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5G wireless mobile communications fusion cognitive radio (CR), Millimeter wave, 
Massive MIMO antenna array, ultra-dense networking, full-duplex communication (FD), and 
wireless full-duplex to significantly improved system performance. The characteristics of 5G 
vehicle networking are mainly reflected in low delay and high reliability to compare IEEE 
802.11p with spectrum utilization. 

The efficient use of spectrum is an important feature of 5G user experience. The 
application of 5G communication technology will solve the problems of the current vehicle 
networking resources. The efficient use of spectrum in 5G vehicle networking mainly in the 
following aspects: 

1）D2D wireless communication; 
2）full-duplex communication mode; 
3）cognitive Radio technology. 
5G wireless communication networks are expected to have ultra-high capacity and provide 

gigabit-per-second data rates for users. A millimeter-wave communication system with 
a frequency band of 30-300 GHz is proposed to exchange information between 5G terminals or 
between the base station. The millimeter waves have a very large bandwidth to provide very 
high data transmission rates. The interference of the environment and the probability of 
interruption of the connection which between the different terminals will be reduced in 
millimeter technology. Table II is a comparison of key technical parameters of between 5G 
vehicle network and IEEE 802.11p vehicle network. The result shows that 5G vehicle network 
has better wireless link characteristics than IEEE 802.11p vehicle networking. 

Short range radar in ultra wideband operation at 24 GHz and at 79 GHz from 2013 at the 
latest will be used first in premium and later on in upper class models. Main applications will be 
ACC support, pre-crash detection, parking assistance, and blind spot surveillance. Market 
introduction of 24 GHz SRR will start in 2005. SRR sensors won’t have angular measurement 
capabilities in the first generation (except the valeo-raytheon sensor), but future generations will 
also be able to provide angular information. 

Although these sensors will be more expensive, they will contribute to the minimization of the 
total number of sensors and therefore they will reduce overall system costs. 77 GHz ACC systems will 
be extended to be operational at low speeds including full stop capability. This will provide increased 
customer benefits and it will contribute significantly to the market success of ACC systems. 

In the same manner the 77 GHz sensor will be used not only for comfortable driving 
(ACC stop & go) but also for predictive and active safety systems. 

Active safety systems up to an automatic emergency braking in unavoidable crash 
situations will be the key for a considerable reduction of the total number of crashes and fatalities. 

Planar antennas in combination with digital beam forming provide interesting front end 
concepts for 77 GHz radar. These techniques might become feasible for high volume 
production as far as costs of 77 GHz components and powerful digital signal processing units 
will further decrease. 
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Abstract. In order to solve the problem of accurate navigation of mobile robots in dynamic 
indoor environment, a semi-direct RGB-D visual SLAM (Simultaneous Localization and Mapping) 
algorithm based on motion detection algorithm is proposed. The algorithm is mainly divided 
into three parts: motion detection, camera positioning and dense map construction based 
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on TSDF (Truncated Signature Distance Function) model. Firstly, a preliminary estimation 
of the pose of the camera is achieved by using a sparse image alignment algorithm. Then, 
a real-time updated Gaussian model based on image patches is established to segment moving 
objects in the image. Based on this, the local map points projected in the moving area of image 
are eliminated, and the pose of the camera is further optimized. Finally, the TSDF dense map 
is constructed by using camera pose and RGB-D camera image information. The dynamic update 
of the map in real time is achieved by using the image motion detection result and the color change 
of the map Voxel. The experimental data under TUM dataset show that the proposed algorithm 
can effectively improve the camera positioning accuracy and real-time update dense map in indoor 
dynamic environment, which greatly enhances system robustness and environmental information 
for robot sensing. 

Introduction. Autonomous navigation of mobile robot is a hot research field in robotics. In 
order to realize real-time and accurate positioning of mobile robot, vision-based real-time 
simultaneous localization and mapping (SLAM) system has been widely used. In particular, the 
SLAM system [1-4] based on RGB-D cameras can directly use the color and depth information to 
complete the perception of the camera's positioning and environmental information. 

Visual Odometry [5] is a method of estimating pose of a robot by using continuous 
image sequence output by single or multiple cameras. Most VO systems at this stage assume 
that the environment in which the camera is located is static. However, in the actual 
environment, there are inevitably dynamic objects, such as walking pedestrians, moving 
tables and chairs and so on. 

In the dynamic scene, the solution to the odometer problem can be divided into two 
categories. The first type is The algorithm of RDLSAM [6] based on the a priori adaptive 
RANSAC algorithm which use the probability model constructed according to the distribution 
of the map points. Bibby's proposed SLAMIDE algorithm [7] use the expectation 
maximization algorithm to update the feature point motion model in the scene and introduce the 
dynamic object into the SLAM, however, the dynamic Map points increase memory 
consumption and reduce the search speed for map points. The second method is to introduce 
Motion Object Detection (MOD), which divides the image area into static feature area and 
dynamic feature area. Wang [8] uses dense optical flow to segment the image sequence, but the 
algorithm can only be used for the motion segmentation of the image or video sequence. Sun [9] 
uses frame difference method to realize the segmentation of moving objects, and then uses the 
quantized depth image to realize the segmentation of dense point cloud map, the 
algorithm can solve the SLAM problem in dynamic environment, and takes about 0.5s 
to divide the part. 

Most SLAM systems can only build sparse [10] or semi-dense [11] static maps, but they 
cannot be used for robot navigation. DynamicFusion algorithm proposed by Richard [12] can 
rebuild a dynamic environment, but it can only be used for smaller environments and needs to 
be compacted on the GPU. The dynamic change detection algorithm based on the TSDF map 
proposed by Google's Tango [13] project group can construct a dynamic map, but the 
algorithm can only be applied to slowly changing scenes and cannot reconstruct a high 
dynamic environment. 

Based on semi-direct visual SALM, this paper proposes a new RGB-D SLAM 
algorithm which is suitable for indoor dynamic environment based on fusion of motion 
detection algorithm. In the visual odometer section, the initial pose of the camera is calculated 
using a semi-direct method. The motion detection algorithm is used to segment the static and 
dynamic regions of the image, the map points projected on the dynamic feature regions of the 
image are eliminated, and the pose and map points of the camera are further optimized by 
minimizing the re-projection error or the closed-loop constraint. Building on the known 
camera pose and dynamic region of the image, a TSDF dense map that can be dynamically 
updated in real time is constructed. 
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System Framework and Pipeline. The framework of system is shown in Figure 1. The 
system can be divided into four threads according to the implementation process namely 
tracking, local mapping, loop closure detection and dense mapping. 

 
Figure 1 – Overview of our system 

Semi-direct VO fused motion detection. In the part of visual odometer, the initial pose of 
the camera is estimated by minimizing the photometric error, and solve the feature points 
correspondence based on local map tracking. The motion detection algorithm based on motion 
compensation is used to segment the image. Remove the dynamic feature points of the image 
and gain an accurate solution of camera pose. 

A. Initial estimate of camera pose. Assuming that a 3D point wP in the world coordinate 
system has projection points in image 1k kI ,I  , the difference of the pixel grayscale after the 
projection is 
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By minimizing the photometric error, it can be converted to the least squares problem 
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In order to avoid repeated computation of the Hessian matrix in the solution of (4), Write 
(4) as follows using the Inverse Compositional Algorithm [14] 
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Where, 1kM  represents the space point set in time 1k   in camera coordinate system, 

( )T   represents the amount of pose update between frames. 
Using Gauss Newton algorithm, and update the pose estimation of the camera: 

1 1 ( )k ,k k ,k
ˆ ˆT T T                                                       (4) 

B. feature points matching solution. First, the current frame image is divided into 

patches (10 10 pixels).In the local map, k  key frames with the largest number of projection 
points in the current frame are selected. Then the map points included in the key frames are 
projected on the current frame image. Each patch includes a few projection points 

corresponding to the set srcP  of map points. We select the most frequently map point srcP  and 
select the matching point corresponding to the key frame jK who is closest to the current frame in 

the observation value of iP  as a target observation point xi to form a combination { ,x }i j iP ,K  for 

finding a matching point in the current frame. 

After obtaining the initial pose of the camera in the previous step, the map points iP  can 
be projected onto the current frame as the features of the current frame according to the pose 
between the current frame and the key frame jK . We introduced affine matrix A to optimize the 

positions of features by minimizing photometric error, 
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jI is the grayscale image corresponding to the keyframe jK .In order to compensate the 

error caused by the different exposure time of the camera at two different times, this paper 
introduces the gray value compensation  , 
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In order to simplify the calculation, we use the inverse construction method, 
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rP  is the patch of 4 4  pixels around the feature point ix  in image rI . 
C. Detection of Movement. The detection of moving objects in SLAM belongs to the 

detection of moving objects based on free moving cameras, which is a problem cannot be solved 
with traditional static background based motion detection methods [15]. A model of gray level 
changing of image Patch based on SGM (Single Gaussian Model) is introduced in [16]. 
Background Gaussian Model and Candidate Background Gaussian Model are presented by two 
SGMs respectively, when a new image inputs, the two SGMs are updated simultaneously to 
avoid the influence of the foreground on the background model. When the mean 
value of the gray value changes beyond the threshold, background model and candidate 
background model will be exchanged. Foreground and background can be distinguished 
according to the change of variance of image Patch. 
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Figure 2 shows the motion detection using the dual SGM model after the image motion 
compensation using the initial pose. 

 
Figure 2 – Moving detection result. All the Image example are taken 

from “fr3/walking” sequence in TUM RGB-D datasets. 
First row: the original RGB image. 

Second row: the mask result of moving detection of local body motion 

D. Dynamic Point Elimination and Camera Pose Optimization. In the previous step, 
the dynamic and static regions in the image were successfully segmented. In order to 
eliminate the outer points introduced by the moving objects in the scene, the feature points 
falling on the dynamic area of the image in the current frame image need to be removed to 
obtain the static point set Ps. 

After obtaining the set of static map points Ps and its matching point set xs, the pose of 
camera can be further optimized by minimizing reprojection errors, 
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Because BA problem of single pose point for constraint of map point is too restrictive, only 
the pose of camera is optimized, and the optimization of map points is completed in local BA. 

In particular, the process will only be in static area when constructing map points 
by extracting FAST[17] corners from key-frames. Then filter map points and key-frames 
according to common view relationship between map points and key-frames. At last, 
select key-frames which have the same view with current key-frame and their observed 
map points to construct a local BA problem, and further optimize the pose of key-frames 
and map points. 

Experiment Analysis. For the implementation of our method we use the Intel E3-1230 
CPU, basic frequency is 3.30HGZ, with 12GB memory without GPU, and test in the 
Ubuntu14.04. The part of pose calculation is tested in the TUM RGB-D dataset, while 
mapping part are tested in the actual environment. 

Many excellent SLAM algorithms [18,19] facing the dynamic environment also used the 
TUM RGB-D dataset which contains the dynamic scenes. In this paper we test the algorithm 
and make contrast with DVO, BaMVO. 

A. Visual odometry evaluation. The evaluation of visual odometry mainly is based 
on RPE (Relative Pose Error). As shown in table 1, in the dynamic environment, the algorithm 
outperforms well in the "sitting" sequence and "walking" sequence. Both the translational 
and rotational RPE of this paper are significantly lower than the comparison paper in both low 
and high dynamic environments. The accuracy of our algorithm in the low dynamic 
environment increased to 50.6%, and the accuracy in the high dynamic environment increased to 
43.1%. Compared with the algorithm which does not include motion elimination in this paper, 
the accuracy in the low dynamic environment increases to 8.6%, and the accuracy in the high 
dynamic environment increases to 64.9%. 
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Table 1 – Comparison of visual odometry RPE 

Sequences 

RMSE of translation drift [m / s]  RMSE of rotation drift [ /s]  

DVO 
[1] 

BaMVO 
[21] 

Static 
weight

[20] 

Our 
Method 
without
“RM” 

Our 
Method

DVO
[1] 

BaMVO
[21] 

Static 
weight 

[20] 

Our 
Method 
without 
“RM” 

Our 
Method

static 
fr2/desk 0.0296 0.0299 0.0173 0.0115 0.0111 1.3920 1.1167 0.7266 0.5466 0.5565

fr3/long-house 0.0231 0.0332 0.0168 0.0134 0.0160 1.5689 2.1583 0.8012 0.5086 0.5167

lo
w

 d
yn

am
ic

 fr2/desk-person 0.0354 0.0352 0.0173 0.0098 0.0094 1.5368 1.2159 0.8213 0.4685 0.4674

fr3/sitting-static 0.0157 0.0248 0.0231 0.0111 0.0081 0.6084 0.6977 0.7228 0.3223 0.2552

fr3/sitting-xyz 0.0453 0.0482 0.0219 0.0137 0.0131 1.4980 1.3885 0.8466 0.4941 0.4941

fr3/sitting-rpy 0.1735 0.1872 0.0843 0.0231 0.0229 6.0164 5.9834 5.6258 0.7456 0.6991

fr3/sitting-halfphere 0.1005 0.0589 0.0389 0.0340 0.0263 4.6490 2.8804 1.8836 0.9493 0.7838

hi
gh

 d
yn

am
ic

 f r3/walking-static 0.3818 0.1339 0.0327 0.0278 0.0102 6.3502 2.0833 0.8085 0.4903 0.2525

fr3/walking-xyz 0.4360 0.2326 0.0651 0.1184 0.0320 7.6669 4.3911 1.6442 2.1494 0.6869

fr3/walking-rpy 0.4038 0.3584 0.2252   7.0662 6.3389 5.6902   

fr3/walking-
halfphere 

0.2638 0.1738 0.0527 0.1184 0.0476 5.2179 4.2863 2.4048 1.8284 1.045 

B. SLAM system evaluation. Unlike the assessments of visual odometry, SLAM systems 
use Absolute Trajectory Error (ATE) metrics. Experiments are still performed on TUM 
dynamic datasets. 
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Figure 3 – Examples of estimated trajectories from our SLAM system: 

(a) estimated trajectories of the without motion detection and removal SLAM; 
(b) estimated trajectories of the complete SLAM system parameter as a reference 

In Fig. 3, the trajectories of SLAM algorithm are compared. The blue trajectory 
represents the ground truth. The black line represents the estimated trajectory, and the red line 
represents the error. The more the red part is, the larger the error is. 

Conclusion. This paper presents a real-time RGB-D SLAM algorithm for indoor 
dynamic environment. The algorithm uses the semi-direct visual odometry as the SLAM 
front-end to calculate the pose of the camera. By incorporating the motion detection algorithm, 
the moving objects and the removal of the dynamic feature points are completed, which 
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effectively improves the accuracy of the odometry and avoids the impact of dynamic objects in 
closed-loop detection step. Based on the pose of camera calculated by SLAM, a Mesh-like 
dense map is constructed based on the TSDF model. The algorithm supposed in this paper is 
validated in the TUM dataset and the actual environment. The accuracy of camera pose is much 
higher than the other SLAM algorithm in dynamic environments. The supposed 
algorithm not only locates the robot accurately for indoor dynamic environment, but also greatly 
enriches the environment information which is perceived by the robot. 

In the future work, IMU (Inertial Measurement Unit) data will be considered in order to add up 
constraints to solve camera pose, which further improves the accuracy and robustness of the algorithm. 

References 
1. Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C] // Robotics 

and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013: 3748-3754. 
2. Mur-Artal R, Tardós J D. Orb-slam2: An open-source slam system for monocular, stereo, and 

rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. 
3. Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and 

tracking[C] // Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on. 
IEEE, 2011: 127-136. 

4. Endres F, Hess J, Sturm J, et al. 3-D mapping with an RGB-D camera[J]. IEEE Transactions on 
Robotics, 2014, 30(1): 177-187. 

5. Nistér D, Naroditsky O, Bergen J. Visual odometry[C] // Computer Vision and Pattern Recognition, 
2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. Ieee, 2004, 1: I-I. 

6. Tan W, Liu H, Dong Z, et al. Robust monocular SLAM in dynamic environments[C] // Mixed 
and Augmented Reality (ISMAR), 2013 IEEE International Symposium on. IEEE, 2013: 209-218. 

7. Bibby C, Reid I. Simultaneous localisation and mapping in dynamic environments (SLAMIDE) 
with reversible data association[C] // Proceedings of Robotics Science and Systems. 2007, 117: 118. 

8. Wang Y, Huang S. Motion segmentation based robust rgb-d slam[C] // Intelligent Control and 
Automation (WCICA), 2014 11th World Congress on. IEEE, 2014: 3122-3127. 

9. Sun Y, Liu M, Meng M Q H. Improving RGB-D SLAM in dynamic environments: A motion 
removal approach[J]. Robotics and Autonomous Systems, 2017, 89: 110-122. 

10. Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C] // 
Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 15-22. 

11. Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C] // 
European Conference on Computer Vision. Springer, Cham, 2014: 834-849. 

12. Newcombe RA,Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigid 
scenes in real-time[C] // Proceedings of the IEEE conference on computer vision and pattern recognition. 
2015: 343-352. 

13. Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or 
SURF[C]//Computer Vision (ICCV), 2011 IEEE international conference on. IEEE, 2011: 2564-2571. 

14. Baker S, Matthews I. Lucas-kanade 20 years on: A unifying framework [J]. International 
journal of computer vision, 2004, 56(3): 221-255. 

15. Van Droogenbroeck M, Barnich O. ViBe: A disruptive method for background subtraction [J]. 
Background Modeling and Foreground Detection for Video Surveillance, 2014: 7.1-7.23. 

16. Yi K M, Yun K, Kim S W, et al. Detection of moving objects with non-stationary cameras in 
5.8 ms: Bringing motion detection to your mobile device[C] // Computer Vision and Pattern Recognition 
Workshops (CVPRW), 2013 IEEE Conference on. IEEE, 2013: 27-34. 

17. Rosten E, Porter R, Drummond T. Faster and better: A machine learning approach to corner 
detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(1): 105-119. 

18. Klingensmith M, Dryanovski I, Srinivasa S, et al. Chisel: Real Time Large Scale 3D 
Reconstruction Onboard a Mobile Device using Spatially Hashed Signed Distance Fields[C] // Robotics: 
Science and Systems. 2015, 4. 

19. Li S, Lee D. RGB-D SLAM in dynamic environments using static point weighting[J]. IEEE 
Robotics and Automation Letters, 2017, 2(4): 2263-2270. 

20. Kim D H, Kim J H. Effective background model-based RGB-D dense visual odometry in a 
dynamic environment[J]. IEEE Transactions on Robotics, 2016, 32(6): 1565-1573. 


