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At present, in the practice of accredited laborato-
ries, attention is being paid to identifying and as-
sessing risks, and hence to calculating increased
uncertainty, because according to ISO 9000 [1], the
risk is the impact of uncertainty. The analysis of the
last published works allowed to identify and formu-
late the main approaches to calculating the expand-
ed uncertainty and to show their effectiveness.

The most general approach is outlined in
GUM, where a z-model is presented, based on the
product of total uncertainty and coverage factor:

o
U = zo50[q] = zo5 %; 1
where zg; — coverage ratio for the 95 % confi-
dence level under the assumption of a normal dis-
tribution; o[g] — the experimental standard devia-
tion for q; o[q] — the experimental standard devia-
tion fo g.

However, depending on the measurement
tasks, variations of this model are used — such as
the Student's t-model, the Bayesian Z-model, the
Craig model and the Monte Carlo method, which
does not use the coverage factor.

In work [1] three models are considered — Stu-
dent, Bayes and Craig. The main difference be-
tween these models is the different values of cov-
erage factors.

The Student's model (t-model), developed in
1908, looks like this:

Us = tgs X s[q], ?)

where tqs — coefficient with 95 % coverage inter-
val; s[q] — standard deviation.
The Craig model (1927), developed in the works
of Hening Huang (2010), is presented below:
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where tos — coefficient with 95 % coverage inter-
val; ¢, — function of the sample size, which is cal-
culated as follows:
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In this case, I' is introduced as a gamma function.

In addition, when the conditions of the central
limit theorem are satisfied, but the reliability con-
dition is not fulfilled, the probability distribution
of the measurement result is described by the Stu-
dent's distribution (t-distribution) with effective
degrees of freedom v,
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Us = Ve X S[CI]- Q)

Estimation of effective degrees of freedom v,z
for standard measurement uncertainty u.(y) is car-
ried out with the help of the Welch-Sutterswain
formula:

uc (y)
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where ui(y) (i=1,2,....N)— contributions to the
standard uncertainty of the measurement, which
corresponds to the estimate y output quantity; v; —
the effective degree of freedom of contribution to
uncertainty u;(y).

In [2] the expression (5) is decomposed into
components of uncertainty, estimated by type A
and by type B:
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where o — standard uncertainty estimated by type
A; p— standard uncertainty estimated by type B;
6 — contribution to total uncertainty.

The Z-model The Bayesian model looks like:
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where y is the ratio of the previous value of the
standard uncertainty s, [q] to the experimental stand-

ard uncertainty of the current measurement s[q]:

_ splql
slql”

In 1998, Phillips suggested that the coverage
factor be equal to zgs, based on the post-a priori
information.

Today, another method for estimating uncertainty
is known to modern science — the Monte Carlo meth-
od (hereinafter MCM), which is a kind of estimation
of type A uncertainty. This method has been known
since 1949, from the publication of the article by
Nicholas Metropolis and Stanislav Ulam «The Monte
Carlo Method». The difference between this model
and the above is that the calculation does not use the
coverage factors, but calculates the coverage inter-
val. The method can be applied to practically all
models having a single input value in which the
input quantities can be characterized by any proba-
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bility distribution functions. Often this method is
called a statistical test method because of the need
for a large number of test results.

The author of the article [2] in his work com-
pared the application of the MCM method to the
previously considered methods of estimating un-
certainty. Student's model, in the analysis of meas-
urements, has a very high probability of a random
error, when using this method on arrays of small
volumes. And also, the model has a significant
shift from the true value of uncertainty.

The Student's model is recommended to be used
when the standard deviation is unknown, and the
number of observations in the series is less than 30.

The next model of comparison with MCM was
the Craig model. The simulated errors are also scat-
tered, but the scattering range is much smaller in
comparison with the Student's model. Also, it can be
noted that the average value of simulated uncertain-
ties almost coincides with the true value of uncer-
tainty. And, consequently, the risk of assuming sub-
sequent errors associated with the procedure for
calculating uncertainty is reduced. Therefore, when
comparing the model of Craig and Student, it is
reasonably recommended to use the Craig model.

The Bayesian model, of all the considered, has
the smallest dispersion of uncertainty values.
A distinctive feature is that the final uncertainty
value is less than the true uncertainty value. This is
due to the fact that the true value is related to the
average value from the array of observations.
Therefore, when calculating the uncertainty in this
method, it is necessary to take into account this
feature and introduce a correction factor. The cal-
culation of MCM in the Bayesian Model is equat-
ed to the value of the standard uncertainty and
is felt in the calculation.

The analysis is assisted by a graphical interpre-
tation of the scattering results of the simulated
extended uncertainty.

At the present stage, three models are available
in the literature for calculating expanded uncertainty
using standard deviation. When comparing these
models by the Monte Carlo method and by study-
ing a possible random error or a shift in the calcu-
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lated extended uncertainty, several recommenda-
tions were made for using models. The student
model is the least accurate. The Craig model is
more accurate than the student model, and it is
recommended to use it when a priori (preliminary)
information is not available. The model is the most
accurate and preferred, but only with sufficient
preliminary information.

Comparing the models presented above, it can
be noted that, unlike the t Student model and the
Craig Model, in calculating the uncertainty,
the Bayesian model is not related to the current
average value of the measurements. Based on the
received a priori information about the models,
we can talk about the recommendation of using
the Bayesian model in estimating the uncertainty.

The Conclusion. A review of the extended un-
certainty models showed that they differ in the
specific component of the experimental data in the
combined uncertainty budget. The GUM z-model
and Monte Carlo model are used in measurements
with a large number of observations while the z-
model is used for the normal distribution of meas-
urement results, the Monte Carlo model is more
universal. The Student’s and Craig models are
applied for a small number of observations of less
than 30, and the Bayes model based on the Welch-
Suttersweit equation is applied at the combined
budget and performance of the Central Limit The-
orem. In addition, approaches to the description of
measurement results in discrete systems (e. g. ISO
15530) and for nonparametric systems are current-
ly being developed.
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B cootBercTBUM ¢ [1] KauecTBO MUBa OllEHUBA-
ercsi Oomee uvem 20 moKa3aTemsIMH KadyecTBa,
a UMCHHO (1)I/I3I/IKO-XI/IMI/I‘-ICCKI/IMI/I, OpraHoJICTITUYC-
CKHMH, MMOKA3aTeIsIMH 0€30MMacHOCTH, MUKPOOHOJIO-
THYCCKUMHU MTOKA3aTCIIIMHI.

OCHOBHBIMU (DPU3UKO-XUMHYECKUMH TTOKa3aTeIsi-
MU KauecTBa IHMBa SBISIOTCI — OOBEMHAs OIS
CHI/IpTa 1 MacCoBas O0JId CyXI/IX BCIICCTB B HadaJlb-
HOM cycie, KoTopele ompenensiores mo ['OCT
12787.
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