УДК 538.9:669.2

ФАЗОВЫЙ СОСТАВ ТРОЙНОГО СПЛАВА In₄₁Sn₂₇Bi₃₂ Шепелевич В.Г., Русак Г.А., Росихин М.И.

Белорусский государственный университет, Минск, Республика Беларусь

В последнее десятилетие активно происходит переход к легкоплавким припоям, не содержащим опасные компоненты (свинец, ртуть, кадмий). Основными причинами являются как экологическая безопасность, так и более высокие эксплуатационные параметры таких припоев [1; 2]. В различных отраслях промышленности (электротехнике, электронике, энергетике, машиностроении и др.) перспективное применение имеют сплавы тройной системы Bi – Sn – In. Из-за высокой стоимости компонентов сплавов рассматриваемой системы целесообразно изготавливать используя энерго- и ресурсосберегающие технологии для понижения стоимости конечного продукта. К таким технологиям относится высокоскоростное затвердевание, при котором скорость охлаждения жидкой фазы достигает 10⁵ К/с и выше. Структура сплава, получаемого при сверхвысоких скоростях охлаждения жидкости, существенно отличается от структуры массивных образцов, получаемых традиционными технологиями [3, 4]. Быстрозатвердевшие сплавы имеют дисперсную структуру, могут содержать метастабильные фазы, находятся в термодинамическом неустойчивом состоянии. В связи с этим цель настоящей работы – установление влияния сверхвысокой скорости охлаждения жидкой фазы сплава $In_{41}Sn_{27}Bi_{32}$ на его фазовый состав, распределение компонентов, зеренную структуру и микротвердость.

Изготовление сплава $In_{41}Sn_{27}Bi_{32}$ осуществлялось сплавлением компонентов, чистота которых не хуже 99,99 %, в кварцевой ампуле. Затем капля расплава массой $\approx 0,15$ г инжектировалась на полированную поверхность быстровращающегося медного цилиндра, растекалась тонким слоем и затвердевала в виде фольги. Длина фольги достигала в длину 15 см, в ширину — до 10 мм. При исследовании использовались фольги толщиной 30—80 мкм. Скорость охлаждения составляла в этом случае не менее 10^5 K/c.

Микроструктура фольг и распределение компонентов исследовались с помощью растрового электронного микроскопа LEO 1455 VP, оснащенного рентгеновским микроанализатором Aztec Energy Advanced X-Max 80. Фазовый состав фольг определялся рентгеноструктурным анализом на дифрактометре Rigacu Ultima 4. Параметры микроструктуры определены методом случайных секущих [5] с погрешностью 10 %.

Поверхность A быстрозатвердевшей фольги, контактирующая с медным кристаллизатором, имела блестящий вид. Противоположная поверхность B фольги имела матовый вид, на ней образовались впадины и выступы

Химический состав фольги определялся с помощью рентгеноспектрального микроанализа на обеих сторонах фольги (таблица 1). Различие между концентрациями компонентов не превышает 1 %, т.е. при перемещении межфазной границы «жидкость-кристалл» от поверхности A к поверхности B перераспределение компонентов не наблюдается.

Таблица 1 – Химический состав быстрозатвердевшей фольги

Компонент,	Концентрация компонентов, ат. %		
	Поверхность A	Поверхность В	
In	41,4	40,6	
Sn	26,8	27,3	
Bi	31,8	32,1	

Рентгеноструктурный анализ фольги выявил дифракционные линии ϵ -фазы (BiIn) (101, 111, 200, 002, 102, 211 и др.) и γ -фазы (Sn₄In) (0001, $10\overline{1}1, 10\overline{1}0, 11\overline{2}0, 0002, 11\overline{2}1, 20\overline{2}0$ и др.).

Изображение поперечного сечения фольги, полученное с помощью растрового электронного микроскопа, представлено на рис. 1. Наблюдаются светлые и темные участки.

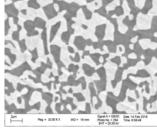


Рисунок 1 – Поперечное сечение фольги сплава $In_{41}Sn_{27}Bi_{32}$ через 24 ч выдержки при комнатной температуре

Распределение компонентов быстрозатвердевшей фольги сплава $In_{41}Sn_{27}Bi_{32}$ вдоль линии сканирования электронного луча по ее поверхности представлено на рис. 2.

В светлых участках отношение атомных концентраций висмута и индия составляет ≈ 1 , что соответствует образованию ϵ -фазы (BiIn). Концентрация олова в таких участках составляет $2\ldots 4$ ат. %. В темных участках отношение атомных концентраций олова, индия и висмута равно 58, 31 и 11 соответственно. γ -фаза (Sn₄In) имеет простую гексагональную решетку и существует в широком концентрационном интервале, что способствует образованию на ее основе твердых растворов с другими компонентами [6]. В связи с этим можно считать, что темные участки соответствуют γ -фазе.

Используя методы стереометрической металлографии, определены объемная доля ϵ -фазы $V_{\epsilon}=0,58$ и γ -фазы $V_{\gamma}=0,42$. Исследовано влияние выдержки быстрозатвердевшей фольги сплава $\ln_{41}\mathrm{Sn}_{27}\mathrm{Bi}_{32}$ при комнатной температуре на параметры ее микроструктуры на поверхности A. С увеличением времени старения происходит монотонное изменение средней хорды случайной секущей d и удельной поверхности S межфазной границы (Таблица 2).

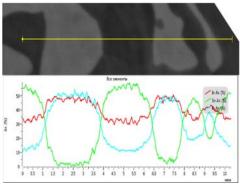


Рисунок 2 — Распределение компонентов вдоль линии сканирования электронного луча по поверхности фольги

Таблица 2. Параметры микроструктуры фольг на их поверхности от времени выдержки после изготовления

повержности от времени выдержки после изготовления					
Время	Объемная	Средняя	Удельная		
вы-	доля	длина хорд	поверх-		
держ-	ε-фазы	на є-фазе,	ность меж-		
ки, ч		MKM	фазной		
			границы,		
			мкм ⁻¹		
1,3	0,59	0,8	2,8		
3,0	0,57	1,0	2,5		
24	0,58	1,7	1,5		
70	0,57	2,0	0,9		

Выдержка фольги в течение 70 ч вызывает увеличение средней хорды до d=1,9 мкм и уменьшение удельной поверхности межфазной границы до S=0,9 мкм $^{-1}$. Такое изменение d и S фольги вызвано тем, что комнатная температура является высокой для исследуемого сплава. Отношение комнатной температуры к температуре ликвидуса исследуемого сплава в абсолютной шкале достигает 0,8. В сплаве активно происходят диффузионные процессы, способствую-

щие миграции межфазных границ, а также улучшению их структуры [8].

Заключение

Фольги тройного сплава $In_{41}Sn_{27}Bi_{32}$, полученные высокоскоростным затвердеванием, имеют двухфазную структуру: состоят из ϵ - и γ -фаз.

Выдержка фольг при комнатной температуре вызывает монотонное увеличение средней хорды на сечениях выделений и уменьшение удельной поверхности межфазной границы установленных фаз.

Формирование однородной дисперсной структуры способствует улучшению технологических характеристик данного спая при использовании его в качестве припоя [7].

Литература

- 1. Kamal M., Gouda E.S. Effect of Rapid Solidification on Structure and Properties of Some Lead-Free Solder Alloys // Materials and Manufacturing Processes, 2006. Vol. 21. P. 736–740.
- 2. Yoon S.W., Rho B.-S., Lee H. M., Kim C.-U., Lee B.-J. Investigation of the Phase Equilibria in the Sn-Bi-InAlloy System // Metall. Mater. Trans. A. 1999. Vol. 30A. P. 1503–1515.
- 3. Васильев В.А., Митин Б.С., Высокоскоростное затвердевание расплава (теория, технологии и материалы) / Под ред. Б.С. Митина. М.: ИнтерметИнжиниринг, 1998. 400 с.
- 4. Шепелевич В.Г. Быстрозатвердевшие легкоплавкие сплавы. – Минск : БГУ, 2015. – 192 с.
- 5. Салтыков С.А. Стереология в металловедении. М.: Металлургия, 1976. 272 с.
- 6. Смитлз К. Дж. Металлы. М. : Металлургия, 1980. 447 с.
- 7. Пашков И.Н., Пикунов М.В., Таволжанский С.А., Пашков А.И. Разработка процессов получения и применения сплавов припоев в дисперсионном состоянии с микрокристаллической или аморфной структурой // Металлург, 2010.- № 6.- С. 43-45.
- 8. Шепелевич В.Г., Ван Цзинцзе, Щербаченко Л.П. Фазовый состав, микроструктура и микротвердость быстрозатверодевших сплавов системы индий-олово // Новости науки и технологий, 2017.-N 1(40).-C.48-53.

УДК 666.193

ИССЛЕДОВАНИЯ БАЗАЛЬТОВОЙ ТКАНИ МЕТОДАМИ МЕТАЛЛОГРАФИЧЕСКОГО АНАЛИЗА И ЭНЕРГОДИСПЕРСИННОГО МИКРОАНАЛИЗА Анисович А.Г. ¹, Маркевич М.И. ¹, Чапланов А.М. ¹, Журавлева В.И. ², Щербакова Е.Н. ³

 1 Физико-технический институт НАН Беларуси, Минск, Беларусь 3 Белорусский национальный технический университет, Минск, Республика Беларусь

Введение

Базальтовые волокна значительно отличаются от стекловолокна и силикатного волокна повышенной прочностью и возможностью примене-

ния в широком диапазоне положительных и отрицательных температур. Удельная прочность базальтового волокна в 2,5 раза превышает прочность легированных сталей и в 1,5 раза