Рисунок 1 - Кривая нормального распределения вероятности формирования нагрузки

В энергетике часто используют правило «трех сигм», которое определяет попадание достоверных значений в диапазон $\pm 3\sigma$ с вероятностью 99,7%.

Выводы. Электрическая нагрузка коммунально-бытовых потребителей носит случайный характер, чем осложняется ее точное определение. Использование методов вероятностной оценки формирования нагрузки жилых и гражданских зданий позволяет учесть одновременность работы взаимосвязанных потребителей, что в свою очередь способствует максимально корректному осуществлению расчетов электрической сети.

ЛИТЕРАТУРА

- 1.Тульчин, И.К. Электрические сети и электрооборудование жилых и общественных зданий / И.К. Тульчин, Г.И.Нудлер; под ред. И.П. Жданова. М.: Техноперспектива, 2007.-480с.
- 2. Радкевич, В.Н. Электроснабжение промышленных предприятий: учеб. пособие / В.Н. Радкевич; В.Б. Козловская, И.В. Колосова. 2-е изд., исправленное. Минск: ИВЦ Минфина, 2017. 589 с.
- 3. Евминов, Л.И. Электроснабжение промышленных и гражданских зданий / Л.И. Евминов, под ред. А.М. Стронгина. Мн.: НПООО «ПИОН», 2002. 457 с.
- 4. Бэнн, Д.В. Сравнительные модели прогнозирования электрической нагрузки / Д.В. Бэнн, Е.Д. Фармер, пер. с англ. В.Ф. Тимченко. –М.: Высшее образование, 2013. 200 с.
- 5. Вентцель, Е.С. Теория вероятностей: учебник / Е.С. Вентцель. 11-е изд., стер. М: КНОРУС, 2010. 664 с.

УДК 621.311.243

СОЛНЕЧНЫЕ СОЛЯНЫЕ ЭЛЕКТРОСТАНЦИИ

Учащийся группы 75Э4б Тарасовец В.О., преподаватель Маслова Ю.П. Филиал БНТУ «Минский государственный политехнический колледж»

Введение. Были рассмотрены способы, методы, особенности добычи солнечной электроэнергии. Изучено устройство и особенности физико-

химического процесса добычи электроэнергии из солнечной радиации. Проведен анализ возможности строительства солнечных соляных электростанции.

Основная часть.

1 Солнечная энергетика. Особенности процесса добычи энергии. Солнце, как будущее энергетики, главный энергетический ресурс.

В современных реалиях, человечество все больше начинает обращать внимание на альтернативные источники энергии. Такие источники энергии, в большинстве случаев, являются не исчерпаемыми, возобновляемыми. Отличаются чистым/естественным происхождением.

Причина такого интереса, со стороны человеческого сообщества, как обычно кроется в ограниченности природных ресурсов(нефть, природный газ, уголь и т.д.). К тому же, мы уже довольно близко подошли к порогу экологической катастрофы, и просто уже не можем игнорировать проблемы, связанные с добычей энергии из традиционных источников.

На данный момент, самой распространенной и перспективной, является добыча энергиипрямиком из продуктов выделения солнечного ядерного синтеза (солнечная радиация, тепловое излучение и т.д.).

Солнечная энергетика — направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде.

Существует множество способов получения энергии солнечного излучения. От фотонелей до методов «отражения».

Гелиотермальная э*нергетика* — это нагревание поверхности, поглощающей солнечные лучи, и последующее распределение / использование тепла.

2 ССКТ. Принцип действия. Назначение.

В качестве особого вида станций гелиотермальной энергетики, принято выделять солнечные системы концентрирующего типа (ССКТ). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч света. Этот луч используется для нагрева рабочей жидкости (вещества).

Более 1000 зеркал, отражают солнечный свет(излучение) на башню. Высота башни, зависит от местности/ландшафта, количества отражающих зеркал. Башня стоит в центре станции, на вершине которой находится резервуар с водой. Этот резервуар покрашен в чёрный цвет для поглощения теплового и видимого излучения. Делается это для нагревания его, а следовательно, и вещества, находящегося внутри бака, для последующего распределения полученной термоэнергии в своих целях(для отопления водоснабжения или в паровых генераторах). Также в этой башне находится насосная группа, доставляющая воду(вещество) в резервуар от турбогенератора, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты (отражающие зеркала).

В соляных станциях данного типа, как уже ясно из названия, используется вместо воды – соль.

Так чем же обусловливается данная концепция?

Новая технология использования расплавленной соли гораздо дешевле и эффективнее нынешней: занимающие целые гектары. Избавление от необходимости растрачивать энергию на поддержание температуры синтетического топлива позволило снизить потери энергии при накоплении с 7% до 2%.

Кроме того, использование новой теплоэлектростанции позволяет нагревать соли до температуры 566 градусов по Цельсию, в то время как предел старых - лишь 400 градусов. При увеличенной температуре парогенераторы способны давать на 5-6% больше энергии, а хранилище соли способно содержать в 2-3 раза больше материала для ее производства.

Использование соли очень выгодно, так как она играет роль не только «транспорта» для тепловой энергии, но и ее накопителя. Тепло полученное в течение дня может сохраняться достаточно долго в соляном аккумуляторе.

Соляной аккумулятор — это накопитель электрической энергии, который в конструкции использует расплавленную соль. Такой соляной аккумулятор позволяет сохранить достаточно электроэнергии и хранить ее длительное время для использования в ночное время.

Накопление электроэнергии позволяет сократить вероятность скачков напряжения в сети, с чем борются украинские потребители. Скачки напряжения — это обычный процесс при использовании солнечных батарей в переходном периоде от дня к ночи.

Электростанция работает в привычном режиме в ночное время, черпая тепловую энергию с соляного аккумулятора. Подержание станции в рабочем режиме возможно в течение 6 часов после того, как прекратилась подача тепловой энергии от зеркальных панелей. Этого достаточно, чтобы солнечная электростанция работала бесперебойно в круглосуточном режиме.

Проблемы.

Как и в любой другой сфере деятельности, у солнечной энергетики в общем существует ряд проблем и особенностей:

1. Работа в «прерывистом режиме»

Конечно, соляной аккумулятор на солнечной соляной электростанции, должен обеспечить станцию необходимым количеством энергии, для работы станции 24/7. Но, с наступлением ночи и заходом солнца, такие станции становятся практически бесполезными, в лице выработки электрической энергии солнца.

Но не стоит забывать и о других видах энергии, которые вырабатывались станцией в течении дня, и которые она может предложить потребителям. Это тепловая энергия. Тепло, накопившееся в аккумуляторе и в системе транспортировки соли, можно использовать в качестве нагрева воды.

2. Территориальная

Чтобы получать достаточное количество энергии, из солнечного излучения, необходимо также и обеспечить нужный приток этого самого излучения. Гелиостаты, занимают огромные территории, которыми не каждое государство может похвастаться. В решении этой проблемы, можно использовать многоуровневые гелиостаты, или же многоуровневую систему таких электростанций. Но опять же, разработка таких систем, а также их правильная эксплуатация(не говоря уже об установке и калибровке всех зеркал), требует огромного количества ресурсов, в большинстве своем финансовых.

3. Солнечное покрытие территории РБ

Сезонность в средних широтах, доставляет ряд трудностей и ограничений использования данной технологии в нашей стране. Умеренный климат так же не способствует развитию данной отрасли энергетики. Здесь уже возникает в необходимости дублировать солнечные энергетические установки, традиционными сопоставимой мощности. Но вопрос о рентабельности таких решений, сводит все на нет.

Заключение. Как известно, солнечная энергия уже дешевле в производстве, чем ядерная. Этим и объясняется ее широкое использование уже сейчас.

В нынешней ситуации проектам в области солнечной энергетики приходится буквально бороться за жизнь из-за снижения цен на энергию и появления фотоэлектрических панелей. Однако демонстрация возможности коммерческого применения технологии сильно повышает ее шансы на выживание.

Но высокая стоимость конструкции, связанная с применением редких элементов(к примеру индий и теллур) и огромные территории, которые такие установки должны будут занимать, отодвигают эту идею не на второй план. Сезонность, климат, все это угнетает развитие данной сферы в нашей стране.

ЛИТЕРАТУРА

- 1. Виссарионов, В.И. Солнечная энергетика / В.И. Виссарионов, Г.В. Кузнецова. Учеб. Пособие для вузов. М.: Издательский дом МЭИ, 2008. 276 с.
- 2. Фолькер Куашинг. Системы возобновляемых источников энергии. Учебник / Пер. с немецкого. Астана, 2013. 432 с.: 280 цв. ил., 113 табл. ISBN 978-601-302-032-7

- 3. Агеев, В.А. Нетрадиционные и возобновляемые источники энергии / В.А. Агеев. MPCУ, 2004. 174 с.
- 4. Германович, В. Альтернативные источники энергии и энергосбережение: практические конструкции по использованию энергии солнца / В. Германович, А. Турилин. СПб.: Наука и Техника, 2014. 320 с.
- 5. Да Роза, А. Возобновляемые источники энергии : учеб. пособие / А. Да Роза. Пер. с англ. Долгопрудный-Москва: МЭИ/Интелект,2010. 704 с.
- 6. Солнечная энергетика [Электронный ресурс] / Режим доступа: https://ru.wikipedia.org/wiki/Солнечная_энергетика Дата доступа 14.02.2019.

УДК 621.31-049.7

АКТУАЛЬНЫЕ ПРОБЛЕМЫ В ЭЛЕКТРООБОРУДОВАНИИ

Учащийся группы 69Э4к Дудиков М.М. преподаватель Жаврид С.И. Филиал БНТУ «Минский государственный политехнический колледж»

Введение. Нарастание объема износа оборудования и отсутствие возможности его восстановления вводит современную энергетику в зону повышенного риска, технологических отказов и аварий не только оборудования, но и систем автоматического регулирования, релейной защиты и противоаварийного управления. Электрооборудования подвергаются старению и их снимают с производства. Таким образом электрооборудования заменяют или модернизируют.

Основная часть. Различают общетехническую и технологическую модернизацию металлорежущих станков. Общетехническая модернизация способствует повышению технического уровня станков, находящихся в эксплуатации в целях приведения их технических и эксплуатационных характеристик в соответствии с характеристиками наиболее прогрессивного оборудования аналогичного назначения.

Технологическая модернизация направлена на оснащение станка дополнительными устройствами и механизмами, а так же на изменение конструкций в целях решения определенных технологических задач. Для проведения общетехнической модернизации, разрабатывают типовые проекты. В результате модернизации по этим проектам совершенствуются конструкции резцедержателей и шпиндельной бабки, вводится разгрузка задней бабки и блокировки к отдельным защитным устройствам.

Внедрение прогрессивных технологических процессов требует соответствующего оборудования, которое не может быть приобретено в короткий срок. В этом случае проводят модернизацию, с помощью которой обеспечивается возможность выполнения операций, не предусмотренных основным назначением станка.

При внесении изменений в конструкцию станков обеспечивается обработка заготовок больших размеров, что предусмотрено паспортом станка.