УДК 624.151

Влияние условий испытания на модуль деформации песчаного грунта

Гудим Е. А.

Белорусский национальный технический университет

Согласно [1] для сооружений I и II уровня ответственности значения модуля деформации грунта *E*, определенные в лабораторных условиях, должны уточняться сопоставлением с результатами испытаний того же грунта штампами. В 2016 году на площадке строительства 12-тиэтажного жилого дома в г. Минске было проведено комплексное определение модуля деформации песчаного грунта средней прочности средней крупности.

Компрессионный модуль деформации определяется в интервале давлений под фундаментом 100–200 кПа. Стабилометрический модуль определяется из отношения $\Delta \sigma_1/\Delta \varepsilon_1$ участка прямолинейной зависимости «вертикальная деформация — вертикальное напряжение» и зависит от величины боковых напряжений (σ_2 = σ_3). Штамповый модуль деформации E_{uu} определяется в соответствии с [2].

Таблица Деформационные характеристики песчаного грунта

/ / 1 1		, 1 1			1 3			
Компрессионные			Стабилометрические			Штамповые истытания		
испытания			испытания			$(S_{\text{IIIT}} = 2500 \text{ cm}^2)$		
σ, МПа	ϵ_1	E_{κ} , МПа	$σ_2 = σ_3,$ ΜΠα	$E_{cma6}, \ \mathbf{M}\Pi \mathbf{a}$	σ _{max} , ΜΠα	Р, МПа	<i>S</i> , см	<i>E_ш.</i> , МПа
0,05	0,004	9,3	0,1	26,83	0,45	0,05-0,1	0,80-1,70	
0,1	0,007	18,6	0,2	53,65	0,9	0,15-0,2	2,50-3,40	24,0
0,2	0,010	37,2	0,3	80,48	1,4	0,25-0,3	4,30-5,10	

Из таблицы следует, что компрессионные испытания дают заниженные значения модуля деформации в сравнении со стабилометрическими. Это связано с макро – и микронеровности торцов образца, а также трением между его боковой поверхностью и внутренней стенкой одометра. В стабилометре трение о стенки прибора устранено, а влияние неровностей поверхности образца сводится к минимуму за счет его большой высоты.