

#### Министерство образования Республики Беларусь

#### БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Горные машины»

Н.И. Березовский И.Е. Рухля С.Н. Березовский

### ТЕХНОЛОГИЯ ДОБЫЧИ И ПЕРЕРАБОТКИ ТОРФА

Учебно-методическое пособие по выполнению курсовой работы

**Минск БНТУ** 2012

#### Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

#### Кафедра «Горные машины»

Н.И. Березовский И.Е. Рухля С.Н. Березовский

#### ТЕХНОЛОГИЯ ДОБЫЧИ И ПЕРЕРАБОТКИ ТОРФА

Учебно-методическое пособие по выполнению курсовой работы для студентов специальности 1-36 13 01 «Технология и оборудование торфяного производства»

Рекомендовано учебно-методическим объединением высших учебных заведений Республики Беларусь по образованию в области горнодобывающей промышленности

Минск БНТУ 2012 УДК 622.331 (075.8) ББК 33.35я73 Б 48

#### Рецензенты: *А.В. Нагорский, С.Г. Оника*

#### Березовский, Н.И.

Б 48 Технология добычи и переработки торфа: учебно-методическое пособие по выполнению курсовой работы для студентов специальности 1-36 13 01 «Технология и оборудование торфяного производства» / Н.И. Березовский, И.Е. Рухля, С.Н. Березовский. – Минск: БНТУ, 2012. – 25 с.

ISBN 978-985-525-783-8.

В пособии изложены рекомендации по выполнению курсовой работы по производству торфяных топливных брикетов, приведена методика расчета материального баланса, технические характеристики применяемого оборудования, порядок его подбора и расчета.

УДК 622.331 (075.8) ББК 33.35я73

ISBN 978-985-525-783-8

© Березовский Н.И., Рухля И.Е., Березовский С.Н., 2012 © БНТУ, 2012

#### ОГЛАВЛЕНИЕ

| ВВЕДЕНИЕ4                                                               |
|-------------------------------------------------------------------------|
| 1. ЦЕЛЬ КУРСОВОЙ РАБОТЫ                                                 |
| 2. ТРЕБОВАНИЯ К КУРСОВОЙ РАБОТЕ6                                        |
| 3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ<br>РАЗДЕЛОВ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ |
| РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА24                                              |

#### **ВВЕДЕНИЕ**

В недрах Республики Беларусь сосредоточены значительные запасы торфа. Общая площадь торфяных месторождений составляет 2,4 млн га (около 14 % территории) с геологическими запасами торфа 4 млрд тонн.

Приоритетным направлением сейчас стало земельное и природоохранное использование торфяных месторождений. В разрабатываемый фонд (для добычи торфа) было включено около 5 % запасов торфа.

В настоящее время принята государственная программа «Торф», направленная на укрепление энергетической безопасности Республики Беларусь, согласно которой торф является одним из важных топливно-энергетических ресурсов. Поэтому будет произведено перераспределение торфяных ресурсов по целевым фондам и разрабатываемый торфяной фонд может составить 1,1–1,2 млрд тонн с извлекаемыми промышленными запасами торфа до 0,6–0,8 млрд тонн.

При условии достижения устанавливаемых государственной программой объемов добычи торфа в 6,5–7,5 млн тонн в год запасов торфа в нашей республике достаточно для его разработки и использования в энергетике и сельском хозяйстве на ближайшие 100 лет без изъятия торфяных месторождений из действующих природоохранных фондов.

Использование торфа в республике осуществляется по пяти основным направлениям: топливно-энергетическое, сельскохозяйственное, химико-технологическое, медицинское и природоохранное.

Основной задачей торфяной промышленности является обеспечение потребности населения и коммунально-бытовых потребителей, топливно-энергетического комплекса республики в торфяном топливе и продукции на основе торфа — топливных брикетах, кусковом торфе, торфе топливном, питательных грунтах и удобрениях, торфе для компостирования, верховом торфе.

В настоящее время 30 торфопредприятий ежегодно добывают 2,3–2,8 млн тонн фрезерного торфа, 7–9 тыс. тонн кускового торфа. Из добытого торфа на 25 торфопредприятиях производится 1,1–1,2 млн тонн топливных брикетов марок БТ-6, БТ-7, БТ-8, 4–5 тыс. тонн торфяных питательных грунтов, 25–27 тыс. тонн верхового кипованного торфа.

Государственной программой к 2020 году предусмотрено увеличить объем производства топливных брикетов до 1,471 млн тонн в год. Предусмотрена также организация производства нового вида торфяного топлива — пеллет. Это гранулы диаметром от 6 до 14 мм, полученные прессованием при температуре  $t=120\,^{\circ}\mathrm{C}$ . Пеллетирование повышает теплоплотность на 20 % и позволяет автоматизировать процесс горения. На УП «Витебское» будет построен цех по производству 25 тыс. тонн пеллетов в год.

Дальнейшее развитие получит и использование кускового торфа, производство которого является менее энергоемким, чем производство топливных брикетов.

Кроме того, техническими условиями ТУ РБ 02999284.311–2000 «Брикеты топливные» предусмотрено производство топливных брикетов марки БТ-3 и БТ-4 из смеси торфа и бурого угля, марки БЛ из лигнина, марки БТЛ-1, БТЛ-2, БТЛ-3 и БТЛ-4 из смеси торфа и лигнина, марки БТД-1 и БТД-2 — из смеси торфа и древесных опилок.

#### 1. ЦЕЛЬ КУРСОВОЙ РАБОТЫ

Выполнение курсовой работы по дисциплине «Технология добычи и переработки торфа» способствует углублению и закреплению знаний, полученных студентами при изучении фундаментальных, общеинженерных и специальных дисциплин, учит применять эти знания на практике, прививает навыки самостоятельной работы, а также готовит студента к дипломному проектированию.

#### 2. ТРЕБОВАНИЯ К КУРСОВОЙ РАБОТЕ

Курсовая работа выполняется по заданию, индивидуально выдаваемому каждому студенту на отдельном бланке.

Тематика курсовой работы должна соответствовать изучаемой дисциплине и включает разработку технологического процесса переработки и обогащения торфа с составлением схемы цепи аппаратов отделения или всего торфобрикетного завода.

Каждая курсовая работа должна содержать элемент новизны.

Курсовая работа состоит из пояснительной записки и графической части.

Пояснительная записка выполняется в соответствии с требованиями СТП БНТУ 3.01–2003 и содержит:

- обложку;
- титульный лист;
- задание к курсовой работе;
- содержание с указанием страниц;
- введение;
- аналитический обзор литературных и других источников;
- технологический процесс переработки и обогащения торфа;
- материальный баланс;
- подбор и расчет технологического оборудования;
- мероприятия по охране окружающей среды;
- правила безопасности проведения работ;
- заключение;
- список использованных источников.

Текст пояснительной записки состоит из разделов, указанных в задании к курсовой работе.

Каждый раздел и, при необходимости, подразделы и пункты обозначаются арабскими цифрами с последующей точкой (1., 1.1., 1.1.1. и т. д.).

Разделы «Введение», «Заключение» и «Список использованных источников» не нумеруются.

Все формулы пояснительной записки нумеруются арабскими цифрами в круглых скобках (справа на уровне формулы) сквозной нумерацией по всей записке.

При составлении пояснительной записки необходимо излагать материал последовательно и четко, со ссылками на список использованных источников и обоснованием всех принимаемых величин.

Также следует обратить внимание на размерности величин, входящих в формулы, их физический смысл и результаты расчета.

Графическая часть работы включает схему цепи аппаратов отделения или всего завода с изображением систем обеспыливания производственного процесса, рассматриваемого в курсовой работе.

Графическая часть выполняется на листе формата А2.

#### 3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ РАЗДЕЛОВ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ

#### Введение

Приводятся данные о торфе: его характеристика, запасы, объемы добычи, направления и перспективы дальнейшего использования в различных отраслях народного хозяйства.

#### Аналитический обзор литературных и других источников

На основе использованных источников излагаются существующие и перспективные способы переработки и обогащения торфа, а также приводятся требования к качеству готового продукта.

Обзор должен носить не описательный, а аналитический характер с указанием преимуществ и недостатков рассматриваемых методов.

Выводом этого раздела является обоснование темы курсовой работы.

В настоящее время широкие возможности для получения информации представляет сеть Интернет.

#### Технологический процесс переработки и обогащения торфа

Технологический процесс переработки и обогащения торфа разрабатывается в соответствии с заданием к курсовой работе на основании аналитического обзора, последних достижений в области переработки торфа и норм технологического проектирования.

После разработки технологического процесса составляется технологическая схема работы завода по производству торфяных брикетов, представляющая собой графическое изображение путей следования торфа и продуктов его переработки.

Описание технологического процесса проводится по разработанной технологической схеме со ссылкой на последнюю.

#### Материальный баланс

Основной целью расчета материального баланса является определение необходимого количества сырья и материалов по операциям технологического процесса для обеспечения заданной производительности.

Полученные расчетные данные по операциям являются исходными для подбора и расчета основного и вспомогательного оборудования и уточнения технологической схемы.

Материальный баланс составляется в расчете на единицу времени. Величина потерь сырья и готового продукта по отдельным операциям технологического процесса принимается согласно нормам технологического проектирования и опытным данным.

Для определения часовой производительности отделения исходят из нормативных фондов машинного времени.

Расчет материального баланса завода по производству топливных брикетов составляется по отдельным операциям переработки с учетом потерь на каждой операции в следующей последовательности:

#### 1. Часовая производительность завода

$$q = \frac{Q}{t}$$
, т/год,

где *О* – производительность завода, т/год;

t – число часов чистого времени работы завода в году (для торфобрикетного производства t = 7200 ч).

## 2. Производительность отделения прессования с учетом потерь при складировании

$$q' = \frac{q}{100 - K_5} \cdot 100, \text{ T/Y},$$

где  $K_5$  – потери материала при складировании, %.

Исходя из норм технологического проектирования и опыта работы заводов по производству торфяных брикетов потери сырья в процессе переработки составляют:

 $K_0 = 0.5 \%$ ;

 $K_1 = 0.5 \%$ ;

 $K_2 = 0.1 \%$ ;

 $K_3 = 3 \%$  для пневмогазовой сушилки;

 $K_3 = 2$  % для паровой трубчатой сушилки;

 $K_3 = 1.5 \%$  для пневмопароводяной сушилки;

 $K_4 = 1 \%$ ;

 $K_5 = 1 \%$ .

## 3. Производительность сушильного отделения с учетом потерь при прессовании

$$q'' = \frac{q'}{100 - K_A} \cdot 100, \text{ T/H},$$

где  $K_4$  – потери материала в отделении прессования, %.

4. Производительность сушильного отделения с учетом потерь при сушке

$$q''' = \frac{q''}{100 - K_3} \cdot 100, \text{ T/H},$$

где  $K_3$  – потери материала при сушке, %.

5. Количество материала, поступающее в сушильное отделение:

$$P' = \frac{q'''(100 - W_2)}{100 - W_1}$$
,  $T/Y_1$ 

где  $W_2$  – влажность готового продукта, %;

 $W_1$  – влажность поступающего материала, %.

6. Количество влаги, испаряемой в сушильном отделении:

$$W_{BJI} = P' - Q'''$$
,  $T/4$ .

7. Количество фрезерного торфа, используемого в качестве топлива для сушильной установки, необходимое для испарения влаги:

$$B = \frac{Q_{\rm T} \cdot W_{\rm BJI}}{Q_H^P}, \, \text{T/Y},$$

где  $Q_{\rm r}$  – удельный расход тепла на испарение 1 кг влаги.

Удельный расход тепла на испарение влаги из торфа:

- для пневмопароводяных сушилок равен 2514 кДж/кг испаренной влаги:
  - для паро-трубчатых сушилок 4483,3 кДж/кг испаренной влаги;
  - для пневмогазовых 5028 кДж/кг испаренной влаги.

$$Q_H^P = 21907, 4 \frac{(100 - W_1 - A^P)}{100} - 25, 1 W_1 -$$
низкая теплота сгора-

ния топлива, кДж/кг.

$$A^{\rm p} = \frac{A^{\rm c} (100 - W_1)}{100} -$$
 зольность торфа на рабочую массу, %,

где  $A^{c}$  — зольность торфа на абсолютно сухое вещество, %.

8. Количество торфа, поступающего в подготовительное отделение, с учетом использования его в качестве топлива:

$$P'' = \frac{P' + B}{100 - K_2} \cdot 100, \text{ T/H},$$

где  $K_2$  – потеря торфа в подготовительном отделении, %.

9. Количество торфа, поступающего в усреднительный комплекс:

$$P''' = \frac{P''}{100 - K_1} \cdot 100, \text{ T/H},$$

где  $K_1$  – потери торфа при усреднении, %.

10. Количество торфа, поступающего на завод:

$$P'''' = \frac{P'''}{100 - K_0} \cdot 100$$
, T/4,

где  $K_0$  – потери торфа при разгрузке и подаче в усреднительный-комплекс, %.

11. Расход исходного сырья для производства 1 тонны топливных брикетов

$$\Pi = \frac{P''''}{Q}, \quad T/T.$$

#### Подбор и расчет технологического оборудования

Подбор и расчет технологического оборудования производится на основе данных материального баланса согласно принятой технологической схеме. При этом необходимо исходить из норм техноло-

гического проектирования и последних достижений в области производства топливных брикетов.

1. Доставка фрезерного торфа с полей добычи на завод осуществляется железнодорожными вагонами узкой колеи TCB-6 (таблица 3.1).

Таблица 3.1 – Техническая характеристика вагонов ТСВ-6

| Грузоподъемность, кг         | 12 500 |
|------------------------------|--------|
| Масса, кг                    | 5300   |
| Объем кузова, м <sup>3</sup> | 25     |
| Длина вагона, мм             | 4500   |
| Ширина кузова, мм            | 2500   |

2. Для разгрузки торфа из вагонов применяются роторные вагоноопрокидыватели ВУ-1 (таблица 3.2).

Таблица 3.2 – Техническая характеристика вагоноопрокидывателя BУ-1

| Угол поворота ротора, градус                            | 175                |  |
|---------------------------------------------------------|--------------------|--|
| Частота вращения ротора, с <sup>-1</sup>                | 0,02               |  |
| Время опрокидывания, с                                  | 23                 |  |
| Время полного цикла, мин                                | 2                  |  |
| Мощность электродвигателя, кВт                          | 17                 |  |
| Производительность, м <sup>3</sup> /ч:                  |                    |  |
| <ul> <li>при разгрузке вагонов TCB-5 и TCB-6</li> </ul> | 750                |  |
| <ul> <li>при разгрузке переоборудованных ва-</li> </ul> |                    |  |
| гонов ТСВ-5 и ТСВ-6                                     | 930                |  |
| Основные размеры, мм                                    | 8920 × 5520 × 6410 |  |
| Масса, кг                                               | 30 500             |  |

Разгружаемый фрезерный торф поступает в приемный бункер, объем которого определяется 3-часовой потребностью завода:

$$V = \frac{3 P'''}{\rho}, M^3,$$

где  $\rho$  – насыпная плотность фрезерного торфа, т/м<sup>3</sup>.

3. Выгрузка фрезерного торфа из бункера осуществляется скребковым конвейером, ширина скребка которого определяется исходя из его производительности согласно материальному балансу:

$$B = \sqrt{\frac{P''''}{2160 \cdot \psi \cdot \rho \cdot \upsilon}}, M,$$

где  $\psi$  – коэффициент заполнения объема межскребкового пространства при горизонтальном положении конвейера (принимается равным 0,75–0,8);

v — скорость тяговой цепи (для условий торфобрикетного производства принимается не более 0.7 M/c).

Высота скребка принята h = 0.6 B.

4. Транспортирование фрезерного торфа до сушильного отделения, а также готовых брикетов осуществляется ленточными конвейерами.

Скорость движения ленты конвейера при транспортировке фрезерного торфа принимается не более  $1,25\,\mathrm{m/c}$ , а угол наклона к горизонту – не более  $22^{\circ}$ .

Для определения основных параметров ленточного конвейера исходят из его производительности:

$$Q = 3600 \cdot F \cdot \upsilon \cdot \rho$$
,  $\tau/\Psi$ ,

где F – площадь поперечного сечения торфа на ленте, м<sup>2</sup>;

v – скорость движения ленты, м/с.

Отсюда для треугольного поперечного сечения торфа ширина ленты

$$B=1,1\sqrt{\frac{Q}{C\cdot\upsilon\cdot\rho}}+0,05, M,$$

где c — коэффициент формы сечения, зависящий от угла откоса груза (для торфа c = 240).

Производительность в каждом конкретном случае принимается по результатам материального баланса. Производительность последующего конвейера принимается на 10 % больше производительности предыдущего.

5. Для измельчения фрезерного торфа применяются роторные молотковые дробилки СМ-170Б и ДМТ-0 (таблицы 3.3, 3.4).

Таблица 3.3 – Техническая характеристика дробилки СМ-170Б

| Производительность, т/ч             | 200    |
|-------------------------------------|--------|
| Размер:                             |        |
| – диаметр, мм                       | 1300   |
| – длина, мм                         | 1600   |
| Частота вращения, мин <sup>-1</sup> | 735    |
| Размер наибольших частиц, мм        | до 400 |
| Максимальная крупность дробления    | 10     |
| Мощность привода, кВт               | 250    |

Таблица 3.4 – Техническая характеристика дробилки ДМТ-0

| Производительность, м <sup>3</sup> /ч | 60–70 |
|---------------------------------------|-------|
| Диаметр ротора по концам молотков, мм | 800   |
| Длина ротора, мм                      | 576   |
| Частота вращения, мин <sup>-1</sup>   | 985   |
| Мощность привода, кВт                 | 55    |

6. При измельчении фрезерного торфа с древесными включениями используется дробилка ИМТ (таблица 3.5).

Таблица 3.5 — Техническая характеристика дробилки ИМТ

| Производительность, т/ч | 20  |
|-------------------------|-----|
| Ротор:                  |     |
| – диаметр, мм           | 900 |
| – длина, мм             | 602 |

| Частота вращения, мин <sup>-1</sup> | 1460 |
|-------------------------------------|------|
| Мощность привода, кВт               | 55   |

7. Для переработки древесноволокнистых включений торфа, измельчения малоразложившегося верхового торфа и других растительных материалов применяют вертикальную дробилку с рубящими ножами ИПТ-0 (таблица 3.6).

Таблица 3.6 – Техническая характеристика дробилки ИПТ-0

| Производительность, м <sup>3</sup> /ч      | 16   |
|--------------------------------------------|------|
| Диаметр, мм                                | 1020 |
| Количество ножей на валу, шт.              | 16   |
| Количество ножей в ряду, шт.               | 4    |
| Частота вращения ротора, мин <sup>-1</sup> | 1450 |
| Мощность привода, кВт                      | 22   |

8. Для разделения фрезерного торфа средней и высокой насыпной плотности по фракциям используются барабанные грохоты (таблица 3.7).

Таблица 3.7 – Техническая характеристика барабанного грохота ГБ-1А

| Производительность, т/ч                      | 25           |
|----------------------------------------------|--------------|
| Ситовый барабан:  — диаметр, мм  — длина, мм | 1500<br>2800 |
| Частота вращения, мин <sup>-1</sup>          | 17,7         |
| Мощность привода, кВт                        | 2,2          |

9. На брикетных заводах, перерабатывающих торф низкой насыпной плотности, применяются валково-дисковые грохоты (таблица 3.8).

Таблица 3.8 — Техническая характеристика валково-дискового грохота ГВД-0,6

| Производительность, т/ч | 25   |
|-------------------------|------|
| Ширина грохота, мм      | 650  |
| Длина грохота, мм       | 1125 |
| Число валков, шт.       | 6    |
| Диаметр диска, мм       | 350  |

| Расстояние между дисками, мм | 7,5 |
|------------------------------|-----|
| Мощность привода, кВт        | 4   |

10. Расчет пневмогазовой сушилки заключается в определении диаметра и длины трубы по заданным условиям сушки и производительности.

Необходимый объем трубы сушилки

$$V_{\rm rp} = \frac{W_{\rm BJ}}{A}$$
,  $M^3$ ,

где  $W_{\text{вл}}$  – количество влаги, испаряемое в сушильном отделении за 1 час, кг/ч;

A — напряжение объема трубы сушилки, кг/м³ч (количество влаги, испаряемое 1 м³ трубы в течение часа; для условий торфобрикетного производства может быть равно 240 кг/м³ч).

Диаметр трубы сушилки

$$D_{\rm rp} = \sqrt{\frac{4 V_{\rm ra3}}{3600 \cdot \pi \cdot v_{\rm r}}}, M,$$

где  $V_{\text{газ}}$  – объем газов на входе в сушилку (по результатам расчета сушильного процесса), м<sup>3</sup>/ч;

 $v_{\rm \Gamma}$  — скорость газов на входе в сушилку, м/с (при сушке торфа принимается до 30 м/с).

Тогда длина трубы сушилки

$$L_{\rm rp} = \frac{4 V_{\rm rp}}{\pi D_{\rm rp}^2}, \ \mathbf{M}.$$

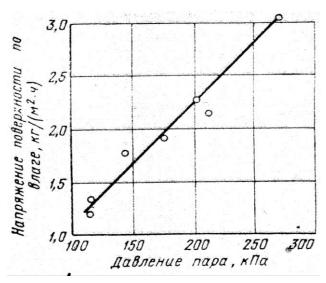
11. При использовании стандартных паровых трубчатых сушилок типа «Цемаг» определяют их количество (таблица 3.9).

Таблица 3.9 — Техническая характеристика паровых трубчатых сушилок «Цемаг»

| Помаражани | Типоразмер |   |   |
|------------|------------|---|---|
| Показатели | 3          | 6 | 7 |

| Наружный диаметр барабана, мм | 3150 | 3750 | 4000 |
|-------------------------------|------|------|------|
| Длина барабана, мм            | 8000 | 8000 | 8000 |

Окончание таблицы


| Показатели                                   | Типоразмер |      |      |  |
|----------------------------------------------|------------|------|------|--|
|                                              | 3          | 6    | 7    |  |
| Число трубок, шт.                            | 468        | 720  | 876  |  |
| Площадь нагрева, м <sup>2</sup>              | 1180       | 1820 | 2220 |  |
| Диаметр трубок, внутренний, мм               | 102        | 102  | 102  |  |
| Максимальное давление пара, МПа              | 0,4        | 0,4  | 0,4  |  |
| Частота вращения барабана, мин <sup>-1</sup> | 7,3        | 8,3  | 9,0  |  |
| Максимальная температура, °С                 | 140        | 140  | 140  |  |

Производительность сушилки по испаряемой влаге

$$W_{\text{суш}} = A_{\Pi} \cdot F_{\text{суш'}}$$
 кг влаги/ч,

где  $A_{\rm II}$  — напряжение поверхности нагрева по влаге сушилки, кг влаги/м²ч (количество влаги, испаряемое 1м² поверхности нагрева в течение часа) (рисунок 3.1);

 $F_{\text{суш}}$  – площадь поверхности нагрева сушилки, м<sup>2</sup>.



# Рисунок 3.1 – Зависимость между напряжением поверхности нагрева паровой трубчатой сушилки и давлением пара Тогда необходимое количество сушилок

$$\Pi = \frac{W_{\text{вл}}}{W_{\text{суш}}}, \text{ шт.}$$

12. Прессование сушонки осуществляется штемпельными брикетными прессами Б–8232 (таблица 3.10).

Таблица 3.10 – Техническая характеристика пресса Б-8232

| Номинальное усилие прессование, кН                                     | 1600  |
|------------------------------------------------------------------------|-------|
| Ход штемпеля /л, мм                                                    | 350   |
| Число штемпелей <i>т</i> , шт.                                         | 2     |
| Площадь поперечного сечения штемпеля $F_{\text{штем}}$ , $\text{см}^2$ | 120   |
| Размер брикета, мм:                                                    |       |
| – длина                                                                | 182   |
| – ширина <i>В</i>                                                      | 70    |
| – высота                                                               | 20–45 |
| Число ходов штемпеля в 1 мин                                           | 50–75 |
| Мощность привода, кВт                                                  | 160   |

Производительность пресса

$$Q_{\rm np} = 6 \cdot 10^{-5} \cdot F_{\rm intem} \left( b + \frac{1}{2} B \cdot \text{ctg} \phi \right) \rho_{\rm c} \cdot n \cdot k_{\rm 3aii} \cdot m_{\rm r} \, \text{T/H},$$

где  $F_{\text{штем}}$  – площадь поперечного сечения штемпеля, см<sup>2</sup>;

 $b = h - \alpha$  — ход штемпеля до захода в матричный канал, см (рисунок 3.2);

h – ход штемпеля, см;

В – ширина брикета, см;

 $\rho_c$  — насыпная плотность сушонки, т/м<sup>3</sup> (в процессе сушки торфа  $\rho_c$  возрастает в среднем на 10 %);

φ – угол естественного откоса торфа, равный 45°;

*п* – число штемпелеваний пресса в минуту (таблица 3.11);

*к*<sub>зап</sub> – коэффициент заполнения камеры прессования (рисунок 3.3);

*m* – число штемпелей пресса;

 $\alpha$  — длина камеры прессования, см ( $\alpha$  = 0,35h при n < 65 штем./мин и  $\alpha$  = 0,3h при n > 65 штем./мин).

Тогда для условий брикетирования фрезерного торфа производительность пресса

$$Q_{\rm np} = 6 \cdot 10^{-5} \cdot F_{\rm штем} (0,65 h + 0,5 B) \rho_{\rm c} \cdot k_{\rm зап} \cdot m \cdot n$$
 при  $n < 65$  штем./мин

И

$$Q_{_{\rm np}} = 6 \cdot 10^{-5} \cdot F_{_{\rm IIITeM}} (0,70 h + 0,5 B) \rho_{\rm c} \cdot k_{_{\rm 3an}} \cdot m \cdot n$$
 при  $n > 65$  штем./мин.

Выбранные режимы прессования должны обеспечивать оптимальную высоту сжатого брикета (40–45 мм), которая определяется по формуле

$$H_2 = \frac{O_{\text{np}}}{6 \cdot 10^{-5} \cdot F_{\text{intrem}} \cdot \rho_{\text{fp}} \cdot n \cdot m}, \text{ cm},$$

где  $\rho_{\delta p}$  — объемная масса сжатого брикета, г/см³ (среднее значение составляет 1,3 г/см³),

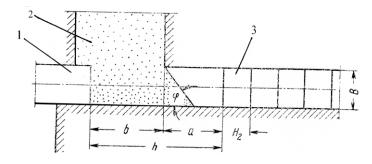



Рисунок 3.2 – Схема загрузки торфа в матричный канал штемпельного пресса:

1 — штемпель; 2 — сушонка; 3 — брикет; h — ход штемпеля;

a – длина захода штемпеля в матричный канал; B – ширина камеры прессования;  $H_2$  – высота сжатого брикета;

*b* – ширина загрузочной камеры

Таблица 3.11 – Зависимость скорости прессования от насыпной плотности сушонки

| Насыпная плотность         | Число штемпелеваний |
|----------------------------|---------------------|
| сушонки, кг/м <sup>3</sup> | в 1 минуту          |
| Менее 200                  | 50–60               |
| 200–250                    | 60–70               |
| 250–350                    | 70–80               |
| Свыше 350                  | 80–100              |

Если высота брикета будет больше оптимальной, то однородность брикетов уменьшится и, следовательно, снизится их механическая прочность.

Изменение высоты брикетов до 20 мм приводит к их значительному разрушению при погрузочно-разгрузочных операциях и доставке потребителю.

Толщина брикета изменяется в зависимости от скорости прессования, т. е. от числа штемпелеваний в минуту.

Количество устанавливаемых прессов

$$\Pi_{\text{прес}} = \frac{Q \cdot k_{\text{T}}}{Q_{\text{пр}} \cdot T \cdot k_{\text{бр}} \cdot k_{\text{скл}}}, \text{ шт.},$$

где Q-производительность завода, т/год;

 $k_{\rm r}$  = 1,1 — коэффициент, учитывающий резерв времени на замену матричного узла;

*T*− годовой фонд времени, ч;

 $k_{\rm 6p} = 0.99 - {\rm коэффициент}, учитывающий потери при брикетировании;$ 

 $k_{\text{скл}} = 0.99 - \text{коэффициент}$ , учитывающий потери при складировании и хранении.

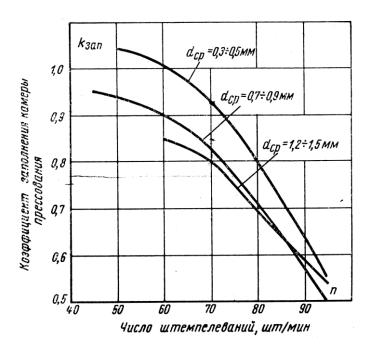



Рисунок 3.3 – Влияние скорости прессования n (штемпелеваний в 1 мин) на коэффициент заполнения камеры прессования  $k_{\text{зап}}$  для высушенного торфа с различным средним диаметром частиц  $d_{\text{ср}}$ 

13. Для повышения производительности брикетных прессов (при брикетировании торфа насыпной плотностью ниже 250–300 кг/м³) применяются подпрессователи непрерывного действия (таблица 3.12).

Таблица 3.12 — Техническая характеристика подпрессователя непрерывного действия ПВ-5

| Тип                                                 | Винтовой   |
|-----------------------------------------------------|------------|
| Производительность возрастает                       | До 50 %    |
| Рабочий орган                                       | Винт полый |
| Диаметр винта, мм                                   | 190        |
| Частота вращения рабочего органа, мин <sup>-1</sup> | 125–160    |
| Электродвигатель привода, мощность, кВт             | 5,5        |

Заводы мощностью 120 000–180 000 т/год должны иметь не менее одного резервного пресса. Длина лотков-кулерин принимается не менее 50 м.

14. Торфяные брикеты должны храниться в механизированных раздаточных бункерных или контейнерных складах, хорошо проветриваемых и обеспечивающих защиту брикетов от атмосферных осадков, грунтовых и поверхностных вод.

Объем складов рассчитывается для хранения 1-, 2-суточного запаса брикетов. Доставка брикетов потребителю осуществляется автомобильным и железнодорожным транспортом.

15. Качественная характеристика топливных брикетов из торфа. Согласно техническим условиям ТУ РБ 02999284.311—2000 «Брикеты топливные» брикеты из торфа изготавливаются следующих марок: БТ-6, БТ-7 и БТ-8 (таблица 3.13).

Таблица 3.13 – Качественная характеристика торфяных брикетов

| Показатели                                                                                                                                  | Марка |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|
|                                                                                                                                             | БТ-6  | БТ-7 | БТ-8 |
| Массовая доля общей влаги в рабочем состоянии топлива, %, не более                                                                          | 16    | 20   | 28   |
| Зольность <i>A</i> <sup>c</sup> , %, не более                                                                                               | 15    | 23   | 23   |
| Механическая прочность при испытании в барабане (остаток целых и частично разрушенных брикетов с размерами кусков более 25 мм), %, не менее | 95    | 94   | 93   |
| Массовая доля мелочи (куски размером менее 25 мм), %, не более                                                                              | 7     | 8    | 9    |
| Массовая доля частично разрушенных брикетов (куски размером более 25 мм), %, не более                                                       | 25    | 25   | 25   |

Размеры брикетов определяются конструкцией матричного канала применяемого штемпельного пресса и не регламентируются. Удельная активность радионуклидов цезия-137 в брикетах должна быть не более 1220 Бк/кг. Образец-эталон брикетов находится на ПРУП «Старобинский торфобрикетный завод».

#### Мероприятия по охране окружающей среды

В данном разделе необходимо рассмотреть основные источники загрязнения окружающей среды при производстве топливных брикетов из торфа. Следует определить меры, обеспечивающие охрану воздушного и водного бассейнов, а также необходимые санитарные условия на рабочих местах обслуживающего персонала в рассматриваемом в курсовой работе отделении брикетного завода.

Кроме того, следует обратить внимание на проявление брикетным заводом на региональном и местном уровне природоохранных функций (гидрологической, биологической, газорегулирующей, климатической и др.) торфяного месторождения как сырьевой базы.

#### Правила безопасности проведения работ

Производство топливных брикетов из фрезерного торфа относится к взрыво- и пожароопасным объектам. Взрываться может торфяная пыль, взвешенная в воздухе в сушильном, прессовом и других отделениях брикетного завода, а также в материалопроводах и пылеосадительных устройствах. Поэтому производственный процесс должен осуществляться со строгим соблюдением технологического процесса и правил технической эксплуатации оборудования, общих требований стандартов безопасности, включая требования по взрыво- и пожаробезопасности.

Следует обратить особое внимание на установку и работу систем обеспыливания и обестуманивания, контрольно-измерительной аппаратуры, сигнализирующей о создании аварийной обстановки, и работу предохранительных клапанов на случай взрыва.

Также здесь указывается перечень индивидуальных средств защиты на рабочих местах обслуживающего персонала в рассматриваемом в курсовой работе отделении завода.

#### Заключение

В данном разделе в краткой форме излагаются основные результаты курсовой работы. Отмечаются преимущества и недостатки принятых технологических решений и особенности работы основного технологического оборудования.

#### РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Булынко, М.Г. Технология торфобрикетного производства / М.Г. Булынко, Е.Е. Петровский. М.: Недра, 1968. 312 с.
- 2. Горфин, О.С. Оборудование торфоперерабатывающих предприятий / О.С. Горфин, Н.С. Синепольский. Калинин: Изд-во Калининского государственного университета, 1980. 82 с.
- 3. Горфин, О.С. Технология переработки торфа / О.С. Горфин, В.С. Зайцев. М.: Недра, 1986. 247 с.
- 4. Томсон, А.Э. Торф и продукты его переработки / А.Э. Томсон, Г.В. Наумова. Минск: Беларуская навука, 2009. 328 с.

#### Учебное излание

#### БЕРЕЗОВСКИЙ Николай Иванович РУХЛЯ Иван Емельянович БЕРЕЗОВСКИЙ Сергей Николаевич

#### ТЕХНОЛОГИЯ ДОБЫЧИ И ПЕРЕРАБОТКИ ТОРФА

Учебно-методическое пособие по выполнению курсовой работы для студентов специальности 1-36 13 01 «Технология и оборудование торфяного производства»

#### Редактор В.О. Кутас Компьютерная верстка А.Г. Занкевич

Подписано в печать 01.03.2012. Формат 60×84<sup>1</sup>/<sub>16</sub>. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 1,45. Уч.-изд. л. 1,14. Тираж 100. Заказ 1092.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013. Минск