2203

51 MS4

Министерство образования Республики Беларусь БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ПОЛИТЕХНИЧЕСКАЯ АКАДЕМИЯ

Кафедра высшей математики № 1

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ РАБОТЫ № 3, № 4

по высшей математике для студентов-заочников машиностроительных специальностей

Министерство образования Республики Беларусь БЕЛОРУССКАЯ ГОСУДАРСТВЕННАЯ ПОЛИТЕХНИЧЕСКАЯ АКАДЕМИЯ

Кафедра высшей математики № 1

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ РАБОТЫ № 3, № 4

по высшей математике для студентов-заочников машиностроительных специальностей

УДК 512 № 4(075.8)

MSY

Настоящие методические указания и контрольные работы предназначены для студентов первого курса вечерне-заочного факультета машиностроительных специальностей БГПА, занимающихся по заочной форме обучения.

Пособие содержит основные теоретические сведения из программного материала, типовые примеры и контрольные задания по темам курса высшей математики (20 вариантов).

Студент должен изучить георетический материал, разобрать приведенные образцы решения типовых примеров и задач, а затем выполнить контрольные работы по номеру, который совпадает с двумя последними цифрами зачетной книжки (шифра). Если номер шифра больше двадцати, то следует отнять от номера шифра число, кратное 20, и полученная разность (две последние цифры) будет номером варианта.

Например:

Номер зачетной книжки	номера задач
301789/148	8, 28, 48 и т. д.
303700/194	14, 34, 54 и т. д.
300120/100	20, 40, 80 и т. д.

Авторы выражают благодарность инженеру I категории Е.Б.Балашовой за подготовку работы к печати.

Составители:

А.Н. Андриянчик, А.В. Метельский, Н.А. Микулик, Р.Ф. Наумович, В.И. Юринок

Рецензент Г.А. Романюк

© Андриянчик А.Н., Метельский А.В., Микулик Н.А. и др., составление, 2001

КОНТРОЛЬНАЯ РАБОТА № 3

ПРОГРАММА

Тема 1. Неопределенный интеграл

Первообразная. Неопределенный интеграл и его свойства. Таблица основных интегралов. Замена переменной. Интегрирование по частям.

Интегрирование простейших дробей. Интегрирование рациональных функций. Метод рационализации. Интегрирование тригонометрических функций. Интегрирование простейших иррациональностей.

Тема 2. Определенный интеграл

Задачи, приводящие к понятию определенного интеграла. Определенный интеграл и его свойства. Формула Ньютона-Лейбница.

Замена переменной и интегрирование по частям в определенном интеграле. Несобственные интегралы.

Приложения определенного интеграла к вычислению площадей плоских фигур в декартовых и полярных координатах. Вычисление объемов и длин дуг. Приближенные методы вычисления определенного интеграла.

Тема 3. Функции нескольких переменных

Функции нескольких переменных. Область определения. Предел. Непрерывность. Частные производные.

Дифференцируемость функции нескольких переменных, полный дифференциал. Производные от сложной функции. Инвариантность формы первого дифференциала. Неявные функции и их дифференцирование.

Касательная плоскость и нормаль к поверхности. Геометрический смысл полного дифференциала функции двух переменных. Частные производные высших порядков. Дифференциалы высших порядков. Формула Тейлора.

Экстремум функции нескольких переменных. Необходимое и достаточное условие экстремума. Условный экстремум. Метод множителей Лагранжа. Метод наименьших квадратов.

Литература

- 1. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М.: Наука, 1988.
- 2. Герасимович А.И., Рысюк Н.А. Математический анализ. Мн.: Выш. школа, 1990.
- 3. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Мн.: Выш. школа, 1986.
- 4. Жевняк Р.М., Карпук А.А. Высшая математика. В 2 ч. Ч. 1, 2. Мн.: Выш. школа, 1985.
- 5. Кудрявцев Л.Д. Краткий курс математического анализа. М.: Наука, 1989.
- 6. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. В 2 т. Т. 1, 2. М.: Наука, 1985.
 - 7. Щипачев В.С. Высшая математика. М.: Высш. школа, 1985.

1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

1.1. Понятие неопределенного интеграла

Определение 1. Функция F(x) называется первообразной для функции f(x) на отрезке [a, b], если во всех точках этого отрезка выполняется равенство F'(x)=f(x).

Определение 2. Совокупность всех первообразных $\{F(x)+C\}$, где . C - произвольная постоянная, для функции f(x) называется неопределенным интегралом и обозначается

$$\int f(x)dx = F(x) + C .$$

Функция f(x) называется подынтегральной функцией, выражение f(x) dx - подынтегральным выражением.

Отыскание для функции f(x) всех ее первообразных F(x) называется интегрированием. Интегрирование есть действие, обратное дифференцированию.

Основные правила интегрирования

1)
$$\int f'(x)dx = \int df(x) = f(x) + C$$
;

$$d\int f(x)dx = d(F(x) + C) = f(x)dx;$$

9. $\int \operatorname{ctg} u du = \ln |\sin u| + C$;

2)
$$[(f(x) \pm \varphi(x))dx = \int f(x)dx \pm \int \varphi(x)dx ;$$

3)
$$\int af(x)dx = a \int f(x)dx (a = const)$$
;

- 4) если $\int f(x)dx = F(x) + C$, то $\int f(ax + b)dx = \frac{1}{a}F(ax + b) + C$ при условии, что a, b постоянные числа, $a \ne 0$;
- 5) если $\int f(x)dx = F(x) + C$ и $u = \varphi(x)$ любая дифференцируемая функция, то $\int f(u)du = F(u) + C$.

Таблица основных неопределенных интегралов

1.
$$\int du = u + C$$
; 10. $\int \frac{du}{\sin u} = \ln |tg\frac{u}{2}| + C$;
2. $\int u^{\alpha} du = \frac{u^{\alpha+1}}{\alpha+1} + C$, $\text{ rate } \alpha \neq -1$; 11. $\int \frac{du}{\cos u} = \ln |tg(\frac{u}{2} + \frac{\pi}{4})| + C$;
3. $\int \frac{du}{u} = \ln |u| + C$; 12. $\int \frac{du}{\sin^2 u} = -ctgu + C$;
4. $\int a^u du = \frac{a^u}{\ln a} + C$; 13. $\int \frac{du}{\cos^2 u} = tgu + C$;
5. $\int e^u du = e^u + C$; 14. $\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$;
6. $\int \sin u du = -\cos u + C$; 15. $\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$;
7. $\int \cos u du = \sin u + C$; 16. $\int \frac{du}{a^2 - u^2} = \frac{1}{2a} \ln \left| \frac{a + u}{a - u} \right| + C$;
8. $\int tgu du = -\ln |\cos u| + C$; 17. $\int \frac{du}{\sqrt{u^2 \pm \alpha^2}} = \ln |u + \sqrt{u^2 \pm \alpha^2}| + C$.

В приведенной таблице буква u может обозначать как независимую переменную, так и непрерывную дифференцируемую функцию $u=\varphi(x)$ аргумента x.

1.2. Основные методы интегрирования

1.2.1. Непосредственное интегрирование функций

Задача нахождения неопределенных интегралов от многих функций решается методом сведения их к одному из табличных интегралов. Этого можно достичь путем алгебраических тождественных преобразований подынтегральной функции или подведением части ее множителей под знак дифференциала.

Подведение функции под знак дифференциала состоит в том, что под знак дифференциала записывают функцию, дифференциал которой равен заданному выражению.

Пример 1.1.
$$\frac{dx}{x} = (\ln x)' dx = d(\ln x)$$
.

Пример 1.2.
$$\cos 3x dx = \frac{1}{3} \cdot 3\cos 3x dx = \frac{1}{3} d(\sin 3x)$$
.

ITPUMEP 1.3.
$$\int \sin(5x+2)dx = \frac{1}{5}\int \sin(5x+2)d(5x+2) = -\frac{1}{5}\cos(5x+2) + C.$$

Пример 1.4.

$$\int (3x - \sqrt[7]{x^5} + 2\sin x - 3)dx = 3\int x dx - \int x^{5/7} dx + 2\int \sin x dx - 3\int dx =$$

$$= 3 \cdot \frac{x^2}{2} - \frac{x^{12-7}}{12-7} - 2\cos x - 3x + C = \frac{3}{2}x^2 - \frac{7}{12}x^{12/7} - 2\cos x - 3x + C.$$

1.2.2. Интегрирование заменой переменной (подстановкой)

Пусть $\varphi(t)$ - непрерывно дифференцируемая функция на некотором промежутке, причем $\varphi'(t) \neq 0$, тогда справедлива формула

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

Замена переменной в неопределенном интеграле часто производится по формуле

$$\int f(\varphi(x))\varphi'(x)dx = \int f(t)dt,$$

где $t=\varphi(x)$.

Пример 1.5. $[2x\sqrt{x^2-3}dx=[\sqrt{x^2-3}d(x^2-3)]$, так как $2xdx=d(x^2-3)$. Обозначим $x^2 - 3 = u$, тогда получим

$$\int \sqrt{x^2 - 3} \cdot 2x \, dx = \int u^{\frac{1}{2}} du = \frac{2}{3} u^{\frac{3}{2}} + C = \frac{2}{3} (x^2 - 3)^{\frac{3}{2}} + C.$$

Пример 1.6.

$$\int \frac{\cos x \, dx}{\sqrt[3]{3+5\sin x}} = \begin{vmatrix} 3+5\sin x = t \\ dt = 5\cos x \, dx \\ \cos x \, dx = \frac{dt}{5} \end{vmatrix} = \int \frac{dt}{5\sqrt[3]{t}} = \frac{1}{5} \int t^{-\frac{1}{3}} dt = \frac{1}{5} \cdot \frac{3}{2} t^{\frac{2}{3}} + C = \frac{3}{10} \sqrt[3]{(3+5\sin x)^2} + C.$$

1.2.3. Интегрирование при помощи тригонометрических подстановок

Интегралы вида $\int R(x, \sqrt{x^2 - a^2}) dx$; $\int R(x, \sqrt{a^2 - x^2}) dx$; $\int R(x, \sqrt{a^2 + x^2}) dx$, где R(u,v) - рациональная функция от u и v, вычисляются соответственно при помощи тригонометрических подстановок $x = \frac{a}{\cos t}$, $x = \frac{a}{\sin t}$, $x = a \sin t$, $x = a \cos t$, $x = a \log t$.

$$\Pi pume p 1.7. \int \frac{\sqrt{x^2 - 1}}{x} dx = \begin{vmatrix} x = \frac{1}{\cos t} \\ dx = \frac{\sin t}{\cos^2 t} dt \\ \sqrt{x^2 - 1} = tgt \end{vmatrix} = \int \frac{tgt}{\sec t} \cdot \frac{\sin t}{\cos^2 t} dt = \int \frac{\sin^2 t}{\cos^2 t} dt = \int \frac{1 - \cos^2 t}{\cos^2 t} dt = tgt - t + C = tg(\arccos \frac{1}{x}) - \arccos \frac{1}{x} + C.$$

IT pume p 1.8.

$$\int \sqrt{4-x^2} dx = \begin{vmatrix} x = 2\sin t \\ dx = 2\cos t dt \\ \sqrt{4-x^2} = 2\cos t \end{vmatrix} = \int 4\cos^2 t dt = 2\int (1+\cos 2t) dt = 1$$

$$= 2t + \sin 2t + C = 2\arcsin \frac{x}{2} + 2\sin t \cos t + C = -2\arcsin \frac{x}{2} + 2 \cdot \frac{x}{2} \cdot \sqrt{1 - \frac{x^2}{4}} + C =$$

$$= 2\arcsin \frac{x}{2} + \frac{x\sqrt{4 - x^2}}{2} + C.$$

1.2.4. Интегрирование по частям

Формула интегрирования по частям имеет вид $\int u dv = uv - \int v du$, где u(x), v(x) - непрерывно дифференцируемые функции.

Классы функций, интегрируемых по частям:

- 1) $\int x^n e^x dx$, $\int x^n \sin x dx$, $\int x^n \cos x dx$. За u принимается $x^n (u=x^n)$.
- 2) $\int x^n \ln x dx$, $\int x^n \arcsin x dx$, $\int x^n \operatorname{arctg} x dx$. За u в этом случае принимаются логарифмическая или обратная тригонометрическая функции.
- 3) $\int e^x \sin x dx$, $\int a^x \cos x dx$ и другие. Выбор u и dv равносилен. В этом случае вычисление интегралов сводится к двукратному применению формулы интегрирования по частям.

$$\Pi pumep 1.9. \int \ln x dx = \begin{bmatrix} \ln x = u & du = \frac{1}{x} dx \\ dx = dv & v = x \end{bmatrix} = x \ln x - \int x \cdot \frac{1}{x} \cdot dx = x \ln x - \int dx = x \ln x - x + C.$$

$$\int \frac{\arcsin x dx}{x^2} = \begin{bmatrix} \arcsin x = u & du = \frac{dx}{\sqrt{1 - x^2}} \\ \frac{dx}{x^2} = dv & v = -\frac{1}{x} \end{bmatrix} = \frac{-\arcsin x}{x} + \int \frac{dx}{x\sqrt{1 - x^2}} = \\
= \left[x = \frac{1}{t}, dx = -\frac{1}{t^2} dt \right] = -\frac{\arcsin x}{x} + \int \frac{-\frac{dt}{t^2}}{\frac{1}{t}\sqrt{1 - \frac{1}{t^2}}} = \frac{\arcsin x}{x} - \int \frac{dt}{\sqrt{t^2 - 1}} = \\
= -\frac{\arcsin x}{x} - \ln \left| t + \sqrt{t^2 - 1} \right| + C = \frac{\arcsin x}{x} - \ln \left| \frac{1 + \sqrt{1 - x^2}}{x} \right| + C.$$

1.2.5. Интегрирование функций, содержащих квадратный трехчлен в знаменателе

Интегралы вида

$$\int \frac{A dx}{ax^2 + bx + c} \qquad \qquad \text{II} \qquad \qquad \int \frac{A dx}{\sqrt{ax^2 + bx + c}}$$

приводятся к табличным выделением полного квадрата в знаменателе дроби.

Пример 1.11.

$$\int \frac{dx}{x^2 - 6x + 10} = \int \frac{dx}{(x - 3)^2 + 1} = \int \frac{d(x - 3)}{1 + (x - 3)^2} = \arctan(x - 3) + C.$$

Для вычисления интегралов вида

$$\int \frac{(Ax+B)dx}{ax^2+bx+c} \qquad \qquad \qquad \qquad \int \frac{(Ax+B)dx}{\sqrt{ax^2+bx+c}}$$

надо сначала в числителе дроби выделить дифференциал трехчлена $ax^2 + bx + c$, то есть выражение (2ax + b)dx.

Пример 1.12.

$$\int \frac{3x-7}{x^2+9} dx = \int \frac{3 \cdot \frac{1}{2} \cdot (2x-7)}{x^2+9} dx = \frac{3}{2} \int \frac{2xdx}{x^2+9} - 7 \int \frac{dx}{x^2+9} = \frac{3}{2} \ln|x^2+9| - \frac{7}{3} \arctan \frac{x}{3} + C.$$

1.2.6. Интегрирование рациональных дробей

Рациональной функцией R(x) называется функция, равная отношению двух многочленов:

$$R(x) = \frac{Q_m(x)}{P_n(x)} = \frac{b_0 x^m + b_1 x^{m-1} + \ldots + b_m}{a_0 x^n + a_1 x^{n-1} + \ldots + a_n},$$

где т и п - целые положительные числа;

$$b_i, a_j \in R, i = \overline{0, m}, j = \overline{0, n}.$$

Если m < n, то R(x)называется правильной дробью, если $m \ge n$, - неправильной дробью.

Всякую неправильную дробь путем деления числителя на знаменатель можно представить в виде суммы некоторого многочлена и правильной дроби:

$$\frac{Q_m(x)}{P_n(x)} = M_{m-n}(x) + \frac{Q_l(x)}{P_n(x)},$$

где $M_{m-n}(x)$, $Q_l(x)$, $P_n(x)$ - многочлены;

$$\frac{Q_l(x)}{P_n(x)}$$
 - правильная дробь, $l < n$.

Так как всякий многочлен легко интегрируется, то интегрирование рациональных функций сводится к интегрированию правильных дробей.

Простейшей дробью называется дробь одного из следующих четырех типов:

1)
$$\frac{A}{x-a}$$
; 2) $\frac{A}{(x-a)^k}$; 3) $\frac{Mx+N}{x^2+px+q}$; 4) $\frac{Mx+N}{(x^2+px+q)^k}$,

где A, a, M, N, p, q - постоянные числа;

 $k \ge 2$; k - натуральное, p^2 -4q<0.

Для интегрирования правильной дроби необходимо:

- 1) разложить знаменатель дроби на простые линейные и квадратичные множители;
- 2) представить дробь в виде суммы простейших дробей с неопределенными коэффициентами;
 - 3) найти коэффициенты;
 - 4) проинтегрировать простейшие дроби.

Пример 1.13.
$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx$$
.

Дробь неправильная, поэтому сначала разделим числитель подынтегральной дроби на знаменатель:

$$\frac{x^{5} + x^{4} - 8}{x^{5} - 4x^{3}} | x^{3} - 4x$$

$$\frac{x^{5} - 4x^{3}}{x^{4} + 4x^{3} - 8}$$

$$\frac{x^{4} - 4x^{2}}{4x^{3} + 4x^{2} - 8}$$

$$\frac{4x^{3} - 16x}{4x^{2} + 16x - 8} = 4(x^{2} + 4x - 2) - \text{ остаток }.$$

Подынтегральная дробь запишется в виде

$$\frac{x^5 + x^4 - 8}{x^3 - 4x} = x^2 + x + 4 + \frac{4(x^2 + 4x - 2)}{x^3 - 4x}.$$

Разложим правильную дробь на три простейшие дроби:

$$\frac{x^2 + 4x - 2}{x^3 - 4x} = \frac{x^2 + 4x - 2}{x(x - 2)(x + 2)} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{x + 2}.$$

Приравнивая числители, получим тождество

$$x^{2} + 4x - 2 = A(x - 2)(x + 2) + Bx(x + 2) + Cx(x - 2)$$
.

При x = 0 имеем: -2 = -4A, $A = \frac{1}{2}$.

При x = 2 имеем: 10 = 8B, $B = \frac{5}{4}$.

При x = -2 имеем: $-6 = 8C, C = -\frac{3}{4}$.

Таким образом,

$$\int \frac{x^5 + x^4 - 8}{x^3 - 4x} dx = \int \left(x^2 + x + 4 + \frac{4x^2 + 16x - 8}{x^3 - 4x} \right) dx =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + 4 \int \left(\frac{\frac{1}{2}}{x} + \frac{\frac{5}{4}}{x - 2} - \frac{\frac{3}{4}}{x + 2} \right) dx =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + 2\ln|x| + 5\ln|x - 2| - 3\ln|x + 2| + C =$$

$$= \frac{x^3}{3} + \frac{x^2}{2} + 4x + \ln\frac{x^2|x - 2|^5}{|x + 2|^3} + C.$$

Пример 1.14.
$$\int \frac{x^4 + 3x^2 - 5}{x^3 + 2x^2 + 5x} dx$$
.

В данном примере подынтегральная функция является неправильной дробью. Путем деления числителя на знаменатель выделим целую часть рациональной дроби и правильную рациональную дробь:

$$\frac{x^4 + 3x^2 - 5}{x^3 + 2x^2 + 5x} = x - 2 + \frac{2x^2 + 10x - 5}{x^3 + 2x^2 + 5x}.$$

Правильную рациональную дробь $\frac{2x^2 + 10x - 5}{x^3 + 2x^2 + 5x} = \frac{2x^2 + 10x - 5}{x(x^2 + 2x + 5)}$

представим в виде суммы простейших дробей с неопределенными коэффициентами: $\frac{2x^2 + 10x - 5}{x(x^2 + 2x + 5)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 2x + 5}.$

Приведя дроби к общему знаменателю и приравняв числители дробей в левой и правой части записанного равенства, получим

$$2x^{2} + 10x - 5 = A(x^{2} + 2x + 5) + (Bx + C)x = (A + B)x^{2} + (2A + C)x + 5A$$
.

Приравнивая коэффициенты при одинаковых степенях х, имеем:

$$x^{2}$$
 $A + B = 2;$
 x $2A + C = 10;$
 x^{0} $5A = -5,$

откуда A = -1, B=3, C=12. Окончательно получаем

$$\int \frac{x^4 - 3x^2 - 5}{x^3 + 2x^2 + 5x} dx = \int (x - 2) dx + \int \left(-\frac{1}{x} + \frac{3x + 12}{x^2 + 2x + 5} \right) dx =$$

$$= \frac{(x - 2)^2}{2} - \ln|x| + \frac{3}{2} \int \frac{2x + 2 + 6}{x^2 + 2x + 5} dx =$$

$$= \frac{(x - 2)^2}{2} - \ln|x| + \frac{3}{2} \int \frac{(2x + 2) dx}{x^2 + 2x + 5} + 9 \int \frac{dx}{(x + 1)^2 + 4} =$$

$$= \frac{(x - 2)^2}{2} - \ln|x| + \frac{3}{2} \ln|x^2 + 2x + 5| + \frac{9}{2} \operatorname{arctg} \frac{x + 1}{2} + C.$$

1.2.7. Интегрирование тригонометрических функций

Рассмотрим интеграл вида $\int \sin^m x \cos^n x dx$, m, n – целые.

- а). Если хотя бы одно из чисел m или n нечетное, положительное, а второе любое, то интеграл находится с помощью подстановок $\sin x = t$, $\cos x dx = dt$ или $\cos x = t$, $-\sin x dx = dt$.
- б). Если m и n-четные, положительные числа, то применяются формулы понижения степени:

$$\sin x \cos x = \frac{1}{2} \sin 2x$$
; $\cos^2 x = \frac{1 + \cos 2x}{2}$; $\sin^2 x = \frac{1 - \cos 2x}{2}$.

$$\int \frac{\sin^3 x}{\sqrt{\cos x}} dx = \int \frac{(1 - \cos^2 x)\sin x}{\sqrt{\cos x}} dx = \begin{vmatrix} \cos x = t \\ -\sin x dx = dt \end{vmatrix} = -\int \frac{(1 - t^2)dt}{\sqrt{t}} =$$

$$= -\int \frac{dt}{\sqrt{t}} + \int t^{\frac{3}{2}} dt = -2\sqrt{t} + \frac{2}{5}t^{\frac{5}{2}} + C = -\sqrt{\cos x} + \frac{2}{5}\sqrt{\cos^5 x} + C.$$

Пример 1.16.

$$\int \cos^2 x \sin^4 x dx = \int \left(\frac{1 + \cos 2x}{2}\right) \left(\frac{1 - \cos 2x}{2}\right)^2 dx =$$

$$= \frac{1}{8} \int (1 - \cos 2x - \cos^2 2x + \cos^3 2x) dx =$$

$$= \frac{1}{8} x - \frac{1}{16} \sin 2x - \frac{1}{16} \int (1 + \cos 4x) dx + \frac{1}{16} \int (1 - \sin^2 2x) d\sin 2x =$$

$$= \frac{1}{8} x - \frac{1}{16} \sin 2x - \frac{1}{16} x - \frac{1}{64} \sin 4x + \frac{1}{16} \sin 2x - \frac{1}{48} \sin^3 2x + C =$$

$$= \frac{1}{16} x - \frac{1}{64} \sin 4x - \frac{1}{48} \sin^3 2x + C.$$

в). Если подынтегральные функции имеют вид

 $\sin mx \cos nx$, $\sin mx \sin nx$, $\cos mx \cos nx$,

где $m \neq n$, то их преобразуют по формулам

$$\sin mx \cos nx = \frac{1}{2} [\sin(m+n)x + \sin(m-n)x];$$

$$\sin mx \sin nx = \frac{1}{2} [\cos(m-n)x - \cos(m+n)x];$$

$$\cos mx \cos nx = \frac{1}{2} [\cos(m-n)x + \cos(m+n)x].$$

г). Интегралы от функций, содержащих tg''x и ctg'''x и где m и n – целые, приводятся к табличным с учетом того, что

$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}, \ (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}, \ 1 + \operatorname{tg}^2 x = \frac{1}{\cos^2 x}, \ 1 + \operatorname{ctg}^2 x = \frac{1}{\sin^2 x}.$$

Пример 1.17.

$$\int tg^{5} x \sec^{4} x dx = \int tg^{5} x (1 + tg^{2} x) d(tg x) = \int tg^{5} x d(tg x) + \int tg^{7} x d(tg x) =$$

$$= \frac{1}{6} tg^{6} x + \frac{1}{8} tg^{8} x + C. \text{ Здесь } \sec x = \frac{1}{\cos x}.$$

д). Интеграл вида $\int R(\sin x, \cos x) dx$, где R(u,v) - рациональная функция от u, v, всегда сводится к интегралу от рациональной функции относительно нового аргумента t с помощью подстановки $tg\frac{x}{2} = t$; тогда

$$\sin x = \frac{2tg\frac{x}{2}}{1+tg^2\frac{x}{2}} = \frac{2t}{1+t^2}, \quad \cos x = -\frac{1-tg^2\frac{x}{2}}{1+tg^2\frac{x}{2}} = \frac{1-t^2}{1+t^2}, \quad dx = \frac{2dt}{1+t^2}.$$

Пример 1.18.

$$\int \frac{dx}{\sin^3 x} = \begin{vmatrix} \lg \frac{x}{2} = t, & dx = \frac{2dt}{1+t^2} \\ \sin x = \frac{2t}{1+t^2} & \end{vmatrix} = \int \frac{\frac{2}{1+t^2}dt}{\left(\frac{2t}{1+t^2}\right)^3} = \frac{1}{4} \int \frac{(1+t^2)^2}{t^3} dt =$$

$$= \frac{1}{4} \int \frac{dt}{t^3} + \frac{1}{2} \int \frac{dt}{t} + \frac{1}{4} \int t dt = -\frac{1}{8t^2} + \frac{1}{2} \ln|t| + \frac{1}{8}t^2 + C = -\frac{1}{8tg^2} + \frac{1}{2} \ln|t| + \frac{1}{8}tg^2 + \frac{1}{2} \ln|t| + \frac{1}{8}tg^2 + C.$$

е). Если подынтегральная функция содержит только функцию $\lg x$ или $R(\sin x, \cos x) = R(-\sin x, -\cos x)$ (R - четная), то удобно применять подстановку $\lg x = t$; тогда

$$dx = \frac{dt}{1+t^2}$$
, $x = arctgt$, $\cos^2 x = \frac{1}{1+t^2}$, $\sin^2 x = \frac{t^2}{1+t^2}$.

Пример 1.19.

$$\int \frac{dx}{3\sin^2 x + 5\cos x \sin x + \cos^2 x} = \int \frac{\frac{dx}{\cos^2 x}}{3tg^2 x + 5tgx + 1} = \begin{vmatrix} t = \operatorname{tg} x \\ dt = \frac{dx}{\cos^2 x} \end{vmatrix} = \int \frac{dt}{3t^2 + 5t + 1} =$$

$$= \frac{1}{3} \int \frac{dt}{\left(t + \frac{5}{6}\right)^2 - \left(\frac{\sqrt{13}}{6}\right)^2} = \frac{1}{3 \cdot 2 \cdot \frac{\sqrt{13}}{6}} \cdot \ln \left| \frac{t + \frac{5}{6} - \frac{\sqrt{13}}{6}}{t + \frac{5}{6} + \frac{\sqrt{13}}{6}} \right| + C = \frac{1}{\sqrt{13}} \ln \left| \frac{6\operatorname{tg} x + 5 - \sqrt{13}}{6\operatorname{tg} x + 5 + \sqrt{13}} \right| + C.$$

ж). Если функция $R(-\sin x,\cos x) = -R(\sin x,\cos x)$, то применяется подстановка $\cos x=t$. Если $R(\sin x,-\cos x) = -R(\sin x,\cos x)$, то применяется подстановка $\sin x=t$.

Пример 1.20.
$$\int \frac{\sin^3 x}{\cos^4 x} dx$$
. Обозначим $\cos x = t$, $\sin x dx = -dt$, тогда
$$\int \frac{\sin^3 x}{\cos^4 x} dx = \int \frac{1 - \cos^2 x}{\cos^4 x} \sin x dx = \int \frac{1 - t^2}{t^4} (-dt) = -\int \frac{1}{t^4} dt + \int \frac{dt}{t^2} = \frac{1}{3} t^{-3} - \frac{1}{t} + C = \frac{1}{3\cos^3 x} - \frac{1}{\cos x} + C.$$

1.2.8. Интегрирование иррациональных функций

- а). Интегралы вида $\int R(x,x^{\frac{m}{n}},...,x^{\frac{r}{s}})dx$ сводятся к интегралам от рациональной функции относительно z подстановкой $x=z^k$, где k общий знаменатель дробей $\frac{m}{n},...,\frac{r}{s}$.
- б). Интегралы вида $\int R \left[\left(\frac{ax+b}{cx+d} \right)^{\frac{m}{n}}, ..., \left(\frac{ax+b}{cx+d} \right)^{\frac{r}{s}}, x \right] dx$. Рационализирующая подстановка $\frac{ax+b}{cx+d} = t^k$, где k общий знаменатель дробей

 $\frac{m}{n},\ldots,\frac{r}{s}$.

1.2.9. Интегрирование дифференциальных биномов

Рассмотрим интеграл вида $\int x^m (a+bx^n)^p dx$.

- а). Если p целое число, то применяется подстановка $x = t^s$, где s общий знаменатель дробей m и n.
- б). Если $\frac{m+1}{n}$ целое число, то применяется подстановка $a+bx^n=t^s$, где s знаменатель дроби p.
- в). Если $\frac{m+1}{n} + p$ целое число, то применяется подстановка $ax^{-n} + b = t^s$, где s знаменатель дроби p.

Пример 1.21.

$$\int \frac{dx}{x(\sqrt{x} + \sqrt[3]{x^2})} = \begin{vmatrix} x = t^6 \\ dx = 6t^5 dt \\ t = \sqrt[6]{x} \end{vmatrix} = \int \frac{6t^5 dt}{t^6 (t^3 + t^4)} = 6\int \frac{dt}{t^4 (t+1)}.$$

Дробь $\frac{1}{t^4(t+1)}$ раскладываем на простейшие дроби:

$$\frac{1}{t^{4}(t+1)} = \frac{A}{t^{4}} + \frac{B}{t^{3}} + \frac{C}{t^{2}} + \frac{D}{t} + \frac{E}{t+1};$$

$$A(t+1) + Bt(t+1) + Ct^{2}(t+1) + Dt^{3}(t+1) + Et^{4} = 1.$$

$$t = 0 \quad | A = 1;$$

$$t = -1 \quad | E = 1;$$

$$t^{4} \quad | D + E = 0 D = -1;$$

$$t^{3} \quad | C + D = 0 C = 1;$$

$$t^{2} \quad | B + E = 0 B = -1.$$

$$6 \int \frac{dt}{t^{4}(t+1)} = 6 \int \frac{dt}{t^{4}} - 6 \int \frac{dt}{t^{3}} + 6 \int \frac{dt}{t^{2}} - 6 \int \frac{dt}{t} + 6 \int \frac{dt}{t+1} =$$

$$= -\frac{6}{3}t^{-3} + \frac{6}{2}t^{-2} - \frac{6}{t} - 6 \ln|t| + 6 \ln|t+1| + C =$$

$$= -\frac{2}{\sqrt{x}} + \frac{3}{\sqrt[3]{x}} - \frac{6}{\sqrt[3]{x}} - 6 \ln|\sqrt[3]{x}| + 6 \ln|1 + \sqrt[3]{x}| + C =$$

$$= -\frac{2}{\sqrt{x}} + \frac{3}{\sqrt[3]{x}} - \frac{6}{\sqrt[3]{x}} - \ln|x| + \ln|1 + \sqrt[3]{x}| + C.$$

Пример 1.22.
$$\int \frac{\sqrt{1-x^4}}{x^5} dx = \int x^{-5} (1-x^4)^{1/2} dx$$
.

Так как m=-5, n=4, p=1/2, то $\frac{m+1}{n}=\frac{-5+1}{4}=-1$ - целое число. Имеем случай б) интегрирования дифференциального бинома. Тогда

$$\begin{vmatrix} 1 - x^4 = t^2 & x^4 = 1 - t^2 \\ -4x^3 dx = 2t dt & x^3 dx = -\frac{t}{2} dt \end{vmatrix}$$

$$\int \frac{\sqrt{1 - x^4}}{x^5} dx = \int \frac{x^3 \sqrt{1 - x^4}}{x^8} dx = -\frac{1}{2} \int \frac{t \cdot t dt}{(1 - t^2)^2} = -\frac{1}{2} \int \frac{t^2}{(1 - t)^2 (1 + t)^2} dt.$$

Раскладываем дробь $\frac{t^2}{(1-t)^2(1+t)^2}$ на простейшие дроби:

$$\frac{t^2}{(1-t)^2(1+t)^2} = \frac{A}{(1-t)^2} + \frac{B}{1-t} + \frac{C}{(1+t)^2} + \frac{D}{1+t}.$$

Приведя дробь к общему знаменателю и приравнивая числители, получим

$$A(1+t)^{2} + B(1-t)(1+t)^{2} + C(1-t)^{2} + D(1+t)(1-t)^{2} = t^{2}.$$

$$t = -1 \begin{vmatrix} 4C = 1, & C = 1 & 4; \\ 4A = 1, & A = 1 & 4; \\ -B + D = 0, & B = D; \\ t^{0} & |A + B + C + D = 0.$$

$$1 \quad 4 + 2D + 1 \quad 4 = 0, 2D = -1 \quad 2, D = -1 \quad 4, B = -1/4.$$

$$-\frac{1}{2} \int \frac{t^{2}}{(1-t)^{2}(1+t)^{2}} dt = -\frac{1}{8} \int \frac{dt}{(1-t)^{2}} + \frac{1}{8} \int \frac{dt}{1-t} - \frac{1}{8} \int \frac{dt}{(1+t)^{2}} + \frac{1}{8} \int \frac{dt}{1+t} =$$

$$= -\frac{1}{8(1-t)} - \frac{1}{8} \ln|1-t| + \frac{1}{8(1+t)} + \frac{1}{8} \ln|1+t| + C = \frac{-2t}{8(1-t^{2})} + \frac{1}{8} \ln\left|\frac{1+t}{1-t}\right| + C =$$

$$= -\frac{1}{4} \frac{\sqrt{1-x^{4}}}{x^{4}} + \frac{1}{8} \ln\frac{1+\sqrt{1-x^{4}}}{1-\sqrt{1-x^{4}}} + C = -\frac{1}{4} \frac{\sqrt{1-x^{4}}}{x^{4}} + \frac{1}{4} \ln\frac{\sqrt{1-x^{4}}+1}{x^{2}} + C.$$

2. ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

- 2.1. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Вычисление плошадей плоских фигур
- **2.1.1.** Если f(x) непрерывна на [a, b] и F(x) любая ее первообразная на этом отрезке, то имеет место формула Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(x) \Big|_{a} = F(b) - F(a).$$

Пример 2.1. Вычислить определенный интеграл $\int_{0}^{1} \frac{dx}{\sqrt{4-x^2}}$.

Petuenue.
$$\int_{0}^{1} \frac{dx}{\sqrt{4-x^2}} = \arcsin \frac{x^4}{2} = \arcsin \frac{1}{2} - \arcsin 0 = \frac{\pi}{6}$$
.

2.1.2. Если f(x) непрерывна на [a,b], а $x=\varphi(t)$ непрерывно дифференцируема на [c,d], $\varphi'(t)\neq 0$, $\varphi(c)=a$, $\varphi(d)=b$, то справедлива формула замены переменной в определенном интеграле:

$$\int_{a}^{b} f(x)dx = \int_{c}^{d} (\varphi(t)) \cdot \varphi'(t)dt.$$

Пример 2.2. Вычислить определенный интеграл $\int_{0}^{2} x^{2} \sqrt{4-x^{2}} dx$.

Решение

$$\int_{0}^{2} x^{2} \sqrt{4 - x^{2}} dx = \begin{vmatrix} x = 2\sin t & x = 0, t = 0 \\ dx = 2\cos t dt & x = 2, t = \pi/2 \end{vmatrix} = \int_{0}^{\pi/2} 4\sin^{2} t \cdot 2\cos t \cdot 2\cos t dt = 0$$

$$= 16 \int_{0}^{\pi/2} \sin^{2} t \cos^{2} t dt = 4 \int_{0}^{\pi/2} \sin^{2} 2t dt = 2 \int_{0}^{\pi/2} (1 - \cos 4t) dt = 2 \left(t - \frac{\sin 4t}{4} \right) = \pi.$$

2.1.3. Пусть u=u(x) и v=v(x) - непрерывно дифференцируемые функции на [a,b]. Тогда имеет место формула интегрирования по частям

$$\int_{a}^{b} u dv = uv \bigg| - \int_{a}^{b} v du.$$

Пример 2.3. Вычислить определенный интеграл $\int_{0}^{\pi/6} x \sin 3x dx$.

Решение

$$\pi / 6
\int x \sin 3x dx = \begin{vmatrix} u = x & dv = \sin 3x dx \\ du = dx & v = -\frac{1}{3} \cos 3x \end{vmatrix} = -\frac{x}{3} \cos 3x \end{vmatrix} + \frac{1}{3} \int_{0}^{\pi / 6} \cos 3x dx = \frac{1}{9} \sin 3x \end{vmatrix} = \frac{1}{9} \sin \frac{\pi}{2} = \frac{1}{9}.$$

2.1.4. Площадь плоской фигуры

а). Площадь криволинейной трапеции, ограниченной прямыми x=a, x=b (a < b), осью Ox и непрерывной кривой y=f(x) ($y \ge 0$), вычисляется по формуле

$$S = \int_{a}^{b} f(x) dx.$$

Пример 2.4. Найти площадь области, ограниченной линиями $y=x^2+1$ и $y=9-x^2$.

Решение. Построим область (рис. 2.1). Находим абсциссы точек пересечения A, B: $\begin{cases} y = x^2 + 1; \\ y = 9 - x^2, & x^2 + 1 = 9 - x^2, & x^2 = 4, & x = \pm 2. \end{cases}$ Так как фигура симметрична относительно оси Oy, то

$$S = 2 \int_{0}^{2} [(9 - x^{2}) - (x^{2} + 1)] dx = 2 \int_{0}^{2} (8 - 2x^{2}) dx = 2(8x - \frac{2}{3}x^{3}) \Big|_{0}^{2} = \frac{64}{3}.$$

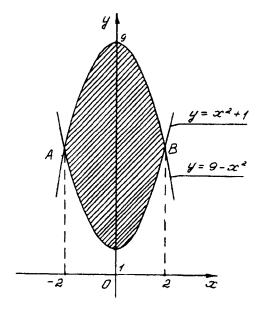


Рис. 2.1

Пример 2.5. Найти площадь фигуры, ограниченной линиями $y=x^2$, y=4x, 2x+y-3=0 (рис. 2.2).

Решение. Находим абсциссы точек пересечения А, В и О. Тогда

$$S = \int_{0}^{0.5} (4x - x^{2}) dx + \int_{0.5}^{1} (3 - 2x - x^{2}) dx = \frac{11}{12}.$$

б). Если фигура ограничена кривой, имеющей параметрические уравнения x=x(t), y=y(t), $\alpha \le t \le \beta$, прямыми x=a, x=b и осью Ox, то

$$S = \int_{\alpha}^{\beta} y(t)x'(t)dt,$$

где $a=x(\alpha), b=x(\beta) (y(t) \ge 0).$

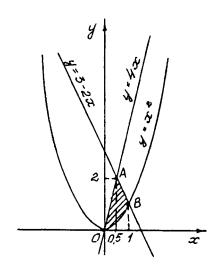


Рис. 2.2

Пример 2.6. Найти площадь фигуры, ограниченной циклоидой

$$\begin{cases} x = a(t - \sin t), 0 \le t \le 2\pi; \\ y = a(1 - \cos t) \end{cases}$$
 и прямой $y = a(y \ge 0).$

Решение. Для нахождения пределов интегрирования по t решаем систему

$$\begin{cases} y = a(1 - \cos t); \\ y \ge a \end{cases} \Rightarrow \cos t \le 0, \quad \frac{\pi}{2} \le t \le \frac{3\pi}{2}.$$

Площадь фигуры A_1ACBB_1 (рис. 2.3) выражается интегралом $S_1 = a^2 \int_{\pi/2}^{3\pi/2} (1-\cos t)^2 dt = a^2 \int_{\pi/2}^{3\pi/2} \left(\frac{3}{2} - 2\cos t + \frac{\cos 2t}{2}\right) dt = a^2 \left(4 + \frac{3\pi}{2}\right).$

Площадь прямоугольника AA_1B_1B равна $S_2=S_{AA_1B_1B}=a^2(2+\pi)$, так как $A\left(a\left(\frac{\pi}{2}-1\right);a\right), B\left(a\left(\frac{3\pi}{2}+1\right);a\right)$.

Искомая площадь $S = S_1 - S_2 = a^2 \left(4 + \frac{3\pi}{2} \right) - a^2 (2 + \pi) = a^2 \left(2 + \frac{\pi}{2} \right)$.

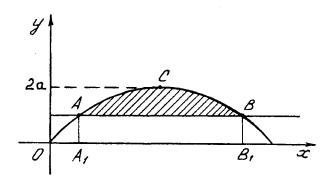


Рис. 2.3

в). Площадь сектора, ограниченного непрерывной кривой в полярных координатах $\rho = \rho$ (ϕ) и лучами $\phi = \alpha$, $\phi = \beta$ ($\alpha > \beta$), выражается интегралом

$$S = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\varphi) d\varphi.$$

Пример 2.7. Найти площаль части фигуры, ограниченной лемнискатой Бернулли $(x^2 + y^2)^2 = a^2(x^2 - y^2)$, лежащей внутри окружности $x^2 + y^2 = \frac{a^2}{2}$.

Решение. Уравнение лемнискаты Бернулли в полярных координатах $\rho^2 = a^2 \cos 2\varphi$, а окружности $\rho = \frac{a}{\sqrt{2}}$ (рис. 2.4).

Решаем систему
$$\begin{cases} \rho^2 = a^2 \cos 2\varphi; \\ \rho = \frac{a}{\sqrt{2}}. \end{cases}$$

$$\frac{a^2}{2} = a^2 \cos 2\varphi, \ \cos 2\varphi = \frac{1}{2}, \ \varphi = \frac{\pi}{6} \cdot \frac{1}{4}S = S_1 + S_2 = \frac{1}{2} \int_0^{\pi/6} \frac{a^2}{2} d\varphi + \frac{1}{2} \int_{\pi/6}^{\pi/4} a^2 \cos 2\varphi d\varphi = \frac{si/4}{4} \cdot \frac{\pi}{6} + \frac{a^2}{2} \cdot \frac{\sin 2\varphi}{2} \bigg|_{\pi/6} = \frac{a^2\pi}{24} + \frac{a^2}{4} \left(1 - \frac{\sqrt{3}}{2}\right) = \frac{a^2}{4} \left(1 + \frac{\pi}{6} - \frac{\sqrt{3}}{2}\right); S = a^2 \left(1 + \frac{\pi}{6} - \frac{\sqrt{3}}{2}\right).$$

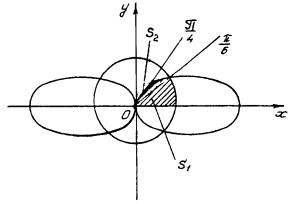


Рис. 2.4

2.2. Вычисление длин дуг кривых. Вычисление объемов

Если плоская кривая задана уравнением y=f(x), f(x) - непрерывно дифференцируемая функция, $a \le x \le b$, то длина l дуги этой кривой выражается интегралом

$$I = \int_{a}^{b} \sqrt{1 + (y')^2} dx$$

Если же кривая задана параметрическими уравнениями x=x(t), y=y(t) ($\alpha \le t \le \beta$), то $l = \int_{\alpha}^{\beta} \sqrt{(x_t')^2 + (y_t')^2} dt$.

Аналогично выражается длина дуги пространственной кривой, заданной параметрическими уравнениями x=x(t), y=y(t), z=z(t), $\alpha \le t \le \beta$:

$$I = \int_{\alpha}^{\beta} \sqrt{(x_I')^2 + (y_I')^2 + (z_I')^2} dt.$$

Если задано полярное уравнение кривой $\rho = \rho (\phi)$, $\alpha \le \phi \le \beta$, то

$$I = \int_{\alpha}^{\beta} \sqrt{\rho^2 + (\rho')^2} d\rho.$$

Если площадь S(x) сечения тела плоскостью, перпендикулярной оси Ox, является непрерывной функцией на отрезке [a,b], то объем тела вычисляется по формуле

$$V = \int_{a}^{b} S(x) dx.$$

Объем V тела, образованного вращением вокруг оси Ox криволинейной трапеции, ограниченной кривой y=f(x) ($f(x)\ge 0$), осью абсцисс и прямыми x=a и x=b (a< b), выражается интегралом

$$V = \pi \int_{a}^{b} f^{2}(x) dx$$

Пример 2.8. Вычислить длину дуги кривой $y^2 = x^3$, отсеченной прямой $x = \frac{4}{3}$ (рис. 2.5).

Решение. Длина дуги AOB равна удвоенной длине дуги OA.

$$y = x^{3/2}, y' = \frac{3}{2}x^{1/2}.$$

$$\frac{1}{2}l = l_{OA} = \int_{0}^{4/3} \sqrt{1 + \left(\frac{3}{2}\sqrt{x}\right)^{2}} dx = \int_{0}^{4/3} \sqrt{1 + \frac{9}{4}x} dx = \frac{4}{9} \int_{0}^{4/3} \left(1 + \frac{9}{4}x\right)^{1/2} d\left(1 + \frac{9}{4}x\right) = \frac{4}{9} \left(1 + \frac{9}{4}x\right)^{3/2} dx = \frac{8}{27} \left(4^{3/2} - 1\right) = \frac{56}{27}; l = 2 \cdot \frac{56}{27} = \frac{112}{27}.$$

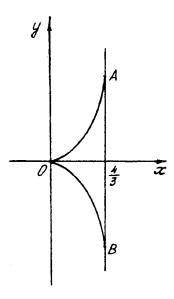


Рис. 2.5

Пример 2.9. Вычислить длину дуги кривой

$$\begin{cases} x = (t^2 - 2)\sin t + 2t\cos t; \\ y = (2 - t^2)\cos t + 2t\sin t \end{cases}$$
 от $t_1 = 0$ до $t_2 = \pi$.

Решение. Дифференцируя по t, получаем

$$x'_{t} = 2t \sin t + (t^{2} - 2)\cos t + 2\cos t - 2t \sin t = t^{2} \cos t;$$

 $y'_{t} = -2t \cos t - (2 - t^{2}) \sin t + 2\sin t + 2t \cos t = t^{2} \sin t,$

откуда
$$\sqrt{(x_t')^2 + (y_t')^2} = \sqrt{t^4 \cos^2 t + t^4 \sin^2 t} = \sqrt{t^4 (\cos^2 t + \sin^2 t)} = t^2$$
. Следовательно, $l = \int_0^\pi t^2 dt = \frac{t^3}{3} = \frac{\pi^3}{3}$.

Пример 2.10. Найти длину дуги кардиоиды ρ = α (1+cos ϕ) (α >0, 0≤ ϕ ≤2 π) (рис. 2.6).

Решение. Здесь
$$\rho'_{\phi} = -a\sin\phi$$
, $\sqrt{(\rho'_{\phi})^2 + \rho^2} = \sqrt{2a^2(1+\cos\phi)} = \sqrt{4a^2\cos^2\frac{\phi}{2}} = 2a\cos\frac{\phi}{2}$. В силу симметрии $l = 2 \cdot 2a\int_0^{\pi}\cos\frac{\phi}{2}d\phi = 8a$.

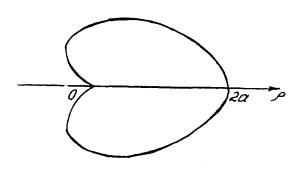


Рис. 2.6

Пример 2.11. Найти объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной линиями $2y = x^2$ и 2x + 2y - 3 = 0 (рис. 2.7).

Решение. Найдем абсциссы точек пересечения кривых:

$$y = \frac{x^2}{2}$$
 u $y = \frac{3-2x}{2} = \frac{3}{2} - x$; $\frac{x^2}{2} = \frac{3}{2} - x$; $x^2 + 2x - 3 = 0$; $x_1 = -3$, $x_2' = 1$.

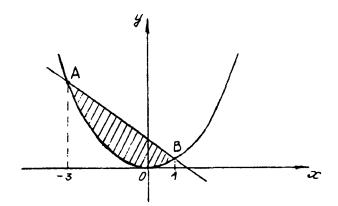


Рис. 2.7

Искомый объем есть разность двух объемов: объема V_1 , полученного вращением криволинейной трапеции, ограниченной прямой $y=\frac{3}{2}-x$ ($-3 \le x \le 1$), и объема V_2 , полученного вращением криволинейной трапеции, ограниченной параболой $y=\frac{x^2}{2}$ ($-3 \le x \le 1$). Используя формулу $V=\pi \int\limits_{0}^{b} f^2(x) dx$, получаем

$$V_{x} = V_{1} - V_{2} = \pi \int_{-3}^{1} \left(\frac{3}{2} - x\right)^{2} dx - \pi \int_{-3}^{1} \left(\frac{x^{2}}{2}\right)^{2} dx = -\pi \int_{-3}^{1} \left(\frac{3}{2} - x\right)^{2} d\left(\frac{3}{2} - x\right) - \pi \int_{-3}^{1} \frac{x^{4}}{4} dx = -\pi \left(\frac{3}{2} - x\right)^{3} \int_{-5}^{1} -\pi \frac{x^{5}}{20} \int_{-5}^{1} = \frac{272}{15}.$$

2.3. Несобственные интегралы

2.3.1.Интегралы с бесконечными пределами (несобственные интегралы первого рода)

Если функция f(x) непрерывна при $a \le x < +\infty$, то несобственным интегралом первого рода называется

$$\int_{a}^{+\infty} f(x)dx = \lim_{b \to +\infty} \int_{a}^{b} f(x)dx.$$
 (2.1)

Если существует конечный предел в правой части формулы (2.1), то несобственный интеграл называется сходящимся, если этот предел не существует или равен ∞ , то - расходящимся.

Аналогично определяются
$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx;$$

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{a \to -\infty} \int_{a}^{c} f(x)dx + \lim_{b \to +\infty} \int_{c}^{b} f(x)dx.$$

Пример 2.12. Вычислить $\int_{0}^{+\infty} e^{-3x} dx$.

Решение. Имеем

$$\int_{0}^{\infty} e^{-3x} dx = \lim_{b \to +\infty} \int_{0}^{b} e^{-3x} dx = \lim_{b \to +\infty} \left(-\frac{1}{3} e^{-3x} \right) = \frac{1}{3} \lim_{b \to +\infty} (1 - e^{3b}) = \frac{1}{3}.$$

Пример 2.13. Вычислить $\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 5}$.

Решение. $f(x) = \frac{1}{x^2 + 2x + 5} = \frac{1}{(x+1)^2 + 4}$ - непрерывная функция на $(-\infty; +\infty)$.

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 5} = \int_{-\infty}^{0} \frac{dx}{x^2 + 2x + 5} + \int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 5}.$$

$$\int_{-\infty}^{0} \frac{dx}{x^2 + 2x + 5} = \lim_{\alpha \to -\infty} \int_{0}^{0} \frac{dx}{4 + (x + 1)^2} = \lim_{\alpha \to -\infty} \left(\frac{1}{2} \operatorname{arctg} \frac{1}{2} - \frac{1}{2} \operatorname{arctg} \frac{a + 1}{2} \right) = \frac{1}{2} \operatorname{arctg} \frac{1}{2} - \frac{\pi}{4}.$$

$$\int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 5} = \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{4 + (x + 1)^2} = \lim_{b \to +\infty} \left(\frac{1}{2} \operatorname{arctg} \frac{b + 1}{2} - \frac{1}{2} \operatorname{arctg} \frac{1}{2} \right) = \frac{\pi}{4} - \frac{1}{2} \operatorname{arctg} \frac{1}{2}.$$

Тогда
$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 5} = \frac{\pi}{2}$$
. Интеграл сходится.

2.3.2. Интегралы от неограниченных функций (несобственные интегралы второго рода)

Если f(x) непрерывна при $a \le x < b$ и в точке x = b неограничена, то, по определению, несобственным интегралом второго рода называется

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to +0} \int_{a}^{b-\epsilon} f(x)dx.$$
 (2.2)

Если существует конечный предел в правой части формулы (2.2), то несобственный интеграл называется сходящимся, если этот предел не существует или равен ∞ , то - расходящимся.

Аналогично определяется интеграл и в случае $f(a) = \infty$.

$$\int_{c}^{b} f(x)dx = \lim_{c \to +0} \int_{c}^{b} f(x)dx.$$
 (2.3)

В случае когда $f(c) = \infty$, $c \in (a.b)$, то

$$\int_{a}^{b} f(x)dx = \lim_{\epsilon \to +0} \int_{a}^{c-\epsilon} f(x)dx + \lim_{\delta \to +0} \int_{c+\delta}^{b} f(x)dx.$$

Пример 2.14. Вычислить или установить расходимость $\int_{0}^{1} \frac{dx}{x^{2}}$.

Решение.
$$f(x) = \frac{1}{x^2}$$
 - непрерывна на (0,1], $\lim_{x \to +0} f(x) = \lim_{x \to 0} \frac{1}{x^2} = +\infty$.

Следовательно, $\int_{0}^{1} \frac{dx}{x^{2}}$ - несобственный интеграл второго рода. $\int_{\varepsilon}^{1} \frac{dx}{x^{2}} = -\frac{1}{x} \Big|_{\varepsilon}^{1} = -1 + \frac{1}{\varepsilon}$. $\int_{0}^{1} \frac{dx}{x^{2}} = \lim_{\varepsilon \to +0} \left(-1 + \frac{1}{\varepsilon}\right) = \infty$, следовательно, интеграл расходится.

3. ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

3.1. Понятие функции нескольких переменных

Пусть D - произвольное множество точек n-мерного арифметического пространства. Если каждой точке $P(x_1,x_2,...,x_n) \in D$ поставлено в соответствие некоторое действительное число $f(P) = f(x_1,x_2,...,x_n)$, то говорят, что на множестве D задана числовая функция f от n переменных $x_1,x_2,...,x_n$. Множество D называется областью определения, а множество $E\{u \in R|u = f(P), P \in D\}$ - областью значений функции u = f(P).

В частном случае, n=2, функцию двух переменных z=f(x,y) можно изобразить графически. Для этого в каждой точке $(x,y)\in D$ вычисляется значение функции z=f(x,y). Тогда тройка чисел (x,y,z)=(x,y,f(x,y)) определяет в системе координат XYZ некоторую точку P. Совокупность точек P(x,y,f(x,y)) образует график функции z=f(x,y), являющейся некоторой поверхностью в пространстве R^3 .

3.2. Предел и непрерывность функции нескольких переменных

Число A называется пределом функции u=f(P) при стремлении точки $P(x_1,x_2,...,x_n)$ к точке $P_0(a_1,a_2,...,a_n)$, если для любого $\varepsilon>0$ существует такое $\delta>0$, что из условия $0<\rho(P_1,P_0)=\sqrt{(x_1-a_1)^2+...+(x_n-a_n)^2}<\delta$ следует $|f(x_1,x_2,...,x_n)-A|<\varepsilon$. При этом пишут:

$$A = \lim_{P \to P_0} f(p) = \lim_{\substack{x_1 \to a_1 \\ x_2 \to a_2 \\ \dots \\ x_n \to a_n}} f(x_1, x_2, \dots, x_n).$$

Функция u=f(P) называется непрерывной в точке P_0 , если:

- 1) функция f(P) определена в точке P_0 ;
- 2) существует $\lim_{P\to P_0} f(P)$;
- 3) $\lim_{P \to P_0} f(P) = f(P_0)$.

Функция называется непрерывной в области, если она непрерывна в каждой точке этой области. Если в точке P_0 хотя бы одно из условий 1)-3) нарушено, то точка P_0 называется точкой разрыва функции f(P). Точки разрыва могут быть изолированными, образовывать линии разрыва, поверхности разрыва и т.д.

3.3. Дифференцирование функций нескольких переменных

3.3.1. Частное и полное приращения функции

Пусть z=f(x,y) - функция двух независимых переменных и D(f) - область ее определения. Выберем произвольную точку $P_0(x_0,y_0)\in D(f)$ и дадим x_0 приращение Δx , оставляя значение y_0 неизменным. При этом функция f(x,y) получит приращение

$$\Delta_x z = \Delta_x f(x_0, y_0) = f(x_0 + \Delta x, y_0) - f(x_0, y_0).$$

Приращение $\Delta_x z$ называется частным приращением функции f(x,y) по x.

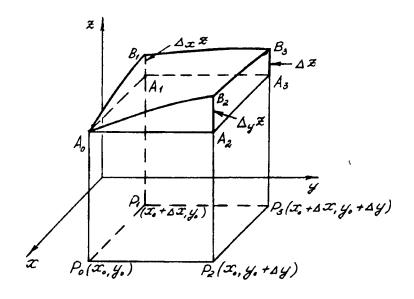
Аналогично, считая x_0 постоянной и давая y_0 приращение Δy , получим частное приращение функции z=f(x,y) по y:

$$\Delta_{v}z = \Delta_{v}f(x_{0}, y_{0}) = f(x_{0}, y_{0} + \Delta v) - f(x_{0}, y_{0}).$$

Полным приращением функции z = f(x,y) в точке $P_0(x_0,y_0)$ называют приращение Δz , вызываемое одновременным приращением обеих независимых переменных x и y:

$$\Delta z = \Delta f(x_0, y_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

Геометрически частные и полное приращения функции $\Delta_x z$, $\Delta_y z$, Δ_z можно изобразить соответственно отрезками $A_1 B_1$, $A_2 B_2$ и $A_3 B_3$ (рис. 3.1).



PB. 3.1

Пример 3.1. Найти частные и полное приращения функции $z = xy^2$ в точке $P_0(1;2)$, если $\Delta x = 0,1; \Delta y = 0,2$.

Решение. Вычислим значения

$$\Delta_{x}z = f(1.1;2.0) - f(-1.2) = (x_{0} + \Delta x)y_{0}^{2} - x_{0}y_{0}^{2} = \Delta xy_{0}^{2} = 0.1 \cdot 4 = 0.4;$$

$$\Delta_{y}z = f(1.0;2.2) - f(1.2) = x_{0}(y_{0} + \Delta y)^{2} - x_{0}y_{0}^{2} = 2x_{0}y_{0}\Delta y + \Delta y^{2} =$$

$$= 2 \cdot 1 \cdot 2 \cdot 0.2 + 0.2^{2} = 0.84.$$

$$\Delta z = f(1.1;2.2) - f(1.2) = (x_{0} + \Delta x)(y_{0} + \Delta y)^{2} - x_{0}y_{0}^{2} =$$

$$= 1.1 \cdot 2.2^{2} - 1 \cdot 2^{2} = 1.324.$$

Если u = f(x, y, z), то для нее, естественно, рассматриваются частные приращения $\Delta_x u$, $\Delta_y u$, $\Delta_z u$ и полное приращение Δu .

3.3.2. Частные производные

Определение. Частной производной функции z=f(x,y) по переменной x называется предел отношения частного приращения функции $\Delta_x z$ к приращению аргумента Δx , когда последнее произвольным образом стремится к нулю:

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

Частную производную функции z = f(x, y) по переменной x обозначают символами

$$\frac{\partial z}{\partial x}; z'_x; \frac{\partial f(x,y)}{\partial x} ; f'_x(x,y).$$

Таким образом,

$$\frac{\partial z}{\partial x} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_{0,y_0})}{\Delta x}.$$

Определение. Частной производной функции z=f(x,y) по переменной y называется предел отношения частного приращения функции $\Delta_y z$ к приращению аргумента Δy , когда последнее произвольным образом стремится к нулю:

$$\frac{\partial z}{\partial y} = \lim_{\Delta y \to 0} \frac{\Delta_y z}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}.$$

Применяются также обозначения
$$z'_{y}$$
, $\frac{\partial f(x,y)}{\partial y}$, $f'_{y}(x,y)$.

Частные приращения и частные производные функции п переменных при n>2 определяются и обозначаются аналогично. Так, например, пусть $(x_1,x_2,...,x_k,...,x_n)$ -произвольная фиксированная точка из области определения функции $u=f(x_1,x_2,...,x_n)$. Придавая значению переменной x_k (k=1,2,...,n) приращение Δx_k , рассмотрим предел

$$\lim_{\Delta x_k \to 0} \frac{f(x_1, ..., x_k + \Delta x_k, ..., x_n) - f(x_1, ..., x_k, ..., x_n)}{\Delta x_k}.$$

Этот предел называется частной производной (1-го порядка) данной функции по переменной x_k в точке $(x_1, x_2, ..., x_n)$ и обозначается

$$\frac{\partial u}{\partial x_k}$$
 или $f_{x_k}'(x_1, x_2, ..., x_n)$.

Пример 3.2. Найти
$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$, где $u = x^2yz^3 + x + y^2$.

Решение. Для нахождения $\frac{\partial u}{\partial x}$ считаем y, z константами, а функцию $u = x^2yz^3 + x + y^2$ - функцией одной переменной x. Тогда

$$\frac{\partial u}{\partial x} = (x^2 y z^3 + x + y^2)'_x = (x^2 y z^3)'_x + (x)'_x + (y^2)'_x = 2xyz^3 + 1.$$

Аналогично
$$\frac{\partial u}{\partial y} = x^2 z^3 + 2y$$
, $\frac{\partial u}{\partial z} = 3z^2 x^2 y$.

Частными производными 2-го порядка функции $u = f(x_1, x_2, ..., x_n)$ называются частные производные от ее частных производных первого порядка. Производные второго порядка обозначаются следующим образом:

$$\begin{split} &\frac{\partial}{\partial x_k} \left(\frac{\partial u}{\partial x_k} \right) = \frac{\partial^2 u}{\partial x_k^2} = f''_{x_k x_k} (x_1, x_2, ..., x_n); \\ &\frac{\partial}{\partial x_i} \left(\frac{\partial u}{\partial x_k} \right) = \frac{\partial^2 u}{\partial x_i \partial x_k} = f''_{x_i x_k} (x_1, x_2, ..., x_n) \text{ и т.д.} \end{split}$$

Аналогично определяются и обозначаются частные производные порядка выше второго.

Пример 3.3. Найти частные производные второго порядка для функции $z = \frac{x}{x^2}$.

Решение

$$\frac{\partial z}{\partial x} = \frac{1}{y^2} : \frac{\partial z}{\partial y} = -\frac{2x}{y^3};$$

$$\frac{\partial^2 z}{\partial x^2} = \left(\frac{1}{y^2}\right)_x' = 0; \frac{\partial^2 z}{\partial y \partial x} = \left(-\frac{2x}{y^3}\right)_x' = -\frac{2}{y^3}.$$

$$\frac{\partial^2 z}{\partial x \partial y} = \left(\frac{1}{y^2}\right)_y' = -\frac{2}{y^3}; \frac{\partial^2 z}{\partial y^2} = \left(-\frac{2x}{y^3}\right)_y' = \frac{6x}{y^4}.$$

3.3.3. Полный дифференциал функции

Полным приращением функции $f(x_1,x_2,...,x_n)$ в точке $P(x_1,x_2,...,x_n)$, соответствующим приращениям аргументов $\Delta x_1,\Delta x_2,...,\Delta x_n$, называется разность $\Delta u = f(x_1 + \Delta x_1,x_2 + \Delta x_2,...,x_n + \Delta x_n) - f(x_1,x_2,...,x_n)$. Функция u=f(P) называется дифференцируемой в точке $(x_1,x_2,...,x_n)$, если в некоторой окрестности этой точки полное приращение функции может быть представлено в виде

$$\Delta u = A_1 \cdot \Delta x_1 + A_2 \cdot \Delta x_2 + \dots + A_n \cdot \Delta x_n + o(\rho),$$

где $\rho = \overline{\Delta x_1^2 + \Delta x_2^2 + ... + \Delta x_n^2}$; $A_1, A_2, ..., A_n$ - числа, не зависящие от $\Delta x_1, \Delta x_2, ..., \Delta x_n$.

Полным дифференциалом du 1-го порядка функции $u = f(x_1, x_2, ..., x_n)$ в точке $(x_1, x_2, ..., x_n)$ называется главная часть полного приращения этой функции в рассматриваемой точке, линейная относительно $\Delta x_1, \Delta x_2, ..., \Delta x_n$, то есть

$$du = A_1 \Delta x_1 + A_2 \Delta x_2 + \dots + A_n \Delta x_n.$$

Дифференциалы независимых переменных по определению принимаются равными их приращению:

$$dx_1 = \Delta x_1, dx_2 = \Delta x_2, ..., dx_n = \Delta x_n$$
.

Для полного дифференциала функции $u = f(x_1, x_2, ..., x_n)$ справедлива формула

$$du = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 + \dots + \frac{\partial u}{\partial x_n} dx_n.$$

Пример 3.4. Найти полный дифференциал функции $z = \ln(y + \sqrt{x^2 + y^2})$.

Решение

$$\frac{\partial z}{\partial x} = \frac{1}{y + \sqrt{x^2 + y^2}} \cdot \frac{2x}{2\sqrt{x^2 + y^2}} = \frac{x}{\sqrt{x^2 + y^2} (y + \sqrt{x^2 + y^2})};$$

$$\frac{\partial z}{\partial y} = \frac{1}{y + \sqrt{x^2 + y^2}} \cdot \left(1 + \frac{y}{\sqrt{x^2 + y^2}} \right) = \frac{1}{\sqrt{x^2 + y^2}};$$

$$dz = \frac{xdx}{\sqrt{x^2 + y^2} (y + \sqrt{x^2 + y^2})} + \frac{dy}{\sqrt{x^2 + y^2}}.$$

Полный дифференциал используется для приближенных вычислений значений функции. Так, например, для функции двух переменных z = f(x, y), заменяя $\Delta z \approx dz$, получим

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + df(x_0, y_0).$$

Пример 3.5. Вычислить приближенно с помощью полного дифференциала $\arctan\left(\frac{1,97}{1,02}-1\right)$.

Решение. Рассмотрим функцию $f(x,y) = \arctan\left(\frac{x}{y} - 1\right)$. Применяя вышенаписанную формулу к этой функции, получим

$$\arctan\left(\frac{x+\Delta x}{y+\Delta y}-1\right) \approx \arctan\left(\frac{x}{y}-1\right) + \arctan\left(\frac{x}{y}-1\right)_{x} \Delta x + \left(\arctan\left(\frac{x}{y}-1\right)_{y} \Delta y\right)$$

или

$$\arctan\left(\frac{x+\Delta x}{y+\Delta y}-1\right) \approx \arctan\left(\frac{x}{y}-1\right) + \frac{y}{y^2+(x-y)^2} \Delta x - \frac{x}{y^2+(x-y)^2} \Delta y.$$

Положим теперь x=2, y=1, $\Delta x=-0.03$, $\Delta y=0.02$. Следовательно,

$$\operatorname{arctg}\left(\frac{2-0.03}{1+0.02}-1\right) \approx \operatorname{arctg}\left(\frac{2}{1}-1\right) + \frac{1(-0.03)}{1^2+(2-1)^2} - \frac{2}{1^2+(2-1)^2} \cdot 0.02 = \\
= \operatorname{arctg} 1 - \frac{1}{2} \cdot 0.03 - 0.02 = \frac{\pi}{4} - 0.015 - 0.02 \approx 0.75.$$

3.3.4. Дифференцирование сложных и неявных функций

Функция z=f(u,v), где $u=\phi(x,y)$, $v=\psi(x,y)$, называется сложной функцией переменных x и y. Для нахождения частных производных сложных функций используются следующие формулы:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x};$$

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}.$$

В случае, когда $u=\varphi(x)$, $v=\psi(x)$, $z=f(\varphi(x),\psi(x))$ - функция одной переменной и

$$\frac{dz}{dx} = \frac{\partial z}{\partial u}\frac{du}{dx} + \frac{\partial z}{\partial v}\cdot\frac{dv}{dx}.$$

Пример 3.6. Найти частные производные функции $z = \arctan \frac{u}{v}$, где u=x+y, v=x-y.

Решение

$$\frac{\partial z}{\partial x} = \frac{\frac{1}{v}}{1 + \frac{u^2}{v^2}} \cdot 1 + \frac{-\frac{u}{v^2}}{1 + \frac{u^2}{v^2}} \cdot 1 = \frac{-u + v}{u^2 + v^2}.$$

$$\frac{\partial z}{\partial y} = \frac{\frac{1}{v}}{1 + \frac{u^2}{v^2}} \cdot 1 + \frac{-\frac{u}{v^2}}{1 + \frac{u^2}{v^2}} \cdot (-1) = \frac{u + v}{u^2 + v^2} .$$

Если уравнение F(x,y)=0 задает некоторую функцию y(x) в неявном виде и $F_y'(x,y)\neq 0$, то

$$\frac{dy}{dx} = -\frac{F_x'(x,y)}{F_y'(x,y)}.$$

Если уравнение F(x, y, z) задает функцию двух переменных z(x, y) в неявном виде и $F'_z(x, y, z) \neq 0$, то справедливы формулы

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x, y, z)}{F_z'(x, y, z)}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'(x, y, z)}{F_z'(x, y, z)}.$$

Пример 3.7. Найти частные производные функции z, заданной неявно уравнением $xyz + x^3 - y^3 - z^3 + 5 = 0$.

Решение

$$\frac{\partial z}{\partial x} = -\frac{yz + 3x^2}{xy - 3z^2} = \frac{3x^2 + yz}{3z^2 - xy}.$$

$$\frac{\partial z}{\partial y} = -\frac{xz - 3y^2}{xy - 3z^2} = \frac{xz - 3y^2}{3z^2 - xy}.$$

3.4. Касательная плоскость и нормаль к поверхности

Если поверхность задана уравнением z=f(x,y), то уравнение касательной плоскости в точке $M_0(x_0,y_0,z_0)$ к данной поверхности

$$z-z_0=f_x'(x_0,y_0)(x-x_0)+f_y'(x_0,y_0)(y-y_0),$$

а канонические уравнения нормали, проведенной через точку $M_0(x_0, y_0, z_0)$ поверхности:

$$\frac{x-x_0}{f_x'(x_0,y_0)} = \frac{y-y_0}{f_y'(x_0,y_0)} = \frac{z-z_0}{-1}.$$

В случае, когда уравнение поверхности задано в неявном виде: F(x,y,z)=0, уравнение касательной плоскости в точке $M_0(x_0,y_0,z_0)$ имеет вид

$$F'_{x}(x_{0}, y_{0}, z_{0})(x - x_{0}) + F'_{y}(x_{0}, y_{0}, z_{0})(y - y_{0}) + F'_{z}(x_{0}, y_{0}, z_{0})(z - z_{0}) = 0,$$

а уравнение нормали

$$\frac{x-x_0}{F_x'(x_0,y_0,z_0)} = \frac{y-y_0}{F_y'(x_0,y_0,z_0)} = \frac{z-z_0}{F_z'(x_0,y_0,z_0)}.$$

Пример 3.8. Найти уравнения касательной плоскости и нормали к однополостному гиперболоиду $x^2 + 2y^2 - z^2 - 5 = 0$ в точке $P_0(2;-1;1)$.

Решение

$$F'_{x}(x_{0}, y_{0}, z_{0}) = 2x|_{P_{0}} = 4.$$

$$F'_{y}(x_{0}, y_{0}, z_{0}) = 4y|_{P_{0}} = -4.$$

$$F'_{z}(x_{0}, y_{0}, z_{0}) = -2z|_{P_{0}} = -2.$$

Поэтому уравнение касательной плоскости к данной поверхности запишется в виде 4(x-2)-4(y+1)-2(z-1)=0 или 2x-2y-z-5=0, а уравнение нормали — в виде

$$\frac{x-2}{4} = \frac{y+1}{-4} = \frac{z-1}{-2}$$
 или $\frac{x-2}{2} = \frac{y+1}{-2} = \frac{z-1}{-1}$.

3.5. Экстремум функции нескольких переменных

Функция u = f(p) имеет максимум (минимум) в точке $P_0(x_1^0, x_2^0, ..., x_n^0)$, если существует такая окрестность точки P_0 , в которой для всех точек $P(x_1, x_2, ..., x_n)$, отличных от точки P_0 , выполняется неравенство $f(P_0) > f(P)$ (соответственно $f(P_0) < f(P)$).

Необходимое условие экстремума. Если дифференцируемая функция f(P) достигает экстремума в точке P_0 , то в этой точке все частные производные 1-го порядка $f'_{x_k}(P_0) = 0$, k = 1,2,...,n.

Точки, в которых все частные производные равны нулю, называются стационарными точками функции u = f(P).

Достаточные условия экстремума. В случае функции двух переменных достаточные условия экстремума можно сформулировать следующим образом. Пусть $P_0(x_0,y_0)$ — стациснарная точка функции z=f(x,y), причем эта функция дважды дифференцируема в некоторой окрестности точки P_0 и все ее вторые частные производные непрерывны в точке P_0 . Обозначим

$$A = f_{xx}''(x_0, y_0), B = f_{xy}''(x_0, y_0), C = f_{yy}''(x_0, y_0), D = AC - B^2$$

Тогда:

- 1) если D>0, то в точке $P_0(x_0,y_0)$ функция z=f(x,y) имеет экстремум, а именно: максимум при A<0 (C<0) и минимум при A>0 (C>0);
 - 2) если D < 0, то экстремум в точке $P_0(x_0, y_0)$ отсутствует;
 - 3) если D=0, то требуется дополнительное исследование.

Пример 3.9. Исследовать на экстремум функцию $z = x^3 + y^3 - 3xy$.

Решение. Найдем частные производные 1-го порядка и приравняем их нулю.

$$\frac{\partial z}{\partial x} = 3(x^2 - y) = 0, \quad \frac{\partial z}{\partial y} = 3(y^2 - x) = 0.$$

Получаем систему

$$\begin{cases} x^2 - y = 0; \\ y^2 - x = 0. \end{cases}$$

Решая систему, найдем две стационарные точки $P_1(0,0)$ и $P_2(1,i)$. Найдем частные производные 2-го порядка:

$$\frac{\partial^2 z}{\partial x^2} = 6x, \quad \frac{\partial^2 z}{\partial x \partial y} = -3, \quad \frac{\partial^2 z}{\partial y^2} = 6y.$$

Затем составим дискриминант $D = AC - B^2$ для каждой стационарной точки.

Для точки
$$P_1$$
: $A = \frac{\partial^2 z}{\partial x^2}\Big|_{P_1} = 0$, $B = \frac{\partial^2 z}{\partial x \partial y}\Big|_{P_1} = -3$, $C = \frac{\partial^2 z}{\partial y^2}\Big|_{P_1} = 0$,

D = -9 < 0. Следовательно, экстремума в точке P_1 нет.

Для точки
$$P_2$$
: $A = \frac{\partial^2 z}{\partial x^2}\Big|_{P_2} = 6$, $B = \frac{\partial^2 z}{\partial x \partial y}\Big|_{P_2} = -3$, $C = \frac{\partial^2 z}{\partial y^2}\Big|_{P_2} = 6$, $D = 36 - 9 > 0$, $A > 0$. Следовательно, в точке P_2 функция имеет мини-

мум, равный $z_{\min} = z \Big|_{\substack{x=1 \ y=1}} = 1 + 1 - 3 = -1$.

3.6. Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области

Функция z = f(x, y), определенная и непрерывная в замкнутой области D с границей Γ и дифференцируемая в открытой области D, достигает своего наибольшего и наименьшего значения (глобального экстремума).

Точки глобального экстремума следует искать среди стационарных точек функции f в открытой области D и среди точек границы Γ .

Пример 3.10. Найти наибольшее и наименьшее значения функции $z = e^{x^3 + 3x^2 + 6y^2}$ в области $x^2 + y^2 \le 1$.

Решение. Граница области $x^2 + y^2 = 1$ - окружность радиуса 1. Сделаем чертеж (рис. 3.2).

Окружность разбивает плоскость на две части. Координаты точек круга удовлетворяют неравенству $x^2 + y^2 \le 1$. Найдем стационарные точки функции z в круге.

$$z'_{x} = (3x^{2} + 6x)e^{x^{3} + 3x^{2} + 6y^{2}} = 0;$$

$$z'_{y} = 12ye^{x^{3} + 3x^{2} + 6y^{2}} = 0$$

$$\Rightarrow \begin{cases} 3x^{2} + 6x = 0; \\ y = 0. \end{cases}$$

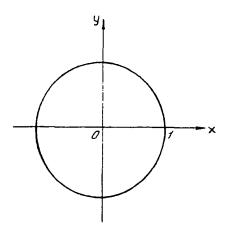


Рис. 3.2

Решая эту систему, находим для функции z две стационарные точки $M_1(0,0)$ и $M_2(-2,0)$. Кругу принадлежит точка $M_1(0,0)$; $z(M_1) = e^0 = 1$.

Найдем наибольшее и наименьшее значение функции z на окружности $x^2+y^2=1$. На ней $y^2=1-x^2; x\in [-1;1]; z=z(x)=e^{x^3-3x^2+6}$. Имеем $z(-1)=e^2; z(1)=e^4$. Далее, решая уравнение $z'(x)=(3x^2-6x)e^{x^3-3x^2+6}=0$, находим стационарную точку; $x_1=0\in (-1;1); z(x_1)=z(0)=e^6$.

Итак, получим следующие значения функции z: $z(M_1)=1$, $z(-1;0)=e^2$; $z(1;0)=e^4$; $z(0;1)=e^6$. Отсюда видно, что $\max z=e^6$, $\min z=1$.

Если граница Γ состоит из нескольких частей, то наименьшее и наибольшее значение функции z на границе Γ следует искать среди наибольших и наименьших значений функции на каждой части.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1-20. Найти неопределенные интегралы:

1. a)
$$\int \sin 2x e^{\cos 2x} dx$$
; 6) $\int \frac{\ln x}{x^4} dx$; B) $\int \frac{14dx}{(x^2 - x + 1)(x + 2)}$;

2. a)
$$\int \frac{\cos \sqrt{x} dx}{\sqrt{x}}$$
; 6) $\int \frac{\sin^3 x}{\cos^2 x} dx$; B) $\int \frac{60 dx}{(x^2 + 4)(x + 4)^2}$; $\int \frac{\ln x}{\sqrt{x}} dx$.

3. a)
$$\int x^2 e^{-x^3} dx$$
; 6) $\int \frac{\cos^3 x}{\sin^2 x} dx$; B) $\int \frac{11x+16}{(x-1)(x^2+4x+4)} dx$;

r) $\int (x^2-4)\sin 5x dx$.

4. a)
$$\int \cos x e^{-\sin x} dx$$
; 6) $\int \cos^6 x \sin^3 x dx$; B) $\int \frac{2x^2 + x + 3}{(x+1)(x^2 + x + 1)} dx$;

 Γ) $\int arccos 2xdx$

5. a)
$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx$$
; 6) $\int \frac{\sin^3 x}{1 + \cos^2 x} dx$; B) $\int \frac{x+2}{x^3 - 2x^2} dx$; r) $\int x \ln(x^2 + 4) dx$.

6. a)
$$\int \frac{e^{igx}}{\cos^2 x} dx$$
; 6) $\int x^3 e^{x^2} dx$; B) $\int \frac{10dx}{(x^2+1)(x-2)(x-1)}$;

$$\Gamma$$
) $\int \frac{dx}{\sqrt[3]{(2x+1)^2} - \sqrt{2x+1}}$.

7. a)
$$\int \frac{e^{ctg 2x}}{\sin 2x} dx$$
; 6) $\int (x^2 + 2x - 3)e^{-x} dx$; B) $\int \frac{5dx}{(x^2 + 4)(x - 1)}$;

r)
$$\int \frac{x + \sqrt{x} + \sqrt[3]{x^2}}{x(1 + \sqrt[3]{x})} dx$$
.

8. a)
$$\int \frac{e^{-\sqrt{x}}}{\sqrt{x}}$$
; 6) $\int arctg \sqrt{x} dx$; B) $\int \frac{4dx}{(x+1)^2(x+3)}$; r) $\int sin^4 x cos^2 x dx$.

9. a)
$$\int \frac{e^{arctg 3x}}{1+9x^2} dx$$
; 6) $\int (x^2-3x)ln(x+2)dx$; B) $\int \frac{5x^2-28x+44}{(x-2)^2(x-4)^2} dx$;

r) $\int sin^5 x \sqrt[5]{\cos^3 x} dx$.

10. a)
$$\int \frac{arctg^2 2x}{1+4x^2} dx$$
; 6) $\int x\cos^2 3x dx$; B) $\int \frac{2x^2-5x+1}{x^3-2x^2+x} dx$; r) $\int \frac{\cos^3 2x}{\sqrt[3]{\sin^2 2x}} dx$.

11. a)
$$\int \frac{arcsin3x}{\sqrt{1-9x^2}} dx$$
; 6) $\int x^2 e^{-3x} dx$; B) $\int \frac{x^3+x^2-x-4}{(x-1)(x+2)} dx$; r) $\int \frac{sin^3x}{\sqrt[3]{\cos^4x}} dx$.

12. a)
$$\int \frac{tg^3 3x}{\cos^2 3x} dx$$
; 6) $\int x^2 \sin 2x dx$; B) $\int \frac{2x^2 + 10x - 4}{(x - 1)^2 (x + 3)} dx$;

 Γ) $\int \frac{dx}{\cos x - 3\sin x}$.

13. a)
$$\int \frac{6x^5+1}{x^6+x+1} dx$$
; 6) $\int x \ln(x^2+2) dx$; B) $\int \frac{2x^2-x-18}{(x^2+4)(x+2)(x+1)} dx$;

r) $\int \frac{dx}{\sin^2 x - 16 \sin x \cos x}$.

14. a)
$$\int \frac{x^2}{\sin^2(2+x^3)} dx$$
; 6) $\int x^2 e^{3x} dx$; B) $\int \frac{x^3 - 3x + 1}{(x+1)(x-2)} dx$;

r) $\int \frac{dx}{4\sin^2 x - 5\cos^2 x}$.

15. a)
$$\int \frac{xdx}{\cos x^2}$$
; 6) $\int x \ln(x^2 - 2x + 3) dx$; B) $\int \frac{-x^2 - 5x}{(x^2 + x + 1)(x - 2)} dx$;

 Γ) $\int \frac{dx}{5+4\sin x}$.

16. a)
$$\int x \sin(1-3x^2) dx$$
; 6) $\int 2xe^{-x} dx$; B) $\int \frac{5x^4+1}{x^3+x} dx$;

$$\int \frac{dx}{3\sin^2 x + 5\sin x \cos x + \cos^2 x}$$

17. a)
$$\int x \cos(3x^2 + 2) dx$$
; 6) $\int x \arctan 2x dx$; B) $\int \frac{4x^2 + 16x - 8}{x^3 - 4x} dx$;

 Γ) $\int \sin 5x \cos 4x dx$

18. a)
$$\int \frac{e^{\sqrt{x+3}}}{\sqrt{x+3}} dx$$
; 6) $\int x \ln x dx$; B) $\int \frac{x^3 + 5x + 2}{x(x+2)} dx$; r) $\int \cos^2 3x dx$.

19. a)
$$\int \frac{x^6 dx}{4+x^7}$$
; 6) $\int x \sin^2 2x dx$; B) $\int \frac{3x+2}{x^2(x+4)} dx$; r) $\int \sqrt{\sin x} \cos^5 x dx$.

20. a)
$$\int x^2 \sqrt{3-4x^3} dx$$
; 6) $\int \frac{x}{\sin^2 x} dx$; B) $\int \frac{x+4}{x(x^2+4)} dx$;

$$\Gamma) \int \frac{dx}{4-3\cos^2 x + 5\sin^2 x}$$

21-26. Вычислить площади фигур, ограниченных линиями:

21.
$$y = \sin x$$
, $x \in \left[-\frac{3}{2}\pi; \frac{\pi}{2} \right]$, $y = 1$.

22.
$$y = e^x$$
, $y = e^{-x}$, $x = 1$.

23.
$$y = e^x$$
, $y = e^{-x}$, $y = 2$.

$$24. \begin{cases} y = 2\sin t + 1; \\ x = 3\cos t. \end{cases}$$

25.
$$\begin{cases} x = t^3; \\ y = t^2, \end{cases} t \in [-1;1].$$

26.
$$\rho = 2 \sin 2\varphi$$
.

27-33. Найти длину дуги кривой:

27.
$$y = \ln \cos x$$
, $x \in \left[0, \frac{\pi}{4}\right]$. 28.
$$\begin{cases} x = t^2; \\ y = t^3, \end{cases} \quad t \in \left[0, 1\right].$$

28.
$$\begin{cases} x = t^2; \\ y = t^3, \end{cases} t \in [0;1].$$

29.
$$\begin{cases} x = \cos^3 t; \\ y = \sin^3 t; \end{cases} \quad t \in [0; 2\pi]. \quad 30. \begin{cases} x = t - \sin t; \\ y = 1 + \cos t. \end{cases} \quad 31. \begin{cases} \rho = 1 + \sin \varphi, \\ \varphi \in [0; \pi] \end{cases}$$

$$30. \begin{cases} x = t - \sin t; \\ y = 1 + \cos t. \end{cases}$$

$$\rho = 1 + \sin \varphi$$
31. $\varphi \in [0:\pi]$

32.
$$\rho = 3(1 - \cos \varphi), \quad \varphi \in [0, \pi].$$
 33. $\rho = e^{2\varphi}, \quad \varphi \in \left[0, \frac{\pi}{2}\right].$

33.
$$\rho = e^{2\varphi}, \quad \varphi \in \left[0, \frac{\pi}{2}\right]$$

34-40. Найти объем тела, полученного вращением вокруг оси Ox фигуры, ограниченной линиями:

34.
$$y = \sin x, x \in [0; \pi].$$

35.
$$y = -x^2 + 5, y = 1$$
.

36.
$$y = x^2$$
, $y = 0$, $x = 2$.

37.
$$y = e^{-x}$$
, $y = 0$, $x = 0$, $x = 1$.

38.
$$y = \ln x$$
, $x = 4$, $y = 0$. 39.
$$\begin{cases} x = \cos t \\ y = 3\sin t \end{cases}$$

$$39. \begin{cases} x = \cos t \\ y = 3\sin t \end{cases}$$

40.
$$\begin{cases} x = 2t - 2\sin t; \\ y = 1 + \cos t, \end{cases} \quad t \in [0; \pi].$$

41-60. Вычислить несобственные интегралы (или установить их расходимость):

41.
$$\int_{a}^{\infty} \frac{dx}{x \ln^2 x}.$$

$$42. \int_{0}^{\infty} xe^{-2x} dx$$

43.
$$\int_{0}^{2} \frac{dx}{4-x^{2}}$$

41.
$$\int_{e}^{\infty} \frac{dx}{x \ln^{2} x}$$
. 42.
$$\int_{0}^{\infty} xe^{-2x} dx$$
. 43.
$$\int_{0}^{2} \frac{dx}{4 - x^{2}}$$
. 44.
$$\int_{0}^{\infty} \frac{e^{\arctan 3x}}{1 + 9x^{2}} dx$$
. 45.
$$\int_{0}^{\infty} xe^{-x^{2}} dx$$
. 46.
$$\int_{0}^{\infty} xe^{-3x} dx$$
. 47.
$$\int_{e}^{\infty} \frac{dx}{x \sqrt{\ln x}}$$
. 48.
$$\int_{e}^{\infty} \frac{dx}{x \ln x}$$
.

45.
$$\int_{0}^{\infty} xe^{-x^{2}}$$

46.
$$\int_{0}^{x} xe^{-x}$$

47.
$$\int_{0}^{\infty} \frac{dx}{x \sqrt{\ln x}}$$

48.
$$\int_{a}^{\infty} \frac{dx}{x \ln x}$$

49.
$$\int_{0}^{2} \frac{\sin x}{\cos^{2} x} dx$$
. 50. $\int_{-\infty}^{\infty} \frac{dx}{1+x^{2}}$. 51. $\int_{0}^{1} \frac{dx}{x}$. 52. $\int_{0}^{3} \frac{dx}{(x-1)^{2}}$.

51.
$$\int_{0}^{1} \frac{dx}{x}$$

$$52. \int_{0}^{3} \frac{dx}{(x-1)^{2}}$$

53.
$$\int_{0}^{\frac{1}{2}} \frac{dx}{x \ln^{2} x}$$
. 54. $\int_{c}^{\infty} \frac{dx}{x \ln x}$. 55. $\int_{1}^{2} \frac{dx}{x \ln x}$. 56. $\int_{-\infty}^{1} e^{2x} dx$.

57.
$$\int_{0}^{\infty} xe^{-2x} dx$$
. 58. $\int_{0}^{2} \frac{x^{3} dx}{16 - x^{4}}$. 59. $\int_{e}^{\infty} \frac{dx}{\sin^{3} x}$. 60. $\int_{0}^{\frac{\pi}{2}} \frac{x dx}{\sin^{2} x}$.

61-80. Найти
$$\frac{\partial^2 z}{\partial x^2}$$
, $\frac{\partial^2 z}{\partial x^2 \partial y}$ для функции $z = z(x, y)$.

61.
$$z = e^{\frac{y^2}{x}}$$
. 62. $z = \frac{y}{x} - 2\sin 2x$. 63. $z = \frac{y^2}{x} + tg^2 y$. 64. $z = e^{-\frac{x}{y}}$.

65.
$$z = e^{\frac{x^2}{y}}$$
. 66. $z = e^{\frac{x}{y^2}}$. 67. $z = xe^{\frac{x}{y}}$. 68. $z = ye^{\frac{x}{y}}$. 69. $z = xe^{\frac{x^2}{y}}$.

70.
$$z = \cos^2(x + y)$$
. 71. $z = \sin^2(x + y)$. 72. $z = \ln(x^3 - 2y)$.

73.
$$z = \ln(x^3 - 3y^3)$$
. 74. $z = \frac{x}{y^2} + y^3$. 75. $z = \frac{x^2}{y} + y$.

76.
$$z = \frac{x^2}{y^2} + x^3 - y$$
. 77. $z = \frac{1}{x} + 2x^2y$. 78. $z = \cos(x + y^2)$.

79.
$$z = \sin(y + x^2)$$
. 80. $z = \cos(x^2 + y)$.

81-100. Найти наибольшее и наименьшее значения функции z = z(x, y) в заданной замкнутой области \overline{D} .

81.
$$z = x^2 y(4 - x - y)$$
, $\overline{D}: x \ge 0, y \ge 0, x + y \le 6$.

82.
$$z = x^2 - v^2$$
, $\overline{D}: x^2 + v^2 \le 1$.

83.
$$z = 2x^2 - 2y^2$$
, $\overline{D}: x^2 + y^2 \le 9$.

84.
$$z = 1 - x + x^2 + 2v$$
, $\overline{D}: x \ge 0, y \ge 0, x + y \le 1$.

85.
$$z = 2x^3 - 6xy + 3y^2$$
, $\overline{D}: x \ge 0, y \le 2, y \ge \frac{1}{2}x^2$.

86.
$$z = 2x^3 + 4x^2 + y^2 - 2xy$$
, $\overline{D}: y \ge x^2, 0 \le y \le 4$.

87.
$$z = x^2 - v^2 + 8$$
. $\overline{D}: x^2 + v^2 \le 4$.

88.
$$z = x^3 + y^3 - 9xy + 27$$
, $\overline{D}: 0 \le x \le 4, 0 \le y \le 4$.

89.
$$z = x^2 + 4xy - y^2 - 6x - 2y$$
, $\overline{D}: x \ge 0, y \ge 0, 0 \le x + y \le 4$.

90.
$$z = x^2 - 2y^2 + 4xy - 6x + 5$$
, $\overline{D}: x \ge 0, y \ge 0, 0 \le x + y \le 3$.

91.
$$z = x^2 + xy - 3x - y$$
, $\overline{D}: 0 \le x \le 2, 0 \le y \le 3$.

92.
$$z = x^2 + 2xy - y^2 - 2x + 2y + 3$$
, $\overline{D}: x \le 2, y \ge 0, y \le x + 2$.

93.
$$z = x^2 + v^2 - 6x + 4y + 2$$
, $\overline{D}: 0 \le x \le 4, -3 \le y \le 2$.

94.
$$z = x^2 - 2xy + 3$$
, $\overline{D}: 0 \le y \le 4 - x^2$.

95.
$$z = 5x^2 - 3xy + y^2 + 4$$
, $\overline{D}: -1 \le x \le 1, -1 \le y \le 1$.

96.
$$z = x^2 - y^2 + 2xy + 4x$$
, $\overline{D}: x \le 0, y \le 0, y \ge -x - 2$.

97.
$$z = x^2 + 2xy - y^2 - 2x + 2y$$
, $\overline{D}: x \le 2, y \ge 0, y \le x + 2$.

98.
$$z = 6xy - 9x^2 - 9y^2 + 4x + 4y$$
, $\overline{D}: 0 \le x \le 1, 0 \le y \le 2$.

99.
$$z = xy - 3x - 2y$$
, $\overline{D}: 0 \le x \le 4, 0 \le y \le 4$.

100.
$$z = 3x^2 + 3y^2 - 2x - 2y - 2$$
, $\overline{D}: X \ge 0, y \ge 0, x + y \le 1$.

101-120. Найти уравнения касательной плоскости и нормали к заданной поверхности S в точке $M_0(x_0, y_0, z_0)$.

101.
$$S: x^2 + y^2 + z^2 + 6z - 4x + 8 = 0$$
, $M_0(2, 1, -1)$.

102.
$$S: x^2 + z^2 - 4y^2 = -2xy$$
, $M_0(-2,1,2)$.

103.
$$S: x^2 + y^2 + z^2 - xy + 3z = 7$$
, $M_0(1,2,1)$.

104.
$$S: x^2 + y^2 + z^2 + 6y + 4x = 8$$
, $M_0(-1,1,2)$.

105.
$$S: 2x^2 - y^2 + z^2 - 4z + y = 13$$
, $M_0(2,1,-1)$.

106.
$$S: x^2 + y^2 + z^2 - 6y + 4z + 4 = 0$$
, $M_0(2,1,-1)$.

107.
$$S: x^2 + z^2 - 5yz + 3y = 46$$
, $M_0(1,2,-3)$.

108.
$$S: x^2 + y^2 - xz - yz = 0$$
, $M_0(0,2,2)$.

109.
$$S: x^2 + y^2 + 2yz - z^2 + y - 2z = 2$$
, $M_0(1,1,1)$.

110.
$$S: v^2 - z^2 + x^2 - 2xz + 2x = z$$
, $M_0(1,1,1)$.

111.
$$S: z = x^2 + y^2 - 2xy + 2x - y$$
, $M_0(-1, -1, -1)$.

112.
$$S: z = v^2 - x^2 + 2xy - 3y$$
, $M_0(1, -1, 1)$.

113.
$$S: z = x^2 - y^2 - 2xy - x - 2y$$
, $M_0(-1,1,1)$.

114.
$$S: z = x^2 + y^2 - 3xy - x + y + 2$$
, $M_0(2,1,0)$.

115.
$$S: z = 2x^2 - 3y^2 + 4x - 2y + 10$$
, $M_0(-1,1,3)$.

116.
$$S: z = x^2 + y^2 - 4xy + 3x - 15$$
, $M_0(-1,3,4)$.

117.
$$S: z = x^2 + 2y^2 + 4xy - 5y - 10$$
, $M_G(-7,1,8)$.

118.
$$S: z = 2x^2 - 3y^2 + xy + 3x + 1$$
, $M_0(1, -1, 2)$.

119.
$$S: x^2 - y^2 - z^2 + xz + 4x = -5$$
, $M_{10}(-2, 1.0)$.

120.
$$S: x^2 + y^2 - xz + yz - 3x = 11$$
, $M_0(1, 4, -1)$.

КОНТРОЛЬНАЯ РАБОТА № 4

ПРОГРАММА

Обыкновенные дифференциальные уравнения

Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения 1-го порядка. Задача Коши. Теорема существования и единственности решения задачи Коши.

Интегрирование дифференциальных уравнений 1-го порядка с разделяющимися переменными, однородных, линейных, уравнения Бернулли и в полных дифференциалах.

Дифференциальные уравнения высших порядков. Задача Коши. Формулировка теоремы существования и единственности решения задачи Коши. Уравнения, допускающие понижение порядка.

Линейные дифференциальные уравнения высших порядков. Свойства линейного дифференциального оператора. Линейнозависимые и линейно-независимые системы функций. Определитель Вронского.

Линейные однородные дифференциальные уравнения, условие линейной независимости их решений. Фундаментальная система решений. Структура общего решения. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

Линейные неоднородные дифференциальные уравнения. Структура общего решения. Метод Лагранжа вариации произвольных постоянных. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами со специальной правой частью.

Нормальные системы дифференциальных уравнений. Автономные системы. Геометрический смысл решения. Фазовое пространство. Задачи Коши для нормальной системы. Теорема существования и единственности решения задачи Коши. Метод исключения для решения нормальных систем дифференциальных уравнений.

Системы линейных дифференциальных уравнений, свойства решений. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами.

Понятие о качественных методах исследования систем дифференциальных уравнений.

Литература

- 1. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М.: Наука. 1980, 1988.
- 2. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. М.: Высш. школа, 1986.
- 3. Жевняк Р.М., Карпук А.А. Высшая математика. В 2 ч. Ч. 1, 2. Мн.: Выш, школа, 1985.
- 4. Кудрявцев Д.Л. Краткий курс математического анализа. М.: Наука, 1989.
- 5. Пискунов Н.С. Дифференциальное и интегральное исчисления: Учебник для втузов. В 2 т. М.: Наука, 1985. Т. 1, 2.
 - 6. Щипачев В.С. Высшая математика. Мн.: Выш. школа, 1985.

4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

В общем случае дифференциальное уравнение первого порядка может быть записано в виде

$$F(x, y, y') = 0 (4.1)$$

или, если разрешить его относительно у', в нормальной форме

$$y' = f(x, y). \tag{4.2}$$

Решением дифференциального уравнения называется такая функция $y = \varphi(x)$, которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество.

Общим решением уравнения первого порядка называется функция $y = \varphi(x,c)$, которая при любом значении постоянной c является решением данного уравнения.

Теорема Коши. Если функция f(x,y) определена, непрерывна и имеет непрерывную частную производную $\frac{\partial f(x,y)}{\partial y}$ в области D, содержащей $m(x_0,y_0)$, тогда найдется интервал $(x_0-\delta;x_0+\delta)$, на котором существует единственное решение $y=\varphi(x)$ дифференциального уравнения (4.2), удовлетворяющее условию $y(x_0)=y_0$.

Пару чисел (x_0, y_0) называют начальными условиями. Решения, которые получаются из общего решения $y = \varphi(x,c)$ при определенном значении произвольной постоянной c, называются частными.

Задача нахождения частного решения, удовлетворяющего начальному условию $y = y_0$ при $x = x_0$, называется задачей Коши.

4.1. Дифференциальные уравнения с разделяющимися переменными

Уравнение вида

$$P(x)dx + Q(y)dy = 0 (4.3)$$

называется дифференциальным уравнением с разделенными переменными. Его общим интегралом будет $\int P(x)dx + \int Q(y)dy = c$, где c произвольная постоянная.

Уравнение вида

$$M_1(x)M_2(y)dx + N_1(x)N_2(y)dy = 0 (4.4)$$

или

$$y' = \frac{dy}{dx} = f_1(x) \cdot f_2(y),$$
 (4.5)

а также уравнения, которые с помощью алгебраических преобразований приводятся к уравнениям (4.4) или (4.5) называются дифференциальными уравнениями с разделяющимися переменными.

Разделение переменных в уравнениях (4.4) и (4.5) выполняется следующим образом: если $N_1(x) \neq 0, M_2(y) \neq 0$, то разделим обе чисти уравнения (4.4) на $N_1(x)M_2(y)$. Если $f_2(y) \neq 0$, то умножим обе части уравнения (4.5) на dx и разделим на $f_2(y)$. В результате получим уравнения с разделенными переменными вида

$$\frac{M_1(x)}{N_1(x)}dx + \frac{N_2(y)}{M_2(y)}dy = 0;$$

$$f_1(x)dx = \frac{dy}{f_2(y)}.$$

Для нахождения всех решений полученных уравнений нужно проинтегрировать обе части полученных соо́тношений.

Пример 4.1. Решить уравнение
$$y' = \frac{1+y^2}{xy(1+x^2)}$$
.

Решение. Заменим $y' = \frac{dy}{dx}$. Разделив переменные и интегрируя, получим

$$\frac{ydy}{1+y^2} = \frac{dx}{x(1+x^2)}; \quad \int \frac{ydy}{1+y^2} = \int \frac{dx}{x(1+x^2)} + C.$$

Разложим подынтегральную дробь на простейшие:

$$\frac{1}{x(1+x^2)} = \frac{A}{x} + \frac{Bx + D}{1+x^2}, \quad A = 1, \quad B = -1, \quad D = 0.$$

Отсюда

$$\frac{1}{2}\ln(1+y^2) = \ln|x| - \frac{1}{2}\ln(1+x^2) + \ln|C|;$$

$$\ln|(1+x^2)(1+y^2)| = 2\ln|Cx|.$$

 $(1+x^2)(1+y^2) = c^2x^2$ - общий интеграл уравнения. Разрешая относительно y, имеем общее решение уравнения

$$y = \pm \sqrt{\frac{C^2 x^2}{1 + x^2} - 1} \ .$$

4.2. Однородные уравнения

Функция f(x, y) называется однородной функцией n-го измерения относительно переменных x и y, если при любом t справедливо тождество

$$f(tx,ty) = t^n f(x,y).$$
 (4.6)

Например: $f(x,y) = x^3 + 3x^2y$ — однородная функция третьего измерения относительно переменных x и y, так как

$$f(tx,ty) = (tx)^3 + 3(tx)^2 ty = t^3(x^3 + 3x^2 y) = t^3 f(x,y).$$

Функция $\varphi(x,y) = \frac{x-y}{x+2y}$ является однородной функцией нулевого измерения, так как $\varphi(tx,ty) = t^0 \varphi(x,y) = \varphi(x,y)$. Функция $\varphi(xy) = x^3 + 3x^2y - x$ однородной не является, так как для нее условие (4.6) не выполняется ни при каком n.

Дифференциальное уравнение в нормальной форме $y' = \frac{dy}{dx} = f(x, y)$ называется однородным относительно переменных x и y, если f(x, y) – однородная функция нулевого измерения.

Дифференциальное уравнение в дифференциальной форме

$$M(x, y)dx + N(x, y)dy = 0$$

называется однородным, если функции M(x,y) и N(x,y) — однородные функции одного и того же измерения. При помощи подстановки y = ux, где u(x) — неизвестная функция, однородное уравнение преобразуется к уравнению с разделяющимися переменными.

Пример 4.2. Решить дифференциальное уравнение

$$y'=\frac{y^2}{x^2}-2.$$

Решение. Это однородное уравнение, так как $f(x,y) = \frac{y^2}{x^2} - 2 - од-$ нородная функция нулевого измерения. Положим y = ux, y' = u'x + u.

Тогда $u'x + u = u^2 - 2$, $u'x = u^2 - u - 2$.

 $\frac{du}{dx}x = u^2 - u - 2, \quad \frac{du}{u^2 - u - 2} = \frac{dx}{x} \quad - \text{ уравнение c разделенными переменными. Интегрируя, получим}$

$$\int \frac{du}{(u-\frac{1}{2})^2 - \frac{9}{4}} = \int \frac{dx}{x}, \quad \frac{1}{3} \ln \left| \frac{u-2}{u+1} \right| = \ln |x| + \ln |C|,$$

$$\left|\frac{u-2}{u+1}\right| = C^3 x^3, \qquad \frac{\frac{y}{x}-2}{\frac{y}{x}+1} = Cx^3, \quad y-2x = Cx^3(y+x)$$

общий интеграл данного уравнения. Разрешая относительно y, получим общее решение $y = \frac{x(2+Cx^3)}{1-Cx^3}$.

Пример 4.3. Найти частное решение уравнения $(y^2 - 3x^2)dy + 2xydx = 0$, удовлетворяющее начальному условию $y|_{x=0} = 1$.

Решение. $M(x,y) = 2xy, N(x,y) = y^2 - 3x^2$ — однородные функции второго измерения. Подстановка y = ux, y' = u'x + u приводит уравнение к виду

$$\frac{(u^2-3)du}{u(1-u^2)}=\frac{dx}{x}.$$

Интегрируя, получим

$$\int \frac{(u^2 - 3)du}{u(1 - u)(1 + u)} = \int \frac{dx}{x}, \quad \frac{u^2 - 3}{u(1 - u)(1 + u)} = \frac{A}{u} + \frac{B}{1 - u} + \frac{D}{1 + u},$$

$$A = -3, \quad B = -1, \quad D = 1.$$

$$-3 \ln |u| + \ln |1 - u| + \ln |1 + u| = \ln |x| + \ln |C|.$$

$$\left| \frac{1 - u^2}{u^3} \right| = |Cx|, \quad \frac{1 - \frac{y^2}{x^2}}{\frac{y^3}{u^3}} = Cx, \quad C = \ln C_1.$$

 $x^2 - y^2 = Cy^3$ — общий интеграл данного уравнения. Найдем частный интеграл, удовлетворяющий условию

$$y|_{x=0} = 1$$
, $0-1=C$, $C=-1$, $y^3 = y^2 - x^2$ — частное решение уравнения.

4.3. Линейное дифференциальное уравнение 1-го порядка

Линейное дифференциальное уравнение 1-го порядка имеет вид

$$y' + P(x)y = O(x)$$
. (4.7)

Такое уравнение можно решать с помощью замены

$$y = u(x)v(x),$$

где u(x) и v(x) – неизвестные функции.

Тогда
$$\frac{dy}{dx} = v \frac{du}{dx} + u \frac{dv}{dx}$$
 и уравнение (4.7) примет вид

$$v\frac{du}{dx} + u\left(\frac{dv}{dx} + P(x)v\right) = Q(x). \tag{4.8}$$

Функцию v подбираем так, чтобы выражение в скобках было равно нулю, то есть в качестве v возьмем одно из частных решений уравнения

$$\frac{dv}{dx} + P(x)v = 0.$$

Подставляя выражение v = v(x) в уравнение (4.8), получаем уравнение с разделяющимися переменными

$$v\frac{d\mathbf{u}}{d\mathbf{x}} = Q(\mathbf{x}).$$

Найдя общее решение этого уравнения в виде u = u(x,C), получим общее решение уравнения (4.3) y = u(x,C)v(x).

Пример 4.4. Найти общее решение уравнения

$$y' - y \operatorname{ctgx} = \frac{1}{\sin x}$$
.

Полагаем y = u(x)v(x), тогда y' = u'v + v'u и данное уравнение примет вид

$$u'v + v'u - uv \cot x = \frac{1}{\sin x};$$

$$u'v + u(v' - v \cot x) = \frac{1}{\sin x}.$$
(4.9)

Решая уравнение $v' - v \cot x = 0$, найдем одно из его частных решений

$$\frac{dv}{dx} = v \cot x, \qquad \frac{dv}{v} = \cot x dx,$$

$$\ln v = \ln \sin x \Rightarrow v = \sin x.$$

Подставляя и в уравнение (4.9), получим

$$u'\sin x = \frac{1}{\sin x}; \quad \frac{du}{dx} = \frac{1}{\sin^2 x},$$

$$du = \frac{dx}{\sin^2 x} \Rightarrow u = -\operatorname{ctg} x + C.$$

Общее решение исходного уравнения

$$v = uv = (-\operatorname{ctg} x + C)\sin x = -\cos x + C\sin x.$$

4.4. Уравнение Бернулли

Уравнение Бернулли имеет вид

$$y' + P(x)y = Q(x)y^m$$
, где $m \neq 0$, $m \neq 1$.

Такое уравнение можно проинтегрировать с помощью подстановки y = uv или свести к линейному уравнению с помощью замены $z = v^{1-m}$.

Пример 4.5. Решить уравнение $y' - \frac{y}{x} = \frac{x^2}{y}$.

Полагая y = uv, приводим уравнение к виду

$$v\left(\frac{du}{dx} - \frac{u}{x}\right) + \left(\frac{dv}{dx}u - \frac{x^2}{uv}\right) = 0. \tag{4.10}$$

Уравнение $\frac{du}{dx} - \frac{u}{x} = 0$ имеет частное решение u = x.

Подставляя u в (4.10), получаем уравнение

$$\frac{dv}{dx}x - \frac{x^2}{xv} = 0, \quad \frac{dv}{dx} = \frac{1}{v}.$$

Его общее решение $v = \pm \sqrt{2x + C}$. Общее решение исходного уравнения $y = x(\pm \sqrt{2x + C})$.

Пример 4.6. Решить уравнение Бернулли относительно x = x(y).

$$\frac{dx}{dy} = \frac{x}{2y} - \frac{1}{2x}.$$

Полагая x = uv, получим

$$v\left(\frac{du}{dy} - \frac{u}{2y}\right) + \left(\frac{dv}{dy}u + \frac{1}{2uv}\right) = 0. \tag{4.11}$$

Уравнение $\frac{du}{dy} - \frac{u}{2y} = 0$ имеет частное решение $u = \sqrt{y}$. Подставляя значение u в уравнение (4.11), перейдем к уравнению

$$\frac{dv}{dy}\sqrt{y} + \frac{1}{2v\sqrt{y}} = 0 \Rightarrow v^2 = \ln\frac{|C|}{|y|}.$$

Отсюда
$$x = \sqrt{y} \ln^{1/2} \left| \frac{C}{y} \right|, \quad x^2 = y \ln \left| \frac{C}{y} \right|.$$

4.5. Дифференциальное уравнение в полных дифференциалах

Уравнение
$$P(x,y)dx + Q(x,y)dy = 0$$
 (4.12)

называется уравнением в полных дифференциалах, если его левая часть является полным дифференциалом некоторой функции u(x,y), то есть

$$P(x,y)dx + Q(x,y)dy = du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy \; .$$

Пусть функции P(x,y) и Q(x,y) непрерывно дифференцируемы по y и x соответственно в односвязной области D.

Теорема. Для того, чтобы уравнение (4.12) было уравнением в полных дифференциалах, необходимо и достаточно, чтобы выполнялось условие

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \forall (x, y) \in D.$$

Решение уравнения (4.12) в полных дифференциалах можно записать в виде

$$u(x,y)=C.$$

Функция u(x, y) может быть найдена из системы

$$\frac{\partial u}{\partial x} = P(x, y), \quad \frac{\partial u}{\partial y} = Q(x, y).$$
 (4.13)

Общий интеграл уравнения (4.12) можно представить в виде

$$\int_{x_0}^{x} P(x, y) dx + \int_{y_0}^{y} Q(x_0, y) dy = C,$$

где $(x_0, y_0) \in D$.

Пример 4.7. Решить уравнение

$$e^{x}(x\sin y + y\cos y)dx + e^{x}(x\cos y - y\sin y)dy = 0,$$

$$\frac{\partial P}{\partial y} = e^{x}(x\cos y + \cos y - y\sin y); \quad \frac{\partial Q}{\partial x} = e^{x}(x\cos y - y\sin y + \cos y).$$

Следовательно, данное уравнение является уравнением в полных дифференциалах. Найдем функцию u(x,y). Система (4.13) имеет вид

$$\frac{\partial u}{\partial x} = e^{x}(x \sin y + y \cos y); \frac{\partial u}{\partial y} = e^{x}(x \cos y - y \sin y).$$

Из первого уравнения этой системы находим

$$u(x, y) = \int e^x (x \sin y + y \cos y) dx + \varphi(y) =$$

= $e^x x \sin y - e^x \sin y + e^x y \cos y + \varphi(y),$

где $\varphi(y)$ – произвольная дифференцируемая функция.

Подставляя u(x, y) во второе уравнение системы, имеем

$$e^{x}x\cos y - e^{x}\cos y + e^{x}\cos y - e^{x}y\sin y + \varphi'(y) =$$

$$= e^{x}x\cos y - e^{x}y\sin y \Rightarrow \varphi'(y) = 0 \Rightarrow \varphi(y) = C.$$

Следовательно, $u(x, y) = e^{x}(x \sin y - \sin y + y \cos y) + C$. Общий интеграл уравнения имеет вид

$$e^{x}(x\sin y - \sin y + y\cos y) + C = 0.$$

4.6. Дифференциальные уравнения высших порядков. Дифференциальные уравнения, допускающие понижение порядка

Дифференциальное уравнение *n*-го порядка имеет вид

$$F(x, y, y', y'', ..., y^{(n)}) = 0,$$

- или если оно разрешено относительно $y^{(n)}$, то $y^{(n)} = f(x, y, y', ..., y^{(n-1)})$. Задача нахождения решения $y = \varphi(x)$ данного уравнения, удовлетворяющего начальным условиям

$$y_{x=x_0} = y_0, y'_{x=x_0} = y'_0, ..., y^{(n-1)}_{x=x_0} = y_0^{(n-1)},$$

называется задачей Коши.

Укажем некоторые виды дифференциальных уравнений, допускающих понижение порядка.

- 1. Уравнение вида $y^{(n)} = f(x)$. После n-кратного интегрирования получается общее решение.
- 2. Уравнение не содержит искомой функции и ее производных до порядка (k-1) включительно:

$$F(x, y^{(k)}, y^{(k+1)}, ..., y^{(n)}) = 0$$
.

Порядок такого уравнения можно понизить на k единиц заменой $y^{(k)}(x) = P(x)$. Уравнение примет вид

$$F(x, p, p', ..., p^{(n-k)}) = 0$$
.

Из последнего уравнения, если это возможно, определяем $p = f(x, C_1, C_2, ..., C_{n-k})$, а затем находим y из уравнения $y^{(k)} = f(x, C_1, C_2, ..., C_{n-k})$ k-кратным интегрированием.

3. Уравнение не содержит независимой переменной:

$$F(y, y', y'', ..., y^{(n)}) = 0.$$

Подстановка y' = z(y) позволяет понизить порядок уравнения на 1. Все производные $y', y'', ..., y^{(n)}$ выражаются через производные от новой неизвестной функции z(y) по y:

$$y' = z$$
, $y'' = \frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = \frac{dz}{dy} \cdot z$, $y''' = \frac{d^2z}{dy^2} \cdot z^2 + \left(\frac{dz}{dy}\right)^2 \cdot z$

и т. д. Подставив эти выражения в уравнение вместо $y', y'', ..., y^{(n)}$, получим дифференциальное уравнение (n-1)-го порядка.

Замечание. При решении задачи Коши во многих случаях нецелесообразно находить общее решение уравнения; начальные условия лучше использовать непосредственно в процессе решения.

Пример 4.8. Решить задачу Коши

$$yy'' = y^4 + (y')^2$$
, $y(0) = 1$, $y'(0) = 0$.

Решение. Данное уравнение не содержит независимую переменную, поэтому полагаем y' = z(y). Тогда $y'' = z \cdot \frac{dz}{dy}$ и уравнение принимает вид

$$yz\frac{dz}{dy}-z^2=y^4.$$

Пусть $yz \neq 0$, тогда мы получаем уравнение Бернулли относительно z = z(y)

$$\frac{dz}{dy} = \frac{z}{y} + \frac{y^3}{z} \,.$$

Решая его, находим $z=\pm y\sqrt{y^2+C_1}$. Из условия y'=z=0 при y=1 имеем $C_1=-1$, следовательно, $z=\pm y\sqrt{y^2-1}$ или $\frac{dy}{dx}=\pm y\sqrt{y^2-1}$. Интегрируя это дифференциальное уравнение с разделяющимися переменными, имеем $\arccos\frac{1}{y}\pm x=C_2$. Полагая y=1 и x=0, получим $C_2=0$, откуда $\frac{1}{y}=\cos x$ или $y=\sec x$.

Осталось заметить, что случай yz = 0 не дает решений поставленной задачи Коши.

5. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5.1. Линейное однородное дифференциальное уравнение *n*-го порядка с постоянными коэффициентами

Линейное однородное дифференциальное уравнение *n*-го порядка с постоянными коэффициентами имеет вид

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = 0,$$
 (5.1)

где $a_i = const$, $a_i \in R$.

Для нахождения общего решения уравнения (5.1) составляется характеристическое уравнение

$$k^{n} + a_{1}k^{n-1} + a_{2}k^{n-2} + \dots + a_{n-1}k + a_{n} = 0$$
 (5.2)

и находятся его корни $k_1, k_2, ..., k_n$. Возможны следующие случаи:

1. Все корни $k_1, k_2, ..., k_n$ характеристического уравнения (5.2) действительны и различны. Общее решение уравнения (5.1) выражается формулой

$$y = C_1 e^{k_1 x} + C_2 e^{k_2 x} + \dots + C_n e^{k_n x}.$$
 (5.3)

2. Характеристическое уравнение имеет пару однократных комплексно-сопряженных корней $k_{1,2} = \alpha \pm \beta i$. В формуле (5.3) соответствующая пара членов $C_1e^{k_1x} + C_2e^{k_2x}$ заменяется слагаемым

$$e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x).$$

3. Действительный корень k_1 уравнения (5.2) имеет кратность $r(k_1 = k_2 = ... = k_r)$. Тогда соответствующие r членов $C_1e^{k_1x} + ... + C_re^{k_rx}$ в формуле (5.3) заменяются слагаемым

$$e^{k_1x}(C_1+C_2x+C_3x^2+...+C_rx^{r-1}).$$

4. Пара комплексно-сопряженных корней $k_{1,2} = \alpha \pm \beta i$ уравнения (5.2) имеет кратность r. В этом случае соответствующие r пар членов $C_1e^{k_1x} + ... + C_2 \cdot e^{k_2 \cdot x}$ в формуле (5.3) заменяются слагаемым

$$e^{\alpha x}[(C_1 + C_2 x + ... + C_r x^{r-1})\cos\beta x + (C_{r+1} + C_{r+2} x + ... + C_{2n} x^{r-1})\sin\beta x].$$

Пример 5.1. Решить уравнение $y^{IV} - 5y'' + 4y = 0$. Характеристическое уравнение $k^4 - 5k^2 + 4 = 0$ имеет корни $k_{1,2} = \pm 1$, $k_{3,4} = \pm 2$. Общее решение дифференциального уравнения

$$y = C_1 e^x + C_2 e^{-x} + C_3 e^{2x} + C_4 e^{-2x}$$
.

Пример 5.2. Решить уравнение y'' - 2y' + 5y = 0. Характеристическое уравнение $k^2 - 2k + 5 = 0$ имеет корни $k_{1,2} = 1 \pm 2i$. Общее решение имеет вид

$$y = e^x (C_1 \cos 2x + C_2 \sin 2x).$$

Пример 5.3. Решить уравнение y''-2y'+y=0. Характеристическое уравнение $k^2-2k+1=0$ имеет 2-кратный корень $k_{1,2}=1$, поэтому общее решение имеет вид

$$y = e^x (C_1 + C_2 x).$$

Пример 5.4. Решить уравнение $y^{1'} + 8y''' + 16y' = 0$. Характеристическое уравнение $k^5 + 8k^3 + 16k = 0$ имеет корни $k_1 = 0$, $k_{2,3} = 2i$, $k_{4,5} = -2i$. Общее решение уравнения

$$y = C_1 + C_2 \cos 2x + C_3 \sin 2x + C_4 x \cos 2x + C_5 x \sin 2x$$
.

5.2. Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами имеет вид

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x),$$
 (5.4)

где $a_i \in R$, f(x) — непрерывная функция.

Пусть

$$y = C_1 y_1 + C_2 y_2 + \dots + C_n y_n$$
 (5.5)

– общее решение однородного уравнения (5.1), соответствующего уравнению (5.4). Метод вариации постоянных состоит в том, что общее решение уравнения (5.4) ищется в виде

$$y = C_1(x)y_1 + C_2(x)y_2 + ... + C_n(x)y_n$$

где $C_1(x),...,C_n(x)$ — неизвестные функции. Эти функции определяются из системы

$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 + \dots + C_n'(x)y_n = 0; \\ C_1'(x)y_1' + C_2'(x)y_2' + \dots + C_n'(x)y_n' = 0; \\ \dots \\ C_1'(x)y_1'^{n-1} + C_2'(x)y_2'^{n-1} + \dots + C_n'(x)y_n'^{n-1} = f(x), \end{cases}$$

где $C_i' = \frac{dC_i(x)}{dx}$ — производные функций $C_i(x)$. Для уравнения второго порядка y'' + p + q = f(x) данная система имеет вид

$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 = 0; \\ C_1'(x)y_1' + C_2'(x)y_2' = f(x). \end{cases}$$

Пример 5.5. Решить уравнение $y'' - y' = \frac{1}{1 + e^x}$.

Решение. Характеристическое уравнение имеет корни $k_1 = 0$, $k_2 = 1$. Поэтому общее решение однородного уравнения будет таким: $y = C_1 + C_2 e^x$. Положим $C_1 = C_1(x)$ и $C_2 = C_2(x)$. Запишем систему для определения $C_1' = C_1'(x)$ и $C_2' = C_2'(x)$:

$$\begin{cases} C_1'(x)y_1 + C_2'(x)e^x = 0; \\ C_2'(x)e^x = \frac{1}{1+e^x}. \end{cases}$$

Решая эту систему уравнений, получим:

$$C_2'(x) = \frac{1}{e^x(1+e^x)}, \quad C_1'(x) = -\frac{1}{1+e^x},$$

откуда

$$C_{1}(x) = -\int \frac{dx}{1 + e^{x}} = -\int \frac{e^{-x}}{e^{-x} + 1} dx = \int \frac{d(e^{-x} + 1)}{e^{-x} + 1} = \ln e^{-x} + 1 + \widetilde{C}_{1};$$

$$C_{2}(x) = \int \frac{dx}{e^{-x}(1 + e^{x})} = \int \frac{e^{-2x}}{e^{-x} + 1} dx = \int \frac{(e^{-x})^{2} dx}{e^{-x} + 1} dx + \int \frac{dx}{e^{-x} + 1} =$$

$$= \int (e^{-x} - 1) dx + \int \frac{dx}{e^{-x} + 1} = -e^{-x} - x + \int \frac{e^{x} dx}{1 + e^{x}} =$$

$$= -e^{-x} - x + \ln |e^{x}| + 1 + \widetilde{C}_{2},$$

где \tilde{C}_1 , \tilde{C}_2 – произвольные постоянные.

Общее решение запишется так:

$$y = \ln(e^{-x} + 1) + \widetilde{C}_1 + e^x(-e^{-x} - x + \ln(1 + e^x) + \widetilde{C}_2).$$

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ СО СПЕЦИАЛЬНОЙ ПРАВОЙ ЧАСТЬЮ

Рассмотрим неоднородное дифференциальное уравнение *n*-го порядка с постоянными коэффициентами

$$L(y) = y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = f(x),$$
(6.1)

где $a_i \in R$, f(x) — непрерывная функция. Соответствующим однородным уравнением будет

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = 0. (6.2)$$

Пусть

$$k^{n} + a_{1}k^{n-1} + \dots + a_{n} = 0 {(6.3)}$$

характеристическое уравнение для уравнения (6.2). Общее решение y уравнения (6.1) равно сумме общего решения \bar{y} соответствующего однородного уравнения (6.2) и какого-либо частного решения y^* неоднородного уравнения (6.1), то есть

$$y = \bar{y} + y^*$$
.

1). Если правая часть уравнения (6.1) имеет вид $f(x) = P_n(x)e^{\alpha x}$, где $P_n(x)$ —многочлен степени n, то частное решение уравнения (6.1) может быть найдено в виде

$$y^* = x^r e^{\alpha x} Q(x),$$

тате $Q(x) = A_0 x^n + A_1 x^{n-1} + ... + A_n$ — некоторый многочлен степени n с неопределенными коэффициентами, а r — число, показывающее, сколько раз α является корнем характеристического уравнения для соответствующего однородного уравнения (6.2).

Пример 6.1. Найти общее решение уравнения $y'' - y = xe^{2x}$.

Решение. Составляем характеристическое уравнение $k^2-1=0$ для соответствующего однородного уравнения. Его корни $k_1=1, k_2=-1$. Так как число $\alpha=2$ корнем характеристического уравнения не является, то r=0. Степень многочлена в правой части равна единице. Поэтому частное решение ищем в виде

$$y^* = (ax + b)e^{2x}.$$

Находим $y' = (2ax + 2b + a)e^{2x}$, $y'' = (4ax + 4b + 4a)e^{2x}$ и, подставляя y'', y' и y в уравнение, получим (после сокращения на e^{2x})

$$4a + 4ax + 4b - ax - b = x.$$

Откуда находим:

$$\begin{vmatrix} x \\ 3a = 1, & a = 1/3; \\ x^0 & 4a + 3b = 0, & b = -4/9. \end{vmatrix}$$

Искомое частное решение имеет вид

$$y^* = \frac{1}{9}(3x - 4)e^{2x},$$

а общее решение уравнения будет

$$y = C_1 e^x + C_2 e^{-x} + \frac{1}{9} (3x - 4)e^{2x}$$
.

2). Если правая часть уравнения (6.1) имеет вид

$$f(x) = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x), \tag{6.4}$$

где $P_n(x)$ и $Q_m(x)$ — многочлены n-й и m-й степени соответственно, тогда:

а) если числа $\alpha \pm i\beta$ не являются корнями характеристического уравнения (6.3), то частное решение уравнения (6.1) ищется в виде

$$y^* = e^{\alpha x} (u_S(x) \cos \beta x + v_S(x) \sin \beta x), \qquad (6.5)$$

где u_s и v_s — многочлены степени s с неопределенными коэффициентами и $s = \max\{n, m\}$;

б) если числа $\alpha \pm i\beta$ являются корнями кратности r характеристического уравнения (6.3), то частное решение уравнения (6.1) ищется в виде

$$y^* = x' e^{\alpha x} (u_s(x) \cos \beta x + v_s(x) \sin \beta x), \qquad (6.6)$$

где u_s и v_s — многочлены степени s с неопределенными коэффициентами и $s = \max\{n, m\}$.

Замечания.

- 1. Если в (6.4) $P_n(x) \equiv 0$ или $Q_m(x) \equiv 0$, то частное решение y^* также ищется в виде (6.5), (6.6), где s = m (или s = n).
- 2. Если уравнение (6.1) имеет вид $L(y) = f_1(x) + f_2(x)$, то частное решение y^* такого уравнения можно искать в виде $y^* = y_1^* + y_2^*$, где $y_1^* -$ частное решение уравнения $L(y) = f_1(x)$, а $y_2^* -$ частное решение уравнения $L(y) = f_2(x)$.

Пример 6.2. Найти общее решение уравнения

$$y'' - y' = e^x + e^{2x} + x.$$

Решение. Соответствующее однородное уравнение имеет вид

$$y'' - y' = 0,$$

характеристическое уравнение $k^2 - k = 0$ имеет корни $k_1 = 0$, $k_2 = 1$. Общее решение однородного уравнения:

$$\bar{y} = C_1 + C_2 e^x.$$

Правая часть данного уравнения есть сумма

$$f(x) = f_1(x) + f_2(x) + f_3(x) = e^x + e^{2x} + x$$
.

Поэтому находим частные решения для каждого из трех уравнений:

$$y'' - y' = e^x$$
, $y'' - y' = e^{2x}$, $y'' - y' = x$.

Частное решение первого уравнения ищем в виде $y_1^* = Axe^x$, так $\alpha = 1$ является однократным корнем характеристического уравнения и $P_n(x) = 1$ — многочлен нулевой степени. Поскольку

$$y_1^{*'} = Ae^x + Axe^x$$
, $y_1^{*''} = Ae^x + Ae^x + Axe^x = 2Ae^x + Axe^x$,

то, подставляя эти выражения в первое уравнение, имеем

$$2Ae^{x} + Axe^{x} - Ae^{x} - Axe^{x} = e^{x}$$
 или $Ae^{x} = e^{x} \Rightarrow A = 1$ и $y_{1}^{*} = xe^{x}$.

Частное решение второго уравнения будем находить в виде $y_2^* = Ae^{2x}$, так как в правой части второго уравнения $\alpha = 2$ не является корнем характеристического уравнения и $P_n(x) = 1$ — многочлен нулевой степени.

Определяя, как и выше, постоянную A, получим $y_2^* = \frac{1}{2}e^{2x}$. Частное решение третьего уравнения будем находить в виде $y_3^* = x(Ax + B)$, так как в правой части третьего уравнения $\alpha = 0$ является однократным корнем характеристического уравнения и $P_n(x) = x$ — многочлен первой степени. Поскольку $y_3^{*'} = 2Ax + B$, $y_3^{*''} = 2A$, то, подставляя эти выражения в третье уравнение, имеем 2A - 2Ax - B - B = x. Приравнивая коэффициенты при x и свободные члены в левой и правой частях равенства, получаем систему -2A = 1, BA - B = 0, откуда находим $A = -\frac{1}{2}$, B = -1.

Следовательно,
$$y_3^* = -x \left(\frac{1}{2} x + 1 \right)$$
.

Суммируя частные решения, получаем частное решение y^* исходного уравнения $y^* = y_1^* + y_3^* = xe^x + \frac{1}{2}e^{2x} - x\left(\frac{1}{2}x + 1\right)$. Тогда общее решение данного неоднородного уравнения будет

$$\overline{y} = \overline{y} + y^* = C_1 + C_2 e^x + x e^x + \frac{1}{2} e^{2x} - x \left(\frac{1}{2} x + 1 \right) =$$

$$= C_1 + (C_2 + x) e^x + \frac{1}{2} e^{2x} - \frac{1}{2} x^2 - x.$$

Пример 6.3. Найти частное решение уравнения $y'' + y = 4x \cos x$, удовлетворяющее начальным условиям y(0) = 0, y'(0) = 1.

Решение. Характеристическое уравнение $k^2+1=0$ имеет корни $k_1=i$, $k_2=-i$. Поэтому общим решением соответствующего однородного уравнения y''+y=0 будет $\bar{y}=C_1\cos x+C_2\sin x$. Для первой части данного уравнения $\alpha=0$, $\beta=1$, $P_n(x)=4x$ — многочлен первой степени (n=1), $Q_m(x)=0$ — многочлен нулевой степени (m=0); $s=\max\{1,0\}=1$, $\alpha+i\beta=i$ являются корнями характеристического уравнения. Поэтому частное решение данного уравнения находим в виде $y^*=x((Ax+B)\cos x+(Cx+D)\sin x)$ или $y^*=(Ax^2+Bx)\cos x+(Cx^2+Dx)\sin x$. Находим

$$y^{*'} = (2Ax + B)\cos x + (2Cx + D)\sin x -$$

$$-(Ax^{2} + Bx)\sin x + (Cx^{2} + Dx)\cos x =$$

$$= (2Ax + B + Cx^{2} + Dx)\cos x + (2Cx + D - Ax^{2} - Bx)\sin x;$$

$$y^{*''} = (2A + 2Cx + D)\cos x - (2Ax + B + Cx^{2} + Dx)\sin x +$$

$$+(2C - 2Ax - B)\sin x + (2Cx + D - Ax^{2} - Bx)\cos x =$$

$$= (2A + 4Cx + 2D - Ax^{2} - Bx)\cos x + (2C - 4Ax - 2B - Cx^{2} - Dx)\sin x.$$

Подставляя $y^*.y^{*'}.y^{*'}$ в заданное уравнение, имеем

$$(2A + 2ACx + 2D - Ax^2 - Bx)\cos x + (2C - 4Ax - 2B - Cx^2 - Dx) \times \sin x + (Ax^2 + Bx)\cos x + (Cx^2 + Dx)\sin x = 4x\cos x.$$

Приравнивая коэффициенты при $\cos x$, $\sin x$, $x \cos x$, $x \sin x$ в обеих частях равенства, получаем систему

$$\cos x$$
 | 2A + 2D = 0;
 $\sin^0 x$ | 2C - 2B = 0;
 $x\cos x$ | 4C - B + B = 4;
 $x\sin x$ | -4A - D + D = 0.

Решая эту систему, находим A = 0, B = 1, C = 1, D = 0. Тогда

$$y^* = x\cos x + x^2\sin x.$$

Общее решение будет $y=\bar{y}+y^*=C_1\cos x+C_2\sin x+x\cos x+x^2\sin x$. Находим $y'=-C_1\sin x+C_2\cos x+\cos x-x\sin x+2x\sin x+x^2\cos x$. Так как $y(0)=0,\ y'(0)=1,\ \text{то }0=C_1,\ C=C_2+1$. Таким образом, $C_1=0,\ C_2=0$. Подставляя значения $C_1=0,\ C_2=0$ в общее решение, получим частное решение $y=x\cos x+x^2\sin x$.

Пример 6.4. Определить вид частного решения линейного неоднородного дифференциального уравнения, если известны корни $k_1 = 3 - 2i$, $k_2 = 3 + 2i$ его характеристического уравнения и правая часть

$$f(x) = e^{3x}(\cos 2x + \sin 2x).$$

Решение. В правой части $\alpha = 3$, $\beta = 2$, $P_n(x) = 1$, $Q_m(x) = 1$ — многочлены нулевой степени, $\alpha \pm \beta i = 3 \pm 2i$ являются корнями характеристического уравнения. Поэтому частное решение будет иметь вид

$$y^* = xe^{3x} (A\cos 2x + B\sin 2x) ,$$

где A и B — неопределенные коэффициенты.

7. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. МЕТОД ИСКЛЮЧЕНИЯ. РЕШЕНИЕ ЛИНЕЙНЫХ СИСТЕМ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ МЕТОДОМ ЭЙЛЕРА

7.1. Нормальная система *n*-го порядка обыкновенных дифференциальных уравнений

Нормальная система *n*-го порядка обыкновенных дифференциальных уравнений имеет вид

$$\begin{cases} \frac{dx_1}{dt} = f_1(t, x_1, x_2, ..., x_n); \\ \frac{dx_2}{dt} = f_2(t, x_1, x_2, ..., x_n); \\ ... \\ \frac{dx_n}{dt} = f_n(t, x_1, x_2, ..., x_n), \end{cases}$$

где t – независимая переменная; $x_1, x_2, ..., x_n$ – неизвестные функции от $t; f_1, f_2, ..., f_n$ – заданные функции.

Метод исключения неизвестных состоит в том, что данная система приводится к одному дифференциальному уравнению n-го порядка с одной неизвестной функцией (или к нескольким уравнениям, сумма порядков которых равна n). Для этого последовательно дифференцируют одно из уравнений системы и исключают все неизвестные функции, кроме одной.

Пример 7.1. Найти общее решение системы дифференциальных уравнений

$$\frac{dx}{dt} = \frac{y}{t}, \quad \frac{dy}{dt} = \frac{y(x+2y-1)}{t(x-1)}$$

и частное решение, удовлетворяющее начальным условиям x(1) = -1, y(1) = 4.

x(t) = -1, y(t) = 4. **Решение.** Дифференцируем первое уравнение по t: $x'' = \frac{y't - y}{t^2}$.

Заменяя здесь y' ее значением из второго уравнения системы и под-

ставляя y = x't, найденное из первого уравнения, получим после упрощения уравнение второго порядка $x'' = \frac{2(x')^2}{r-1}$.

Интегрируем это уравнение, предварительно понижая порядок:

$$x' = p, \ p = p(x), \ x'' = \frac{dp}{dx} p, \ \frac{dp}{dx} = \frac{2p}{x - 1}, \ \frac{dp}{p} = \frac{2dx}{x - 1},$$

$$p = C_1(x - 1)^2, \ \frac{dx}{dt} = C_1(x - 1)^2, \ -\frac{1}{x - 1} = C_1t + C_2,$$

$$x = \frac{C_1t + C_2 - 1}{C_1t + C_2}.$$

Дифференцируя эту функцию и подставляя в выражение y = x't, получим

$$y = \frac{C_1 t}{\left(C_1 t + C_2\right)^2}.$$

Общим решением заданной системы дифференциальных уравнений будет

$$x = \frac{C_1 t + C_2 - 1}{C_1 t + C_2}, \quad y = \frac{C_1 t}{(C_1 t + C_2)^2}.$$

Для нахождения частного решения подставим начальные условия $x(1)=-1,\quad y(1)=4 \ . \quad \text{Получим} \quad -1=\frac{C_1+C_2-1}{C_1+C_2}, \quad 4=\frac{C_1}{(C_1+C_2)}, \quad \text{откуда}$ $C_1=1, \quad C_2=-\frac{1}{2}$.

Следовательно, искомым частным решением системы будут функции

$$x = \frac{2t-3}{2t-1}$$
, $y = \frac{4t}{(2t-1)^2}$.

Пример 7.2. Найти общее решение системы

$$\frac{dx}{dt} = 2y - 5x + e^t$$
, $\frac{dy}{dt} = x - 6y - e^{-2t}$.

Решение. Дифференцируем первое уравнение: $x'' = 2y' - 5x' + e^t$. Заменяем y' ее значением из второго уравнения и подставляем затем $y = \frac{1}{2}(x' + 5x - e^t)$. Получим линейное неоднородное уравнение второго порядка с постоянными коэффициентами

$$x'' + 11x' + 28x = 2e^{-2t} + 7e^{t}$$
.

Его общее решение

$$x = C_1 e^{-4t} + C_2 e^{-7t} + \frac{1}{2} e^{-2t} + \frac{7}{40} e^t$$

(получено как сумма общего решения $\bar{x} = C_1 e^{-4t} + C_2 e^{-7t}$ соответствующего однородного уравнения и частного решения $x^* = \frac{1}{5}e^{-2t} + \frac{7}{40}e^t$ неоднородного уравнения).

Подставляя x и x' в выражение для y, получим

$$y = \frac{1}{2}(x' + 5x - e^t) = \frac{1}{2}C_1e^{-4t} - C_2e^{-7t} + \frac{3}{10}e^{-2t} + \frac{1}{40}e^t.$$

Общее решение исходной системы имеет вид

$$x = C_1 e^{-4t} + C_2 e^{-7t} + \frac{1}{5} e^{-2t} + \frac{7}{40} e^t;$$

$$y = \frac{1}{2} C_1 e^{-4t} - C_2 e^{-7t} + \frac{3}{10} e^{-2t} + \frac{1}{40} e^t.$$

7.2. Линейная однородная система *n*-го порядка с постоянными коэффициентами

Линейная однородная система n-го порядка с постоянными коэффициентами имеет вид

$$\begin{cases} \frac{dx_1}{dt} = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n; \\ \frac{dx_2}{dt} = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n; \\ \dots \\ \frac{dx_n}{dt} = a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n, \end{cases}$$

где $a_{ij} = \text{const}, \quad a_{ij} \in R, \quad x_i - \text{неизвестные функции от } t.$

Данную систему можно записать в матричной форме

$$\frac{dx}{dt} = AX,$$

где

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \quad \frac{dx}{dt} = \begin{pmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \\ \dots \\ \frac{dx_n}{dt} \end{pmatrix}.$$

При решении линейной системы дифференциальных уравнений методом Эйлера частные решения системы ищутся в виде $X = Ve^{kt}$, где $V \neq 0$ — матрица-столбец, k — число.

Если корни $k_1, k_2, ..., k_n$ характеристического уравнения $\det(A - kE) = 0$ действительны и различны, общее решение системы имеет вил

$$X = C_1 V_1 e^{k_1 t} + C_2 V_2 e^{k_2 t} + \dots + C_n V_n e^{k_n t},$$

где $C_1, C_2, ..., C_n$ — произвольные постоянные; V_j — собственный векторстолбец матрицы A, соответствующий числу k, то есть $(A - k_j E)V_j = 0$, где E — единичная матрица.

Замечание. Если k_m, \overline{k}_m — пара простых комплексно-сопряженных корней характеристического уравнения, то им соответствуют два действительных частных решения $\text{Re}(V_m e^{k_m t})$; $\text{Im}(V_m e^{k_m t})$, где $\text{Re}\,z$, $\text{Im}\,z$ — действительные и мнимые части z.

Пример 7.3. Найти общее решение системы

$$\begin{cases} \frac{dx}{dt} = x - 2y + 2z; \\ \frac{dy}{dt} = x + 4y - 2z; \\ \frac{dz}{dt} = x + 5y - 3z \end{cases}$$

и частное решение, удовлетворяющее условиям x(0) = 1, y(0) = -2, z(0) = 0.

Решение. Составляем и решаем характеристическое уравнение

$$\begin{vmatrix} 1-k & -2 & 2 \\ 1 & 4-k & -2 \\ 1 & 5 & -3k \end{vmatrix} = 0, \quad (k^2 - k - 2)(1-k) = 0, \quad k_1 = -1, \quad k_2 = 1, \quad k_3 = 2.$$

Находим собственный вектор V_1 , соответствующий корню $k_1 = -1$:

$$V_{1} = \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \begin{pmatrix} 1 & -(-1) & -2 & 2 \\ 1 & 4 & -(-1) & -2 \\ 1 & 5 & -3 & (-1) \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow$$

$$\begin{cases} 2v_{1} - 2v_{2} + 2v_{3} = 0; & v_{2} = -v_{1} \\ v_{1} + 5v_{2} - 2v_{3} = 0; & \Rightarrow v_{3} = -2v_{1} \Rightarrow V_{1} = \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}.$$

Аналогично находим собственные векторы

$$V_2 = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}, \quad V_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix},$$

соответствующие $k_2 = 1$, $k_3 = 2$.

Общее решение системы

$$X = C_1 V_1 e^{k_1 t} + C_2 V_2 e^{k_2 t} + C_3 V_3 e^{k_3 t} = C_1 \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} e^{-t} + C_2 \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} e^{t} + C_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} e^{2t};$$

или

$$x = C_1 e^{-t} + C_2 e^t;$$

$$y = -C_1 e^{-t} - C_2 e^t + C_3 e^{2t};$$

$$z = -2C_1 e^{-t} - C_2 e^t + C_3 e^{2t}.$$

Для нахождения частного решения подставим в общее решение $t=0,\ x=1,\ y=-2,\ z=0$ и определим C_1,C_2,C_3 из полученной системы:

$$\begin{cases} 1 = C_1 + C_2; \\ -2 = -C_1 - C_2 + C_3 \Rightarrow C_1 = -2, C_2 = 3, C_3 = -1; \\ C = -2C_1 - C_2 + C_3. \end{cases}$$

Искомое частное решение

$$x = -2e^{-t} + 3e^{t}$$
, $y = 2e^{-t} - 3e^{t} - e^{2t}$, $z = 4e^{-t} - 3e^{t} - e^{2t}$.

Пример 7.4. Найти общее решение системы $\begin{cases} \frac{dx}{dt} = 2x - 3y; \\ \frac{dy}{dt} = 3x + 2y. \end{cases}$

Решение. Характеристическое уравнение

$$\begin{vmatrix} 2-k & -3 \\ 3 & 2-k \end{vmatrix} = 0, \quad k^2 - 4k + 13 = 0$$

имеет корни $k_1=2+3i, k_2=2-3i$. Находим собственный вектор $V_1=\begin{pmatrix} v_1\\v_2 \end{pmatrix},$ соответствующий корню $k_1=2+3i$, из системы $\begin{cases} -3iv_1-3v_2=0\\ 3v_1-3iv_2=0. \end{cases}$ Полагая $v_1=1$, получим $v_2=-i\Rightarrow V_1=\begin{pmatrix} 1\\-i \end{pmatrix}$. Составим выражение

$$V_1 e^{k_1 t} = \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{(2+3i)t} = \begin{pmatrix} 1 \\ -i \end{pmatrix} e^{2t} (\cos 3t + i \sin 3t) = \begin{pmatrix} e^{2t} (\cos 3t + i \sin 3t) \\ e^{2t} (\sin 3t - i \cos 3t) \end{pmatrix}.$$

Здесь использована формула $e^{(\alpha+i\beta)t} = e^{\alpha t}(\cos\beta t + i\sin\beta t)$. Согласно замечанию, два частных решения исходной системы имеют вид

$$\operatorname{Re}(V_1 e^{k_1 t}) = \begin{pmatrix} e^{2t} \cos 3t \\ e^{2t} \sin 3t \end{pmatrix}, \quad \operatorname{Im}(V_1 e^{k_1 t}) = \begin{pmatrix} e^{2t} \cos 3t \\ -e^{2t} \sin 3t \end{pmatrix}.$$

Общим решением системы будет

$$X = {x \choose y} = C_1 \operatorname{Re}(V_1 e^{k_1 t}) + C_2 \operatorname{Im}(V_1 e^{k_1 t}) = C_1 {e^{2t} \cos 3t \choose e^{2t} \sin 3t} + C_2 {e^{2t} \cos 3t \choose -e^{2t} \sin 3t}$$

или

$$x = C_1 e^{2t} \cos 3t + C_2 e^{2t} \sin 3t;$$

$$y = C_1 e^{2t} \sin 3t - C_2 e^{2t} \cos 3t.$$

7.3. Задачи динамики, приводящие к решению дифференциальных уравнений

К задачам динамики точки, приводящим к решению дифференциальных уравнений, относятся те задачи, в которых определяется движение точки по заданным силам. Силы, действующие на точку, могут быть как постоянными, так и заданными функциями времени, координат, скорости, то есть

$$\begin{split} F_x &= F_x(t, x, y, z, \dot{x}, \dot{y}, \dot{z}); \\ F_y &= F_y(t, x, y, z, \dot{x}, \dot{y}, \dot{z}); \\ F_z &= F_z(t, x, y, z, \dot{x}, \dot{y}, \dot{z}). \end{split}$$

Решение таких задач сводится к интегрированию системы дифференциальных уравнений движения точки:

в координатной форме

$$\begin{cases}
m\ddot{x} = F_x; \\
m\ddot{y} = F_y; \\
m\ddot{z} = F_z
\end{cases}$$
(7.1)

или в естественной форме

$$m\frac{dv}{dt}F_{\tau};$$

$$m\frac{v^{2}}{\rho}F_{h};$$

$$D = F_{s}.$$
(7.2)

В этих уравнениях под F понимается равнодействующая всех сил, в том числе и реакций связей, если точка не свободна. При интегрировании системы уравнений (7.1) в общем случае появляется щесть произвольных постоянных, которые определяются по начальным условиям. Под начальными условиями движения точки понимаются значения координат и проекций скорости точки в начальный момент движения, то есть при t=0

$$x = x_0, \quad v_x = \dot{x}_0;$$

 $y = y_0, \quad v_y = \dot{y}_0;$
 $z = z_0, \quad v_z = \dot{z}_0.$

Если движение точки происходит в плоскости, то число уравнений (7.1) сокращается до двух, а число начальных условий – до четырех. При движении точки по прямой будем иметь одно дифференциальное уравнение и два начальных условия.

При решении задач второго типа полезно придерживаться следующей последовательности.

- 1. Составить дифференциальное уравнение движения.
- а) выбрать координатные оси, поместив их начало в начальное положение точки; если движение точки является прямолинейным, то одну из координатных осей следует проводить вдоль линии движения точки; б) изобразить движущуюся точку в произвольный текущий момент t и показать на рисунке все действующие на нее силы, в том

числе и реакции связей; при наличии сил, зависящих от скорости, вектор скорости направить предположительно так, чтобы все его проекции на выбранные оси были положительными; в) найти сумму проекций всех сил на выбранные оси и подставить эту сумму в правые части уравнечий (7.1).

- 2. Проинтег ать полученные дифференциальные уравнения. Интегрирование производится соответствующими методами, зависящими от вида полученных уравнений.
- 3. Установить начальные условия движения материальной точки и по ним определить произвольные постоянные интегрирования.
- 4. Из полученных в результате интегрирования уравнений определить искомые величины.

Замечание 1. При интегрировании дифференциальных уравнений иногда целесообразно определить значения произвольных постоянных по мере их появления.

Пример 7.5. Автомобиль массой m движется прямолинейно из состояния покоя и имеет двигатель, который развивает постоянную тягу F, направленную в сторону движения, до полного сгорания горючего в момент времени T, после чего автомобиль движется по инерции до остановки. Найти пройденный путь. Силу сопротивления считать постоянной и равной R. Изменением массы автомобиля пренебречь.

Решение. Весь путь S складывается из $S_1 = |AC|$, на котором действует сила F до полного сгорания горючего, и $S_2 = |CB|$, который автомобиль идет по инерции. На пути AC $m\ddot{x} = F - R$, (7.3)

на пути
$$CB$$
 $m\ddot{x} = -R$. (7.4)

Решим дифференциальное уравнение (7.3): $\int m dx = \int (F - R) dt$,

$$m\dot{x} = (F - R)t + C_1$$
, при $t = 0$, $\dot{x} = 0$, отсюда
$$C_1 = 0 \Rightarrow m\dot{x} = (F - R)t. \tag{7.5}$$

Интегрируя, получим $mx = \frac{(F-R)t^2}{2} + C_2$, при t=0 x=0, отсюда $C_2=0$, $x=\frac{(F-R)t^2}{2m}$. Определим путь S_1 , который пройдет автомобиль до полного сгорания горючего в момент t=T: $S_1=x=\frac{(F-R)t^2}{2m}$. Решим уравнение (7.4): $m\ddot{x}=-R\int md\ddot{x}=-\int Rdt$, $m\dot{x}=-Rt+C_3$. При t=0 скорость x

будет равна скорости, которую имеет автомобиль в момент T сгорания горючего и которая из формулы (7.5) равна $m\dot{x} = (F - R)T$, $\dot{x} = \frac{(F - R)T}{m}$. Используя эти начальные условия, найдем C_1 :

$$m = \frac{(F-R)T}{m} = R \cdot 0 + C_3, C_3 = (F-R)T.$$

Подставляя C_3 , имеем $m\dot{x} = -Rt_0 + (F - R)T$. (7.6)

$$mx = -\frac{Rt^2}{2} + (F - R)Tt + C_4$$
 при $t = 0, x = 0$.

Отсюда
$$C_4 = 0, x = \frac{1}{m} \left[-\frac{Rt^2}{2} + (F - R)Tt \right].$$

Чтобы найти путь S_1 , надо знать время t движения автомобиля по инерции до остановки (x=0).

Из (7.6) получим

$$0 = -Rt + (F - R), t = \frac{(P - R)}{R}T.$$

$$S_2 = x = \frac{1}{m} \left[\frac{-R + (F - R)^2 T^2}{2\overline{R}^2} + \frac{(F - R)^2 T^2}{\overline{R}} \right] = \frac{T^2 (F - R)^2}{2Rm}$$
 - путь, прой-

денный по инерции;

$$S = S_1 + S_2 = \frac{(F-R)T^2}{2m} + \frac{(F-R)^2T^2}{2Rm} = \frac{T^2(F-R)^2F}{2Rm}$$
 - искомый путь.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

1-40. Проинтегрировать уравнение. При заданном начальном условии найти соответствующий частный интеграл или частное решение.

1.
$$x\sqrt{1+y^2} + y\sqrt{1+x^2}y' = 0$$
. 2. $\sin x \sin y dx + \cos x \cos y dy = 0$.

3.
$$y' = \frac{2xy}{x^2 - y^2}$$
. 4. $(1 + y^2)dx = xydy$, $y|_{x=2} = 1$.

5.
$$y' = \frac{2y}{x} - x^3$$
.

6.
$$(x + e_x^{x/y})dx + e^{x/y}\left(1 - \frac{x}{y}\right)dy = 0$$
.

7.
$$y' + \frac{4y}{x} + x = 0$$
.

8.
$$y' - 7y = 8e^{3x}$$
.

9.
$$3e^y \cos x dy - \sin(9 + e^y) dx = 0$$
; $y|_{x=0} = 0$.

10.
$$\cot x \cos^2 y dx + \sin^2 x \cot y dy = 0$$
. 11. $y' \sin x = y \cos x + 2 \cos x$.

12.
$$\sin x \operatorname{tg} y dx - \frac{dy}{\sin y} = 0$$
.

13.
$$e^x \operatorname{tg} y dx = (1 - e^x) \operatorname{sec}^2 y dy$$
.

14.
$$\frac{dy}{dx} - \frac{3}{x}y = -x^3y^2$$
.

15.
$$(x^2 - 2xy)y' = xy - y^2$$
.

16.
$$y' + ytgx = \sec x$$
; $y(0) = 0$.

16.
$$y' + ytgx = \sec x$$
; $y(0) = 0$. 17. $x^2y' + xy + 1 = 0$; $y(1) = 0$.

18.
$$y' + x\sqrt[3]{y} = 3y$$
.

19.
$$y' - y + y^2 \cos x = 0$$
.

20.
$$xy' = \frac{y}{\ln x}$$
; $y|_{x=e} = 1$. 21. $2yy'' = 3(y')^2 + 4y^2$; $y(0) = 1$, $y'(0) = 0$.

22.
$$3y'y'' = 2y$$
; $y(0) = y'(0) = 1$. 23. $y''y^3 = 1$; $y(0,5) = y'(0,5) = 1$.

24.
$$y''(1 + \ln x) + \frac{y'}{x} 2 + \ln x$$
; $y(1) = 0.5$, $y'(1) = 1$.

25.
$$y'y'' + (y')^2 = 1$$
; $y(0) = y'(0) = 1$.

26.
$$y'' = \frac{y'}{x}(1 + \ln \frac{y'}{x}); \quad y(1) = 0.5, y'(1) = 1.$$

27.
$$2y'y'' + y^2 = (y')^2$$
; $y(0) = y'(0) = 1$.

28.
$$2yy'' = (y')^2 + y^2$$
; $y(0) = y'(0) = 1$.

29.
$$e^{y}(y'' + (y')^{2} = 2; y(1) = 0, y''(1) = 2.$$

30.
$$2y' = (x + \frac{1}{x})y''$$
; $y(1) = 4$, $y'(1) = 6$.

31.
$$xy'' = y' \ln y'$$
; $y(1) = e$, $y'(1) = e$.

32.
$$x^2y'' + xy' = 1$$
.

33.
$$y'' = e^{2y}$$
; $y(0) = 0$, $y'(0) = 1$.

34.
$$x(y''-x)=y'; y(1)=y'(1)=1.$$

35.
$$y'' + y = (y')^2$$
; $y(1) = -0.25$, $y'(1) = 0.5$.

36.
$$1 - yy' = (y')^2$$
; $y(-1) = 1$, $y'(-1) = 1$.

37.
$$y''x \ln x = 2y'$$
.

38.
$$y'' + y' \operatorname{tg} x = \sin 2x$$
.

39.
$$x(y'' + y') = y'; y(0) = -1, y'(0) = 0.$$

40.
$$x(y''+1) + y' = 2$$
; $y(1) = \frac{7}{4}$, $y'(1) = \frac{5}{2}$.

41-60. Найти общие решения уравнений.

41.
$$y'' - 4y' + 4y = x^2$$
.
42. $y'' + 8y' = 8x$.
43. $y'' + 4y' + 4y = 8e^{-2x}$.
44. $y'' + 4y' + 3y = 9e^{-3x}$.
45. $7y'' - y' = 14x$.
46. $y'' + 3y' = 3xe^{-3x}$.
47. $y'' + 5y' + 6y = 10(1-x)e^{-2x}$.
48. $y'' + 2y' + 2y = 1 + x$.
49. $y'' - 3y' + 2y = xe^x$.
50. $y'' + y' - 2y = x^2e^{4x}$.
51. $y'' - 3y' + 2y = (x^2 + x)e^{3x}$.
52. $y'' - 2y' + y = x^3$.
53. $y'' - 4y' - 5y = (27x - 39)e^{-4x}$.
54. $y'' - 4y' + 3y = 10e^{3x}$.
55. $y'' + 4y' = -2xe^{-4x}$.
56. $y'' + 4y' + 4y = 3xe^{-2x}$.
57. $y'' + y' - 6y = xe^{2x}$.
58. $y'' - y' + y = x^3 + 6$.
60. $y'' + 3y' - 10y = 10x^2 + 4x - 5$.

- 61-80. Составить дифференциальное уравнение явления, описанного в задаче, и решить это дифференциальное уравнение.
- 61. Моторная лодка движется по озеру со скоростью 20 км/ч. Через 40 с после выключения мотора скорость лодки уменьшается до V_1 =8 км/ч. Определить скорость лодки через 2 мин после выключения мотора. (Сила сопротивления воды движению лодки пропорциональна ее скорости).
- 62. Пуля входит в брус толщиной b=12 см со скоростью $V_1=200$ м/с, а вылетает, пробив его, со скоростью $V_2=60$ м/с. Сила сопротивления пули в брусе пропорциональна скорости движения. Найти время движения пули через брус.
- 63. Катер движется в спокойной воде со скоростью V_1 =10 км/ч. На полном ходу двигатель катера был выключен, и через 2 минуты скорость катера уменьшилась до 0,5 км/ч. Определить скорость, считая сопротивление воды пропорциональным скорости движения катера.
- 64. С высоты падает тело массой m с начальной скоростью V(0)=0. Найти скорость тела V=V(t) в любой момент времени t, если на него кроме силы тяжести P=mg действует сила сопротивления воздуха, пропорциональная скорости V(t), с коэффициентом пропорциональности, равным 3/2.
- 65. Согласно закону Ньютона, скорость охлаждения тела пропорциональна разности температур тела и окружающей среды. Температура вынутого из печи хлеба снижается от 100° до 60°C за

- 20 мин. Температура воздуха 25°. Через какой промежуток времени (от начала охлаждения) температура хлеба понизится до 30°С?
- 66. Найти уравнение линии, проходящей через точку A(2,4), зная, что угловой коэффициент касательной в любой ее точке M в три раза больше углового коэффициента прямой, соединяющей точку M с началом координат.
- 67. Записать уравнение линии, проходящей через точку A(1,0), если известно, что отрезок, отсекаемый касательной в любой точке этой линии на оси OY, равен расстоянию от точки касания до начала координат.
- 68. В моторной лодке, движущейся прямолинейно со скоростью V_0 =5 м/с, выключается мотор. При своем движении лодка испытывает сопротивление воды, сила которого пропорциональна квадрату скорости лодки, причем коэффициент пропорциональности k=m/50, где m масса лодки. Через сколько времени скорость лодки уменьшится вдвое и какой путь пройдет за это время лодка?
- 69. Скорость свободно падающего тела в момент t равна gt, где g=9,8 м/с². Найти, на каком расстоянии от земли находится тело в момент t, если оно начало падать с высоты h_0 .
- 70. Составить уравнение кривой, проходящей через точку A(-2,3), если известно, что угловой коэффициент касательной к этой кривой в любой ее точке равен абсциссе этой точки.
- 71. Составить уравнение кривой, проходящей через точку M(0,4), если известно, что угловой коэффициент касательной в каждой точке равен ординате этой точки.
- 72. Скорость тела пропорциональна пройденному пути. За первые 10 секунд тело проходит 100 м, за 15 секунд 200 м. Какой путь пройдет тело за время t?
- 73. Записать уравнение кривой, проходящей через точку A(2,-1), если известно, что угловой коэффициент касательной в любой ее точке пропорционален квадрату ординаты касания. Коэффициент пропорциональности равен 6.
- 74. Материальная точка массой m=1 г движется прямолинейно. На нее действует в направлении движения сила, пропорциональная времени, протекшему от момента, когда скорость точки равнялась нулю, с коэффициентом пропорциональности $k_1=2$ г см/с³; кроме того, точка испытывает сопротивление среды, пропорциональное скорости

движения, с коэффициентом пропорциональности k_2 =3г/с. Найти скорость точки через 3 с после начала движения.

- 75. Тело массой m движется прямолинейно под действием постоянной силы P. Найти скорость движения тела и пройденный им путь как функции времени, если в начальный момент они оба равны нулю, а сопротивление среды пропорционально квадрату скорости.
- 76. Найти закон прямолинейного движения материальной точки массой m под действием отталкивающей силы, обратно пропорциональной кубу расстояния от точки до неподвижного центра. В начальный момент точка находится в покое и отстоит от центра на расстояние x_0 .
- 77. Материальная точка массой m движется под действием силы, прямо пропорциональной времени, отсчитываемому от момента t=0, обратно пропорциональной скорости движения. В момент t=10 с скорость равнялась 50 м/с, а сила F=4 динам. Какова будет скорость движения в произвольный момент t?
- 78. Лодка замедляет свое движение под действием сопротивления воды, которое пропорционально скорости лодки. Начальная скорость лодки 1, 5 м/с, через 4 с скорость ее 1 м/с. Через сколько секунд скорость изменится до 0, 01 м/с?
- 79. Материальная точка движется по прямой со скоростью, обратно пропорциональной пройденному пути. В начальный момент движения точка находилась на расстоянии 2 м от начала отсчета пути и имела скорость V_0 =10 м/с. Определить пройденный путь и скорость точки через 8 с после начала движения.
- 80. Локомотив движется по горизонтальному участку пути со скоростью 72 км/ч. Во сколько времени и на каком расстоянии он будет остановлен тормозом, если сопротивление движению после начала торможения равно 0,2 его веса?
- 81-100. Найти общие решения систем дифференциальных уравнений.

81.
$$\begin{cases} x' = -7x + y; \\ y' = -2x - 5y. \end{cases}$$
 82.
$$\begin{cases} x' = -y; \\ y' = 2x + 2y. \end{cases}$$
 83.
$$\begin{cases} x' = 2x + y; \\ y' = 2x + 2y. \end{cases}$$

84.
$$\begin{cases} x' = x + y; \\ y' = -2x + 3y. \end{cases}$$
 85.
$$\begin{cases} x' = 3x - 2y; \\ y' = 4x + 7y. \end{cases}$$
 86.
$$\begin{cases} x' = -x + 2y; \\ y' = -2x - 5y. \end{cases}$$

87.
$$\begin{cases} x' = -2x + y; \\ y' = -3x + 2y. \end{cases}$$
 88.
$$\begin{cases} x' = 8x - 3y; \\ y' = 2x + y. \end{cases}$$
 89.
$$\begin{cases} x' = 3x - 2y; \\ y' = 2x + 8y. \end{cases}$$

90.
$$\begin{cases} x' = 4x - y; \\ y' = x + 2y. \end{cases}$$
 91.
$$\begin{cases} x' = x - 3y; \\ y' = 3x + y. \end{cases}$$
 92.
$$\begin{cases} x' = y; \\ y' = -2x + 3y. \end{cases}$$

93.
$$\begin{cases} x' = 2x - 5y; \\ y' = 5x - 6y. \end{cases}$$
 94.
$$\begin{cases} x' = x - y; \\ y' = -4x + y. \end{cases}$$
 95.
$$\begin{cases} x' = 2x + y; \\ y' = -6x - 3y. \end{cases}$$

96.
$$\begin{cases} x' = 2x + 3y; \\ y' = 5x + 4y. \end{cases}$$
 97.
$$\begin{cases} x' = -x + 2y; \\ y' = -x - 4y. \end{cases}$$
 98.
$$\begin{cases} x' = -2x - 3y; \\ y' = -x. \end{cases}$$

99.
$$\begin{cases} x' = 2x - y; \\ y' = 4x + 6y. \end{cases}$$
 100.
$$\begin{cases} x' = x + 3y; \\ y' = -x + 5y. \end{cases}$$

Содержание

КОНТРОЛЬНАЯ РАБОТА № 3	3
ПРОГРАММА	3
Литература	4
1. НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ	4
1.1. Понятие неопределенного интеграла	4
1.2. Основные методы интегрирования	6
1.2.1. Непосредственное интегрирование функций	6
1.2.2. Интегрирование заменой переменной	
(подстановкой)	6
1.2.3. Интегрирование при помощи тригонометрических	
подстановок	7
1.2.4. Интегрирование по частям	8
1.2.5. Интегрирование функций, содержащих квадратный	
трехчлен в знаменателе	9
1.2.6. Интегрирование рациональных дробей	9
	13
1.2.8. Интегрирование иррациональных функций	16
* * * * * * * * * * * * * * * * * * *	16
	18
2.1. Формула Ньютона-Лейбница. Замена переменной	
в определенном интеграле. Интегрирование по частям.	
	18
2.2. Вычисление длин дуг кривых. Вычисление объемов	23
•	27
2.3.1. Интегралы с бесконечными пределами	
	27
2.3.2. Интегралы от неограниченных функций	
	28
	29
	29
3.2. Предел и непрерывность функции нескольких	
	30
3.3. Дифференцирование функций нескольких	
переменных	30

3.3.1. Частное и полное приращения функции	30.
3.3.2. Частные производные	32
3.3.3. Полный дифференциал функции	34
3.3.4. Дифференцирование сложных и неявных	
функций	36
3.4. Касательная плоскость и нормаль к поверхности	38
3.5. Экстремум функции нескольких переменных	39
3.6. Наибольшее и наименьшее значения функции	
переменных в замкнутой области	40
КОНТРОЛЬНЫЕ ЗАДАНИЯ	
«СОНТРОЛЬНАЯ РАБОТА № 4	47
ТРОГРАММА	
Титература	48
4. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО	
ПОРЯДКА	48
4.1. Дифференциальные уравнения с разделяющимися	
переменными	49
4.2. Однородные уравнения	50
4.3. Линейное дифференциальное уравнение 1-го порядка	52
4.4. Уравнение Бернулли	54
4.5. Дифференциальное уравнение в полных	
дифференциалах	55
4.6. Дифференциальные уравнения высших порядков.	·
Дифференциальные уравнения, допускающие	•
понижение порядка	57
5. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ	
ВЫСШИХ ПОРЯДКОВ С ПОСТОЯННЫМИ	
КОЭФФИЦИЕНТАМИ	59
5.1. Линейное однородное дифференциальное уравнение	
n-го порядка с постоянными коэффициентами	
5.2. Линейное неоднородное дифференциальное уравнение	
с постоянными коэффициентами	
6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ ДИФФЕРЕНЦИАЛЬНЫ	
УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ С ПОСТОЯННЫ	МИ
КОЭФФИЦИЕНТАМИ СО СПЕЦИАЛЬНОЙ ПРАВОЙ	
YACTLIO .	62

7. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.	
МЕТОД ИСКЛЮЧЕНИЯ. РЕШЕНИЕ ЛИНЕЙНЫХ	
СИСТЕМ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ	
МЕТОДОМ ЭЙЛЕРА	68
7.1. Нормальная система <i>n</i> -го порядка обыкновенных	
дифференциальных уравнений	68
7.2. Линейная однородная система n-го порядка	
с постоянными коэффициентами	70
7.3. Задачи динамики, приводящие к решению	
дифференциальных уравнений	74
КОНТРОЛЬНЫЕ ЗАДАНИЯ	77

Учебное издание

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ РАБОТЫ № 3, № 4

по высшей математике для студентов-заочников машиностроительных специальностей

Составители: АНДРИЯНЧИК Анатолий Николаевич МЕТЕЛЬСКИЙ Анатолий Владимирович МИКУЛИК Николай Александрович и др.

Редактор Т.Н.Микулик Компьютерная верстка М.А. Чувилиной Подписано в печать 21.02.2001

Формат 60х84 1/16. Бумага типографская № 2. Печать офсетная. Гарнитура книжно-журнальная. Усл.печ. л. 4,9. Уч.-изд. л. 3,8. Тираж 750. Заказ 411.

Издатель и полиграфическое исполнение: Белорусская государственная политехническая академия. Лицензия ЛВ №155 от 30.01.98. 220027. Минск, проспект Ф. Скорины, 65.