

Рисунок 5 – Схема подключения прожекторов по протоколу DMX-512

Протокол разработан комитетом USITT, как средство управления диммерами с различных консолей через стандартный интерфейс. Система связи между устройствами строится на высоко-качественных кабелях (типа 24 AWG (7/0.2) или выше) и разъёмах (XLR), которые должны соответствовать стандарту EIA485 (RS485) и определяются длиной линии.

Корректная работа сети DMX512 (особенно при использовании длинных кабелей) возможна только в том случае, когда от передающего устройства к принимающему идет одна единственная линия [2].

На практике рекомендуется использовать линии длиной не более 500 м. В противном случае надо предусмотреть возможность использования усилителей сигнала (репитеров).

Для работы конечного светового устройства нужен DMX-декодер (рисунок 5).

Существенным ограничением протокола DMX-512 является невозможность использования

У-кабелей, особенно на большом удалении от передающего устройства, что приводит к возникновению сложного набора отраженных сигналов, а также вызывает серьезные искажения исходных сигналов и способствует увеличению числа сбоев всей системы. Единственным надежным методом разделения линии DMX512 на две или несколько ветвей является использование усилителейразветвителей [3].

Литература

- 1. Красный сектор. Главная/Каталог/Световое оборудование/ Архитектурные светильники и светодинамические приборы. 2014. http:// redsector.ru/.
- 2. Adam Bennette. Руководство по применению DMX512. Copyright © PLASA 1994. Перевод на русский язык и оформление "ДСЛ" 1995-2012. http://dsl.msk.ru/rus/around/dmx512/dmx512.htm#p2
- 3. Управление RGB прожекторами. 2013-2017. http://светомастер.рф/.

УДК 535.37

СПЕКТРОСКОПИЧЕСКИЕ ХАРАКТЕРИСТИКИ НОВЫХ НЕОДИМОВЫХ ФТОРИДНЫХ СТЕКОЛ С НЕБОЛЬШИМИ ДОБАВКАМИ ФОСФАТНЫХ СОЕДИНЕНИЙ Ясюкевич А.С.¹, Демеш М.П.¹, Гусакова Н.В.¹, Дернович О.П.¹, Кулешов Н.В.¹, Колобкова Е.В.², Никоноров Н.В.²

¹НИЦ Оптических материалов и технологий, Белорусский национальный технический университет Минск, Республика Беларусь

²Университет ИТМО, Санкт-Петербург, Российская Федерация

Фторфосфатные стекла, как лазерные материалы, отличаются низкой энергией фононов, сохраняют высокое оптическое качество при больших концентрациях РЗИ и имеют широкие спектральные линии, что представляет интерес для получения или усиления коротких световых импульсов.

В данной работе изучались фторфосфатные стекла состава $5Ba(PO_3)_2$ - AlF_3 - CaF_2 - MgF_2 - BaF_2 - SrF_2 - $xNdF_3$ где $x=0.1,\ 0.3,\ 0.5,\ 1,\ 2,\ 5$ мол. %. Исходные материалы нагревались в углеродном тигле в аргоновой атмосфере при температуре $1000-1050^{\circ}$ С. Затем охлажденные образцы отжигались при 450° С близкой температуре стекло-

вания для устранения внутренних напряжений в стекле.

Спектры поглощения регистрировались на спектрофотометре Cary 5000. Спектры люминесценции записывались на экспериментальной установке, состоящей из монохроматора МДР 23, синхронного усилителя SR830 и фотоприемного устройства, связанного с компьютером. Источником возбуждения люминесценции являлся лазерный диод (ЛД), работающий на длине волны \approx 808 нм. Кинетики затухания люминесценции регистрировались цифровым запоминающим осциллографом, сопряженным с фотоприемником и монохроматором МДР 12. Люминесценция возбуждалась световым импульсом параметрического генератора длительностью \approx 20 нс на длине волны \approx 808 нм.

На рис. 1 показаны спектры сечений поглощения образцов фторфосфатных стекол стекол с Nd^{3+} . По спектрам сечений (см. рис. 1) был проведен расчет интенсивностей линий в спектре поглощения по методу Джадда-Офельта (Д-О).

Значения матричных элементов приведенного тензора U были взяты из работы [1]. Экспериментальные и расчетные значения сил осцилляторов представлены в таблице 1.

Рисунок 1 — Спектры сечений поглощения ионов Nd³⁺ в образцах фторфосфатных стекол

Таблица 1 — Экспериментальные $f_{\rm exp}^{\it ed}$ и расчетные $f_{\it cale}^{\it ed}$ электродипольные силы осцилляторов

Возбужденные	$f_{\rm evp}^{ed} 10^6$	f_{calc}^{ed} 10 ⁶
состояния	$f_{ m exp}^{ed}$ 10 ⁶	J _{calc} 10°
$^{4}F_{3/2}$	1.78	1.95
⁴ F _{5/2} , ² H2 _{9/2}	6.84	6.74
⁴ S _{3/2} , ⁴ F _{7/2}	7.11	7.31
$^{4}\text{F}_{9/2}$	0.48	0.56
$^{4}G_{5/2}, ^{2}G1_{7/2}$	11.22	11.28
² K _{13/2} , ⁴ G _{9/2} , ⁴ G _{7/2}	5.69	4.59
${}^{2}K_{15/2}$, ${}^{4}G_{11/2}$, ${}^{2}G_{19/2}$, ${}^{2}D_{13/2}$	1.56	1.13
$^{2}P_{1/2}+^{2}D1_{5/2}$	0.39	0.52
⁴ D _{3/2} , ⁴ D _{5/2} , ⁴ D _{1/2} , ² I _{11/2}	8.97	9.43
rms. dev. 10 ⁶	0.53	

В таблице 2 приведены значения омега параметров, которые получаются при подгонке расчетных электродипольных сил осцилляторов к экспериментальным.

Таблица 2 – Омега параметры

Ω_2 10 ²⁰ , cm ²	Ω_4 10^{20} , cm 2	Ω_6 10^{20} , см 2
2.005	4.025	5.674

На рис. 2 представлен спектр люминесценции ионов Nd^{3+} с уровня ${}^4F_{3/2}$.

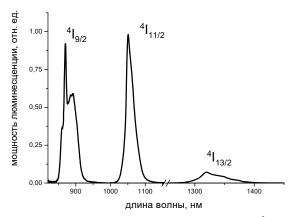


Рисунок 2 — Спектр люминесценции ионов Nd^{3+} с уровня $^4F_{3/2}$ для образца стекла с содержанием NdF_3 0.1 мол.%.

Коэффициенты ветвления люминесценции с уровня ${}^4F_{3/2}$, рассчитанные по Д-О весьма близки к экспериментально полученным значениям, см. таблицу 3.

Таблица 3 — Расчетные и экспериментальные значения коэффициентов ветвления люминесценции с уровня $^4F_{3/2}$

	λ , HM	$eta_{ ext{exp}}$, $\%$	$eta_{ ext{calc}}, \%$
${}^4F_{3/2} \longrightarrow {}^4I_{15/2}$	1860	0	0.5
${}^4F_{3/2} \longrightarrow {}^4I_{13/2}$	1325	7	11
4 F _{3/2} \longrightarrow ⁴ I _{11/2}	1056	50	50
${}^4F_{3/2} \longrightarrow {}^4I_{9/2}$	880	43	38

Также из расчетов по Д-О были определено радиационное время жизни уровня ${}^4F_{3/2}$, которое составило 452 мкс.

Существенно важными характеристиками неодим содержащих сред как лазерных материалов являются сечения стимулированного испускания на переходах ${}^4F_{3/2} {\rightarrow} {}^4I_{13/2}$, ${}^4F_{3/2} {\rightarrow} {}^4I_{11/2}$ и ${}^4F_{3/2} {\rightarrow} {}^4I_{9/2}$. Для двух первых переходов сечения были определены по формуле Фюхтбауэра-Ладенбурга (ФЛ) [2] и представлены на рис. 3.

Переход ${}^4F_{3/2} \rightarrow {}^4I_{9/2}$ является квази трехуровневым, что приводит в общем случае к перепоглощению люминесценции и, следовательно, к искажению спектра сечения стимулированного испускания рассчитанному по $\Phi \Pi$.

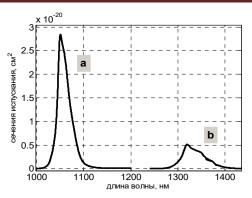


Рисунок 3 — Спектры сечений стимулированного испускания на переходах ${}^4F_{3/2} \rightarrow {}^4I_{11/2}$ (a) и ${}^4F_{3/2} \rightarrow {}^4I_{13/2}$ (b)

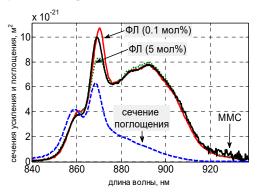


Рисунок 4 — Спектры сечения стимулированного испускания на переходе ${}^4F_{3/2} {\rightarrow} {}^4I_{9/2}$ рассчитанные по ФЛ и ММС

В этом случае можно воспользоваться модифицированным методом соответствия (ММС) [2], который свободен от влияния перепоглощения. На рис. 4 представлены спектры сечений стимулированного испускания рассчитанные по ФЛ и ММС. Видно, что для образцов с малым

содержанием NdF₃ оба метода приводят к практически одинаковому результату.

При исследовании кинетик затухания люминесценции с уровня $^4F_{3/2}$ был установлен неэкспоненциальный характер затухания люминесценции. Была исследована концентрационная зависимость эффективного времени жизни уровня $^4F_{3/2}$ и было показано, что основным механизмом концентрационного тушения люминесценции является диполь-дипольное взаимодействие.

Таким образом, в данной работе были исследованы спектроскопические характеристики фторфосфатных стекол с различным содержанием NdF_3 группы. На основе спектров сечений поглощения был проведен расчет по Д-О и определены коэффициенты ветвления люминесценции с уровня ${}^4F_{3/2}$ и его радиационное время жизни. Это позволило рассчитать спектры сечений стимулированного испускания на переходах ${}^4F_{3/2} {\rightarrow} {}^4I_{13/2}$, ${}^4F_{3/2} {\rightarrow} {}^4I_{11/2}$ и ${}^4F_{3/2} {\rightarrow} {}^4I_{9/2}$. Также было показано, что основным механизмом концентрационного тушения люминесценции с уровня ${}^4F_{3/2}$ является диполь-дипольное взаимодействие.

Литература

- 1. A.A. Kaminskii, G. Boulon, M. Buoncristiani et al, Spectroscopy of a new laser garnet Lu₃Sc₂Ga₃O₁₂:Nd³⁺, Phys. Stat. Sol. (a), V.141, pp. 471–494, (1994)
- 2. А.С. Ясюкевич, В.Г. Щербицкий, В.Э. Кисель и др. Интегральный метод соответствия в спектроскопии лазерных кристаллов с примесными центрами, Журнал прикладной спектроскопии, Т. 71, № 2. С. 187–192, (2004).

УДК 535.37

СПЕКТРАЛЬНО-КИНЕТИЧЕСКИЕ СВОЙСТВА ОКСИФТОРИДНЫХ СТЕКЛОМАТЕРИАЛОВ, АКТИВИРОВАННЫХ ИОНАМИ ТУЛИЯ

Ясюкевич А.С.¹, Демеш М.П.¹, Гусакова Н.В.¹, Дернович О.П.¹, Кулешов Н.В.¹, Рачковская Г.Е.²

¹НИЦ Оптических материалов и технологий, Белорусский национальный технический университет Минск, Республика Беларусь

 2 Белорусский государственный технологический институт, Минск, Республика Беларусь

Стекла и кристаллы активированные ионами тулия, представляют интерес для создания на их основе лазерных источников излучающих в области спектра 2 мкм. Они находят применения в системах дистанционного зондирования атмосферы, оптической связи, экологического мониторинга окружающей среды. [1].

В данной работе изучены спектроскопические характеристики легкоплавких оксифторидных стекол, синтезированных на основе системы SiO_2 — GeO_2 —PbO— PbF_2 — CdF_2 и активированных ионами туллия Tm^{3+} . Исследуемые оксифторидные стекла отличаются низкой температурой

синтеза (950 \pm 50 °C), что выгодно отличает их от оксидных силикатных и боросиликатных стекол, для получения которых требуются более высокие температуры (1300-1500°C). Кроме того, пре-имуществом этих стекол является то, что они сочетают в себе хорошие спектроскопические, структурные и тепловые характеристики, а также химическую устойчивость, присущие фторидным и оксидным матрицам. Ионы туллия вводились в состав стекла оксидом Tm_2O_3 , содержание которого составляло: 0.01, 0.1, 0.5, 1,0 и 2,0 мол. %.

Спектры поглощения записывались на спектрофотометре Cary 5000, регистрация спектров