может быть только два s-электрона с противоположной ориентацией спинов, при l=1 — только шесть p-электронов, при l=2 — десять d-электронов и т.д.

Спектр атома водорода в квантовой теории

Схема энергетических состояний атома водорода и возможные переходы между ними с точки зрения квантовой теории показаны на рис. 5.

В атоме водорода основным состоянием является 1*s*-состояние с n=1 и l=0.

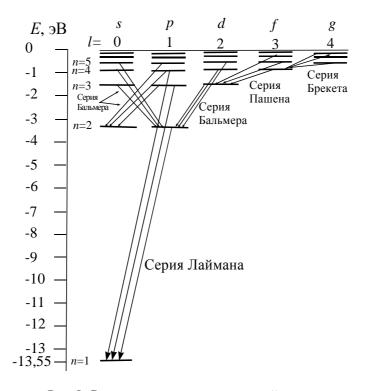


Рис. 5. Схема энергетических состояний атома водорода и возможные переходы между ними

Так как главное квантовое число n может принимать любые целочисленные значения, а орбитальное квантовое число l принимает (n-1) значений, то состояния электрона в атоме водорода могут быть следующие:

n = 1: 1s n = 2: 2s, 2p n = 3: 3s, 3p, 3d n = 4: 4s, 4p, 4d, 4f n = 5: 5s, 5p, 5d, 5f, 5g и т.д.

Переходы из одного энергетического состояния в другое возможны в соответствии с правилом отбора, согласно ко-

торому орбитальное квантовое число должно изменяться на единицу. Тогда линии серии Лаймана возникают лишь при переходах $np \rightarrow 1s$ (n=2, 3, 4...), серии Бальмера — при переходах $ns \rightarrow 2p$, $np \rightarrow 2s$, $nd \rightarrow 2p$ (n=3, 4, 5...). Аналогично можно получить переходы электрона и для других спектральных серий.

Ширина и интенсивность спектральной линии

Естественную ширину спектральной линии можно оценить на основе соотношения неопределенностей Гайзенберга для энергии и времени:

$$\Delta E \Delta \tau \ge \hbar$$
, (4)

где ΔE — неопределенность энергии состояния электрона, которая задает ширину энергетического уровня;

 $\Delta \tau \sim 10^{-8} \, {\rm c}$ – среднее время жизни атома в возбужденном состоянии.

Из (4) имеем

$$\Delta E \ge \frac{\hbar}{\Delta \tau}$$
.

Тогда изменение частоты спектральной линии составляет

$$\Delta E = \Delta v h = \Delta v 2\pi \hbar, \ \Delta v \ge \frac{1}{2\pi \Delta \tau}.$$

Частота ν с длиной волны λ связаны соотношением

$$v = \frac{c}{\lambda}$$
,

где c – скорость света в вакууме.

Продифференцируем последнее выражение и получим

$$\Delta v = c \frac{\Delta \lambda}{\lambda^2}.$$

Тогда естественная ширина спектральной линии $\Delta\lambda$ будет равна

$$\Delta \lambda = \frac{\lambda^2 \Delta v}{c} = \frac{\lambda^2}{2\pi \Delta \tau c}.$$

Для длины волны 500 нм естественная ширина спектральной линии составит

$$\Delta \lambda = \frac{500^2 \cdot 10^{-18}}{2 \cdot 3.14 \cdot 10^{-8} \cdot 3 \cdot 10^8} \sim 10^{-5} \, \text{hm}.$$

Эксперимент подтверждает, что все спектральные линии размыты. Измеряя ширину спектральной линии, можно оценить порядок времени жизни атома в возбужденном состоянии.

Порядок выполнения лабораторной работы

1. Подготовить таблицу для записи результатов измерений.

Цвет линии	Деления барабана	Измеренные длины волн, нм	n	К	Вычисленные длины волн, нм
Красная					
Голубая					
Синяя					

2. Ознакомьтесь со схемой лабораторной установки (рис. 6).

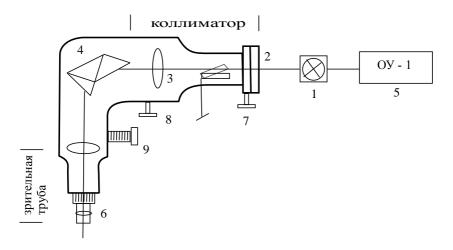


Рис. 6. Схема лабораторной установки

- 3. Согласно схеме изучите лабораторную установку. Свет от водородной лампы 1 падает на щель 2 коллиматора спектрометра, ширина которой регулируется винтом 7. Пройдя через щель коллиматора, объектив 3 и призму 4, свет в поле зрительной трубы дает картину спектра, который визуально можно наблюдать через окуляр 6. Ширина выходной щели регулируется винтом 8. В поле зрительной трубы имеется также стреловидный указатель. Спектральные линии совмещаются с этим указателем поворотом призмы с помощью барабана 9. На барабане 9 нанесены деления в градусах от 50^{0} до 3500^{0} . Цена каждого деления 2^{0} . Отсчет по барабану снимается против риски, нанесенной на указателе, скользящем по спиральной канавке. Водородная лампа и подвеска спектрометра подключены к блоку питания 5 (ОУ-1).
- 4. Произведите измерения для трех спектральных линий, указанных в таблице в делениях барабана.
 - 5. Отключите блок питания от электрической сети.
- 6. Используя градуировочный график, определите длины волн в нм измеренных спектральных линий.

7. Рассчитайте энергии стационарных состояний при n=2 и $\kappa=3,4,5$ для серии Бальмера

$$v_{nk} = R\left(\frac{1}{2^2} - \frac{1}{k^2}\right),\,$$

$$hv_{nk} = E_k - E_n.$$

Из приведенных выражений следует

$$E_n = hcR \frac{1}{n^2} \text{Дж} = \frac{hcR}{1.602 \cdot 10^{-19} 2^2} \text{ 9B},$$

$$E_k = hcR \frac{1}{k^2} \text{Дж} = \frac{hcR}{1.602 \cdot 10^{-19} k^2} \text{ 3B},$$

где $h = 6.626 \cdot 10^{-34} \, \text{Дж} \cdot \text{c};$

 $c = 2,998 \cdot 10^8 \,\text{m/c};$

$$R = 1.0967 \cdot 10^7 \text{ m}^{-1}$$
.

- 8. По полученным значениям энергий постройте схему энергетических уровней для серии Бальмера.
 - 9. Вычислите длины волн, соответствующие переходам

$$E_3 \rightarrow E_2, E_4 \rightarrow E_2, E_5 \rightarrow E_2,$$

по формуле

$$\lambda_{nk} = \frac{hc}{E_k - E_n} \cdot \frac{10^9}{1.602 \cdot 10^{-19}} \,\text{HM},$$

где значения E_n и E_κ измеряются в электронвольтах.

10. Проанализируйте полученные результаты. Сделайте вывод.

Контрольные вопросы

- 1. Что называется энергетическим состоянием атома?
- 2. Сформулируйте постулаты Бора.
- 3. Дайте определения интенсивности излучения и оптического спектра излучения.
 - 4. Как образуется спектр атома водорода?
 - 5. Что называется спектральной серией?
 - 6. Какие серии может излучать атом водорода?
 - 7. Приведите формулу, описывающую частоты линий серии.
 - 8. В чем суть гипотезы де Бройля?
 - 9. Запишите соотношения неопределенностей Гейзенберга
- 10. Какой вид имеет стационарное уравнение Шредингера для атома водорода? Что оно позволяет вычислить.
- 11. Какими квантовыми числами описывается энергетическое состояние электрона в атоме? Дайте их характеристику.
 - 12. Сформулируйте принцип запрета Паули.
- 13. Запишите правило отбора для переходов электронов из одного энергетического состояния в другое.
 - 14. Оцените ширину спектральной линии.

Литература

- 1. Савельев, И.В. Курс общей физики / И.В. Савельев. М., 2003.
 - 2. Матвеев, А.Н. Атомная физика / А.Н. Матвеев. М., 1989.
- 3. Детлаф, А.А. Курс физики / А.А. Детлаф, Б.М. Яворский. М., 1979.

Учебное издание

СПЕКТР АТОМА ВОДОРОДА

Методические указания к лабораторной работе по физике для студентов инженерно-технических специальностей

> Составители: КУЖИР Павел Григорьевич ЮРКЕВИЧ Наталья Петровна САВЧУК Галина Казимировна

Технический редактор О.В. Песенько Компьютерная верстка Д.А. Исаева

Подписано в печать 14.10.2011. Формат $60\times84^{-1}/_{16}$. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 1,22. Уч.-изд. л. 0,95. Тираж 100. Заказ 377.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.