Аннотация

Проанализированы исторические тренды развития систем централизованного теплоснабжения в Республике Беларусь за последние 25—30 лет, определены основные тенденции их совершенствования. Дан краткий обзор зарубежного опыта в сфере развития систем теплоснабжения. Приводится комплекс технических решений по модернизации энергетических объектов централизованного теплоснабжения на ближайшую перспективу.

ANNOTATION

The historical trends of district heating systems development in the Republic of Belarus for the past 25–30 years are analyzed and the main ways of their perfection are identified. A brief review of international experience in the development of district heating systems is shown. As a part of the short term goals the number of technical solutions for the district heating systems modernization are proposed.

Анализ состояния и основные тенденции развития систем централизованного теплоснабжения в Беларуси

В. А. Седнин, д. т. н., профессор, заведующий кафедрой «Промышленная теплоэнергетика и теплотехника», А. В. Седнин, к. т. н., доцент, заведующий Научно-исследовательским и инновационным центром автоматизированных систем управления в теплоэнергетике и промышленности (НИИЦ АСУ ТЭП), Белорусский национальный технический университет

Введение

Эффективность функционирования систем теплоснабжения прямо или косвенно интересует большую часть населения страны, по крайней мере, когда они видят счёт на оплату жилищно-коммунальных услуг. Для специалистов несомненный интерес должна представлять оценка состояния и перспективы развития систем теплоснабжения. Поэтому так важно в разрезе подготовки долгосрочных планов развития экономики Беларуси иметь стратегию совершенствования и развития системы теплоснабжения.

В статье основное внимание уделено системам централизованного теплоснабжения (СЦТ). Они превалируют в структуре теплоснабжения и являются одним из важнейших элементов энергетического комплекса республики. СЦТ города или промышленного центра представляет собой сложнейший технический комплекс с разнородным составом теплогенерирующих и теплопотребляющих установок

и соединяющих их многообразных схем тепловых сетей. Внутри элементов СЦТ одновременно протекают и тесно взаимодействуют различные физикохимические процессы (горение, течение жидкостей и газов, тепло- и массоперенос и др.). Сложность СЦТ компенсируется несомненными преимуществами, к которым относят [1, 2]: низкие удельные затраты топливно-энергетических ресурсов на выработку тепловой энергии, высокую производительность труда, хорошие экологические показатели. Исходя из анализа отечественного и зарубежного опыта эксплуатации СЦТ можно констатировать, что они далеко не исчерпали свой потенциал для совершенствования. Необходимость повышения экономической, энергетической и экологической эффективности систем теплоснабжения определяется мировыми тенденциями в энергетике и социально-экономической обстановкой в стране. Потенциальная возможность повышения комплексной эффективности вытекает из закономерностей развития техносферы и заключается в разработке и применении новых прогрессивных методических и технических решений на уровне совершенствования технологической функции и развития функций управления и планирования систем теплоснабжения. Для достижения указанной цели необходимо проведение теоретических и прикладных исследований в области оптимизации структурно-схемных

решений СЦТ и создание инновационных технологий теплоснабжения, новых образцов теплоэнергетического и теплоиспользующего оборудования, автоматизированных систем управления технологическими процессами (АСУ ТП). При этом следует опираться как на отечественные разработки, так и на опыт зарубежных стран, таких как Дания, Финляндия, Германия, Южная Корея и других, в которых за последние десятилетия эффективно развивались СЦТ и комбинированные централизованные системы тепло- и хладоснабжения.

Традиционно в структуре теплоснабжения страны выделяют две подотрасли, именуемые на профессиональном сленге «большой» и «малой» теплоэнергетикой. К первой относят объекты энергосистемы, ко второй — объекты промышленной и коммунальной энергетики. На практике часто пытаются их сопоставлять как по степени важности, так и по степени сложности. В действительности они предназначены для решения одних и тех же задач, и рассматриваемые в статье проблемы одинаково касаются обоих подотраслей.

Основные тенденции развития СЦТ в последние десятилетия

Отправной точкой для анализа были приняты тезисы последней Энергетической программы СССР, в основу которой были положены решения ноябрьского (1982) Пленума ЦК КПСС [3] и которая разрабатывалась на базе предварительных планов развития экономики Советского Союза до 2000 г. Основными направлениями развития теплоснабжения народного хозяйства и населения страны предусматривалось: расширение централизованного теплоснабжения на основе дальнейшего развития теплофикации и всемерной концентрации производства теплоты с целью прекращения роста, а в дальнейшем — сокращение числа мелких котельных с заменой их более эффективными автоматизированными теплоустановками повышенной мощности; максимально возможное использование ядерного горючего для централизованного теплоснабжения; освоение для нужд теплоснабжения нетрадиционных возобновляемых источников энергии (ВИЭ), вовлечение в оборот вторичных энергетических ресурсов [3]. На повестке дня в свете перспективы совершенствования СЦТ рассматривалась также необходимость решения ряда системных задач [1]: определения рациональной структуры источников теплоты (ИТ) в зависимости от формирования энергетического баланса в отдельных регионах страны; изучения динамики роста и развития СЦТ; оптимизации режимов использования ИТ разных типов; повышения надёжности теплоснабжения потребителей.

Сопоставляя современное состояние теплоснабжения в республике с перечисленными направлениями развития и совершенствования СЦТ, можно отметить следующее. По степени развития теплофикации Беларусь является одним из мировых лидеров (более 50 % тепловой энергии вырабатывается в рамках комбинированного производства электрической и тепловой энергии). Централизация производства теплоты в областных городах практически достигла своего предела. Атомная энергетика (атомные ТЭЦ и атомные источники теплоты) в области производства тепловой энергии не получила своего развития. Слабо используются в сфере теплоснабжения вторичные и нетрадиционные источники энергии. В то же время на ряде ТЭЦ внедрены парогазовые установки, многие промышленные и коммунальные котельные переведены в режим мини-ТЭЦ с использованием газопоршневых, паротурбинных и газотурбинных установок, в республике построены около двух десятков паросиловых электростанций на местных видах топлива, в том числе три с применением органического цикла Ренкина. Касаясь системных задач совершенствования СЦТ, можно смело утверждать, что их решению не уделялось должного внимания, развитие СЦТ осуществлялось без какого-либо научного обоснования, часто на волюнтаристских принципах.

Справедливости ради надо отметить, что в последние 15-20 лет развитию и совершенствованию теплоснабжения в республике уделялось пристальное внимание. Был принят ряд постановлений Совета Министров, разработана и принята, хоть и в урезанном виде, Концепция развития теплоснабжения в Республике Беларусь до 2020 года. Значительные средства были вложены в реновацию тепловых сетей, как наименее надёжного элемента СЦТ, в реконструкцию и модернизацию теплоисточников, тепловых пунктов и насосных станций. Учёт производства и потребления тепловой энергии реализован на базе современных приборов. Тем не менее эффективность реализации этих мероприятий в целом не имела прорывного характера, а степень обновления основных фондов предприятий теплоснабжения не достигала требуемого уровня.

Системные проблемы теплоснабжения

Начиная с середины 90-х годов прошлого столетия наблюдались многочисленные факты «ухода» промышленных предприятий от СЦТ, практически массовое строительство заводских котельных и, как следствие, на втором этапе начиная с 2000-х гг. строительство газопоршневых и газотурбинных мини-ТЭЦ. При этом экономическая обоснованность этих мероприятий в основном определялась недостатками тарифной политики и перекрёстным субсидированием, а не техническими или общегосударственными интересами. Одновременно происходила реструктуризация ведомственной принадлежности теплоисточников: большинство существующих с советских времён заводских котельных были переданы предприятиям двух ведомств: энергосистемы (ГПО «Белэнерго») и Минжилкомхоза. Последнему также передавались в большом количестве котельные в сельской местности и бывших военных городках.

В «малой» энергетике убыточность производства тепловой энергии и необходимость больших вложений в принимаемые котельные, а также порой необоснованные структурные реорганизации в жилищнокоммунальной сфере привели к ситуации, когда денег на дальнейшее совершенствование теплоснабжения у самих предприятий не оставалось. Модернизация объектов в последние 5-10 лет в основном идёт за счёт государственных программ или внешних заимствований. Гарантом возврата средств в конечном итоге также является государство. В «большой» энергетике было достаточно проблем по модернизации электрической части, поэтому модернизация систем теплоснабжения в основном производилась по остаточному принципу или при реализации программ использования местных видов топлива.

В создавшихся условиях, чтобы покрывать расходы на производство и поставку тепловой энергии, необходимо было увеличивать тарифы на электроэнергию, что в свою очередь повышало рентабельность собственных когенерационных энергоцентров. Ответной мерой стали ограничения на отпуск электроэнергии в электросети энергосистемы. Энергосистема упустила развитие тенденции создания миниТЭЦ и вместо того, чтобы подойти стратегически к решению проблемы, например определить места их строительства с позиции повышения надёжности электроснабжения и снижения потерь на транспорт, в большинстве случаев просто использовала для сдерживания развития локальных энергоисточников

административные ресурсы монополиста в области передачи электрической энергии.

К сожалению, в республике нет единого государственного или общественного (по опыту ряда зарубежных стран) органа, который бы рассматривал ситуацию в сфере теплоснабжения в целом и предлагал научно-обоснованную техническую политику. На наш взгляд, в рассматриваемый период теплоснабжение развивалось без системной научной проработки, а в большей степени по стихийно-рыночным законам.

Следует также отметить, что развитие СЦТ в современных условиях приводит к усилению как внутренних связей между их отдельными элементами, так и внешних связей СЦТ со смежными отраслями. Особенно это характерно в отношении электроэнергетики и энергомашиностроения. Так, одним из определяющих факторов развития СЦТ сегодня является ввод в эксплуатацию Белорусской АЭС (БелАЭС). Это предполагает более глубокое использование ТЭЦ в качестве маневренных источников и использование теплоснабжения как базы для потребления электроэнергии в провальной части графика электрических нагрузок. Проблема должна рассматриваться системно в рамках всей экономики. Однако времени и средств недостаточно, поэтому реализуются наиболее низкозатратные, но не самые экономически эффективные решения.

В части изменения взаимоотношений энергетики и энергомашиностроения следует отметить, что при модернизации объектов теплоснабжения применяют энергетическое оборудование большого числа фирмпроизводителей, часто далеко не самого высокого качества, что впоследствии усложняет и удорожает эксплуатацию, снижая эффективность функционирования СЦТ.

Структурная оптимизация систем теплоснабжения

Проблемы структурной и параметрической оптимизации являются актуальными как для проектирования новых, так и при модернизации существующих СЦТ. Как известно, в рамках структурной оптимизации осуществляется выбор рационального состава системы теплоснабжения и конфигурации тепловой сети, места размещения теплоисточников и их производительности [4]. Структурная сложность СЦТ [1, 2, 4–6] во многом определяется рассредоточенностью элементов производства, транспорта и потребления теплоты, многоконтурностью

и двухлинейностью схем тепловых сетей, наличием активных элементов (насосных и дроссельных станций), регулирующих устройств, а также неоднородностью и нелинейностью индивидуальных технических и экономических характеристик элементов.

На заре появления СЦТ, около ста лет назад, они формировались как «энергетические оазисы» внутри городской застройки. Как правило, они имели древовидную структуру с ИТ в корневой вершине. По мере развития централизованного теплоснабжения этих «оазисов» становилось все больше, они расширялись и объединялись. Далее, 25-30 лет назад, основным путём развития СЦТ больших городов стало формирование крупномасштабных систем с увеличением мощностей энергетических агрегатов и источников в целом [1]. Это было обусловлено рядом факторов: постоянным ростом потребности в тепловой энергии, необходимостью повышения экономической эффективности её генерации, требованиями охраны окружающей среды. Ввиду указанных исторических тенденций сегодня в большинстве городов республики сложились достаточно уникальные структуры СЦТ. В последние годы они развивались и изменялись как за счёт подключения новых потребителей, так и снижения тепловой нагрузки ряда старых потребителей (уменьшение потребления промышленными потребителями, повышение теплоизоляционных свойств ограждающих конструкций зданий и др.). Соответственно по этим и другим причинам изменялись объёмы и режимы теплопотребления во временном тренде суток и сезонов. При этом, несомненно, приобретало повышенную актуальность решение задач оперативного управления режимами работы СЦТ и повышения их адаптивности к внешним воздействиям [2]. Казалось бы, при таком сценарии задачи оптимизации структуры СЦТ как бы уходят на второй план, но в действительности они остаются первостепенными не только с позиций стратегического развития теплоснабжения, но и организации управления теплоснабжением.

Рассмотрим проблемы СЦТ, связанные с решением задач структурной модернизации. Большинство СЦТ республики требуют реконструкции, и от своевременности и обоснованности выбора технических решений в значительной мере зависит как надёжность и экономичность их работы после модернизации, так и эффективность капиталовложений в саму реконструкцию. В определённой степени можно утверждать, что устарели и перестали соответствовать современному уровню теплоснабжения

принципы построения и организации структуры самих тепловых сетей. При разработке проектов их модернизации не проводится обоснования аварийного резервирования, подключение дополнительной нагрузки допускается присоединением мелких потребителей непосредственно к магистралям, не уделяется должного внимания расчёту теплогидравлических режимов, поэтому в большинстве случаев СЦТ продолжают эксплуатироваться с завышенным расходом теплоносителя. Технические решения по оптимизации распределения потоков теплоносителя в тепловых сетях СЦТ и повышению их структурной надёжности ранее предлагались многими исследователями [1, 2, 4-6]. В частности, изменение древовидной схемы тепловой сети посредством устройства крупных автоматизированных тепловых подстанций в узлах разделения сетей на магистральные и распределительные, так называемых групповых тепловых подстанций (ГТП) [5]. Предложенная в [1] схема представляла собой общее распределительное кольцо, к которому подключаются все теплоисточники и от которого обеспечивается через крупные узлы регулирования (районные станции теплоснабжения) теплоснабжение теплопотребителей. При этом предусматривается резервирование тепловых сетей. В западных странах используется иная идеология построения тепловых сетей, которую можно назвать «сотовой». Городская тепловая сеть представляет собой «соты трубопроводов», объединённые в общую сеть таким образом, что параллельные ветви дублируют друг друга. Это позволяет обеспечивать теплоносителем практически любого потребителя по двум независимым теплопроводам. Но и там предпочтение отдаётся объединению нескольких ИТ, работающих на единую тепловую сеть. Примером может служить СЦТ г. Хельсинки, где отключение теплопотребителя разрешается не более чем на трое суток в год. Проблемным вопросом до сих пор остаётся количественная оценка эффективности затрат на повышение надёжности теплоснабжения, что не позволяет на стадии проектирования рассматривать более надёжные, но и более дорогие варианты.

В нашей стране до настоящего времени эти и иные решения по совершенствованию тепловых сетей не нашли своего применения. Как следствие, на практике не решены до конца вопросы согласования режимов функционирования теплоисточников и теплопотребителей. Известно, что для оптимального решения задачи распределения теплоносителя необходимо гармоничное сочетание центрального

(на теплоисточнике), группового (на ГТП, ЦТП, ИТП) и местного (у потребителя) регулирования режимов работы. В целом такая задача решается только с помощью полноценной АСУ ТП теплоснабжения [2, 7–9]. При этом становится возможной работа ИТ по динамическому (оптимальному) температурному графику [10].

Таким образом, для обеспечения требуемой надёжности функционирования СЦТ необходима организация тепловых сетей таким образом, чтобы в них присутствовали контуры, объединяющие гидравлически отдельные разветвляющиеся системы теплопроводов, то есть должен выполняться принцип взаимного резервирования магистральных теплотрасс. С целью оптимизации режимов эксплуатации (загрузки) генерирующего оборудования целесообразно объединение нескольких СЦТ для работы нескольких ИТ на общий график тепловой нагрузки. При этом могут использоваться варианты как с последовательными, так и параллельными схемами включения ИТ. Считается, что первый вид схем со структурой «ТЭЦ – пиковые котельные» позволяет размещать ТЭЦ вне города, повышать надёжность схемы СЦТ и снизить стоимость транзитных тепловых сетей. Однако сегодня все шире должны рассматриваться и использоваться варианты с параллельной схемой работы теплоисточников. Это определяется, в частности, и тем, что многие построенные ранее «загородные» ТЭЦ сегодня находятся в черте города. Например, в Минске строительство жилых массивов и инфраструктурных объектов вышло за границы кольцевой дороги. И в этом смысле, каким бы утопическим это ни казалось, со временем целесообразным будет строительство вдоль кольцевой дороги тепломагистрали, объединяющей Минские ТЭЦ-3, ТЭЦ-4 и котельную «Шабаны».

Ещё одна современная тенденция, которую нельзя не учитывать — развитие многоукладности теплофикационной (когенерационной) теплоэнергетики. В конце 80-х годов прошлого столетия высказывалось мнение, что период массового создания новых небольших СЦТ закончился, современный этап характеризуется непрерывным развитием и усложнением систем [1]. Однако начало 90-х годов ознаменовалось, как отмечалось выше, бурным ростом локальных СЦТ промышленного и гражданского назначения. Затем наступила «эра» мини-ТЭЦ. Таким образом, появилась «многоукладность» в энергетике со всеми её достоинствами и недостатками, преимуществами и проблемами.

Новые свойства, приобретённые СЦТ в процессе их развития, требуют и дальнейших исследований в области теплоснабжения и применения инновационных подходов к проектированию с использованием системной методологии и математического моделирования. В ходе предпроектных и проектных работ должен решаться комплекс задач синтеза рациональной структуры СЦТ и формирования программы развития и совершенствования системы тепоснабжения населённого пункта. При существующей практике рассмотрения и утверждения планов перспективного развития схем теплоснабжения городов отсутствует возможность их оптимизации с учётом отрасли и республики в целом. В настоящее время разработка планов схем теплоснабжения на государственном уровне поручена двум проектным институтам: «Белнипиэнергопром» — по городам с теплоисточниками от ГПО «Белэнерго» и «Белкоммунпроект» — по городам, теплоснабжение которых обеспечивается организациями Минжилкомхоза. Практика разработки схем теплоснабжения основана на сопоставлении ряда вариантов, определяемых на основе инженерного анализа. Эти варианты, как правило, отличаются структурой системы, видом и количеством теплоисточников, составом их оборудования, трассировкой и параметрами тепловых сетей, схемами присоединения абонентов и т. п. Сопоставление этих вариантов по экономическим критериям позволяет выбрать «приемлемый».

К сожалению, на практике локально-оптимальные проектные решения часто не соответствуют действительному оптимуму. Следует использовать современные математические подходы, в частности, методы сетевого моделирования для принятия оптимального решения по схемам теплоснабжения города или региона [11]. Также при разработке схем теплоснабжения населённых пунктов необходимо и целесообразно рассматривать не одноуровневую (объект), а двухуровневую (ТЭК-объект) или трёхуровневую (ТЭК-подотрасль-объект) математическую модель. Кроме того, в число вариантов для сравнения следует вводить вариант инвестирования теплопотребителей с целью снижения их тепловых нагрузок, потенциала требуемой теплоты и выравнивания теплопотребления. Здесь уместно ещё раз подчеркнуть, что в условиях развития когенерационных мощностей в промышленной и коммунальной энергетике и строительства БелАЭС важным аспектом становится учёт взаимодействия систем теплоснабжения с электроэнергетической системой. Не менее важным аспектом оптимизации развития систем теплоснабжения, как отмечалось выше, является учёт фактора надёжности, который в технико-экономических расчётах систем теплоснабжения может учитываться путём оценки в денежном эквиваленте предполагаемого ущерба от отказов оборудования. Если оценить ущерб в денежном эквиваленте невозможно, следует в модель вносить ограничения согласно нормативным значениям параметров надёжности, регламентирующим её минимально допустимый уровень. Имеются различные подходы к оценке нормируемых показателей надёжности, но с инженерной точки зрения основным показателем является минимально допустимая температура воздуха в отапливаемых помещениях.

Следовательно, развитие организационной и научно-методической базы для решения системных оптимизационных задач СЦТ на стадии предпроектных и проектных работ продолжает оставаться важной проблемной задачей.

Зарубежный опыт

В странах Северной Европы [12, 13] сегодня создаются СЦТ 4-го поколения. Проводимые там в последнее годы исследования подтвердили технические возможности применения технологий низкотемпературного теплоснабжения, расширения использования ВИЭ, снижения расхода теплоты на отопление зданий и потерь теплоты в тепловых сетях. Указанные направления в совокупности с соответствием элементов СЦТ концепции «умный город» и расширением взаимодействия в рамках её идеологии с системами электроснабжения и газоснабжения являются отличительными особенностями СЦТ 4-го поколения. Считается, чтобы обладать системным свойством устойчивости во времени и пространстве, они должны отвечать ряду требований.

Первое — организация возможности подачи низкотемпературной теплоты в контуры систем отопления и горячего водоснабжения (ГВС) новых и существующих зданий. Предполагается создание в ближайшем будущем систем, позволяющих использовать для отопления теплоноситель с температурой не более 50 °С прямой и около 20 °С обратной сетевой воды. Такие условия, в частности, могут быть созданы за счёт увеличения поверхности теплообмена радиаторов, применения теплообменников, встроенных в ограждающие конструкции (пол, стены и потолок), и воздушного отопления. В зданиях обязательным станет внедрение адаптивных

систем управления, применение которых на основе прогнозных данных по метеоусловиям поможет рассчитывать потребность в тепловой энергии для каждой комнаты. Данные системы управления позволят производить балансировку требуемой тепловой энергии в течение суток и понизить пиковые нагрузки. Предлагается минимизировать расстояния от теплообменника системы ГВС до конечного потребителя.

Второе — минимизация энергопотерь при транспорте теплоты. Планируется организация работы теплотрубопроводов систем теплоснабжения при средних значениях температуры сетевой воды в подающем трубопроводе 50 °C, в обратном — 20 °C, что позволит снизить градиент температуры между трубопроводами тепловых сетей и температурой грунта. Станет возможным уменьшение диаметров тепловых сетей за счёт внедрения функции ограничения тепловой мощности в пиковые периоды. Предполагается использование теплопроводов со сдвоенными теплопроводами в одной изоляции, когда подающая труба находится в центре, а обратная в точке равенства температур изоляции и обратной сетевой воды, что позволит уменьшить тепловые потери, а тем самым исключить потери тепловой энергии от обратного трубопровода. Само качество изоляции также предполагается улучшить за счёт применения специальных «теплопоглащающих» материалов.

Третье — развитие структурной функциональности СЦТ. Применение идеологии «умные тепловые сети» предполагает возможность их работы с большим количеством ИТ, которые включают в себя как централизованные источники большой мощности, так и малые территориально распределённые источники, в том числе индивидуальные. При этом возможно также использование теплоты низкопотенциальных источников, теплоты от мусороперерабатывающих заводов, сбросной теплоты промышленных производств и охлаждения коммерческих зданий, геотермальных источников, солнечных теплоисточников и теплоаккумуляторов с сезонным хранением теплоты. Уменьшение температуры воды в СЦТ позволит повысить эффективность комбинированных установок по производству теплоты и электроэнергии, а также применять тепловые насосы большой мощности и сезонные системы аккумулирования теплоты. Также предлагается создание закольцованных тепловых сетей для работы системы в периоды малого расхода.

Четвёртое — вхождение в состав интегральных интеллектуальных энергетических систем, включая системы централизованного хладоснабжения. Присоединение большого числа ВИЭ в существующие энергетические системы должно быть согласовано с остальными источниками. Одним из возможных вариантов является изменение режимов работы ТЭЦ, а также широкое применение теплонасосного оборудования и электрических котлов. Должны найти широкое применение различные технологии аккумуляции теплоты. Так, в Дании уже используются технологии регулирования режимов работы ТЭЦ при помощи аккумуляторов тепловой энергии с интеграцией в СЦТ теплонасосных станций большой мощности и привлечением ТЭЦ различной мощности к стабилизации режимов электросистемы, причём установки на базе двигателей внутреннего сгорания работают регуляторами для поддержания частоты в энергосистеме, могут включаться в работу на время до 30 секунд.

Пятое — СЦТ должны быть привлекательными с точки зрения стоимости энергии, а также возможности привлечения стратегического финансирования для будущего развития.

Основные задачи развития СЦТ

Таким образом, обращаясь к проблеме прогнозирования и планирования развития СЦТ, можно рассмотреть два подхода: стратегический и тактический.

В стратегическом разрезе следует исходить из методологии системных исследований [1], рассматривая развитие СЦТ во взаимосвязи с другими элементами энергетического комплекса (ЭК). Основные задачи, связанные с оптимизацией развития СЦТ, группируются на четырёх иерархических уровнях:

- топливно-энергетический комплекс страны (ТЭК);
- ⇒ электроэнергетическая система (ЭЭС);
- система теплоснабжения города или промышленного центра;
- источники теплоты с присоединёнными тепловыми сетями.

На первом уровне оптимизации масштаб развития централизованного теплоснабжения в стране и в отдельных крупных регионах должен быть увязан с вопросами развития ТЭК и определены границы их взаимного влияния. Большая часть задач на этом уровне должна решаться с перспективой на 20–30 лет. На втором уровне решаются задачи по определению генерирующих мощностей и режимов

эксплуатации СЦТ с учётом требований ЭЭС на перспективу 10-15 лет. На третьем уровне решаются задачи выбора стратегии оптимального развития СЦТ, включающие определение объёмов реконструкции или модернизации в части отдельных ИТ и топологии развития теплотрасс и режимных параметров тепловых сетей. При этом развитие системы теплоснабжения города (промышленного центра) оптимизируется на перспективу 10-15 лет. Четвёртый уровень включает оптимизацию отдельных элементов системы теплоснабжения при заданных связях СЦТ с ЭЭС и другими внешними системами. В рамках сложившихся СЦТ рассматриваются конкретные варианты модернизации ИТ и тепловых сетей. Вследствие существенного взаимного влияния результатов решений задач разных иерархических уровней необходимо обеспечить их итерационное взаимодействие.

Решение тактических задач (что более вероятно и реально в современных условиях ввиду ограничений финансирования развития и модернизации СЦТ) методологически следует рассматривать в плоскости модернизации существующих систем на региональном уровне с учётом интересов электроэнергетики. В этом случае в зависимости от размеров (мощности) СЦТ можно разделить на две основные группы:

- локальные системы с районными котельными или мини-ТЭЦ в качестве ИТ;
- распределённые системы с несколькими ИТ в виде ТЭЦ, пиковых и (или) районных котельных.

Первые характеризуются сравнительно небольшой протяжённостью тепловых сетей, построенных по древовидной структуре. Для них очередными задачами соверщенствования является повышение эффективности технологий выработки и транспорта тепловой энергии, что может решаться в рамках внедрения АСУ ТП. Оно в отношении локальных систем требует сравнительно небольших затрат, но позволяет значительно повысить эффективность функционирования СЦТ за счёт повышения качества управления и эксплуатации. При этом появляется возможность организации системы диагностики оборудования путём статистического анализа информации, поступающей от АСУ ТП, и имитационного моделирования для прогнозирования работы энергетического оборудования. Дальнейшее развитие локальных систем теплоснабжения следует рассматривать как их интеграцию в единую систему теплоснабжения города с организацией поперечных связей по транспорту теплоносителя и портов для приёма тепловой энергии от промышленных и коммунальных предприятий. Это позволит решать оптимизационные задачи по загрузке энергетического оборудования в разрезе всего города и максимально использовать возможности по утилизации побочных энергетических и материальных ресурсов.

Для больших распределённых систем с несколькими ИТ основной задачей является оптимизация структуры тепловой сети. Традиционным решением на постсоветском пространстве для таких СЦТ, как указывалось выше, остаётся также древовидная структура с ТЭЦ в корневой вершине, далее — магистральная сеть теплопроводов с разветвлениями к пиковым котельным, к которым подключались распределительные тепловые сети до ЦТП, с последующими квартальными сетями до ИТП потребителей. К распределительным сетям также подключались заводские теплопункты, если к ним не планировались паровые теплопроводы, и в ряде случаев могли присоединяться ответвления к ИТП с независимой схемой подключения. Для повышения надёжности теплоснабжения делались транспортные перемычки на случай аварий магистральных теплотрасс. Объединение в сеть нескольких ТЭЦ обычно не практиковалось. При такой структуре аварии на магистральных и распределительных теплопроводах могли приводить к отключению большого числа потребителей. Плановая замена участков теплопроводов или их модернизация в этом случае требует прокладки дополнительных трубопроводов по временной схеме. Как отмечалось, в своё время были разработаны технические решения по построению тепловых сетей с ГТП и их закольцовкой. Сегодня эту проблему на практике решают путём установки соответствующих перемычек между магистралями. Другим решением, которое было применено в ряде городов при модернизации СЦТ с целью повышения их надёжности, являлось дублирование теплоисточников путём размещения в конце зоны распределительных сетей дополнительных ИТ малой мощности. Это решение заманчиво с точки зрения появления БелАЭС. Оно позволяет устанавливать на дополнительных ИТ теплоаккумуляторы и электрокотлы и использовать их и для стабилизации графика потребления электроэнергии. Очевидно, что на практике целесообразно использовать оба указанных технических решения. При этом мы приходим к возможности и необходимости модернизации ЦТП и ИТП прямого подключения, делая

их «гибридными», то есть придавая им дополнительные опции: генерации тепловой энергии, включая электронагрев и трансформацию низкопотенциальной теплоты, аккумулирования тепловой энергии, утилизации побочных энергетических потоков. Более того, в этом случае появляются дополнительные возможности по снижению температуры обратной сетевой воды, поступающей на ИТ верхнего уровня. Между тем эта опция может остаться и за пиковыми котельными при оснащении их электрокотлами и тепловыми насосами. Очевидно, что в этом случае не менее, а даже более актуальным, чем в локальных сетях, является создание порталов для приёма тепловой энергии, получаемой в результате утилизации побочных потоков на промышленных предприятиях.

Параллельно с оптимизацией структуры тепловых сетей и размещением в ней дополнительных элементов должны решаться вопросы технической возможности оптимизации режимов работы ИТ, в первую очередь загрузки энергетических мощностей по критерию минимизации затрат в энергосистеме в целом, и оптимизации режимов транспорта теплоносителя. Эта задача не может эффективно решаться без достоверной информации, получаемой с нижнего уровня АСУ ТП, поэтому её внедрение в рамках всего комплекса СЦТ, как и в первом случае, является первоочередной задачей.

В заключение следует отметить, что ключевым моментом в современных условиях развития теплоснабжения остаётся пятый «идеологический» принцип систем теплоснабжения 4-го поколения: СЦТ должны быть привлекательны с точки зрения стоимости энергии, а также стратегического финансирования их развития. Для наших условий первый шаг — это однозначное признание тепловой энергии товаром, создание в стране условий действующим в этой области субъектам для взаимовыгодной торговли этим товаром и дальнейшего совершенствования систем теплоснабжения на базе научно-обоснованной технической политики. Тогда реально в ближайшее время получить в Беларуси СЦТ не только 4-го, но и 5-го поколения. ÐØM.

Литература

1. Попырин, Л. С. Исследование систем теплоснабжения // Л. С. Попырин, К. С. Светлов, Г. М. Беляева и др. — М.: Наука, 1989. — 215 с.

2. Седнин, В. А. Теория и практика создания автоматизированных систем управления теплоснабжением / В. А. Седнин. — Мн.: Изд-во БНТУ, 2005. — 192 с.

- 3. Основные положения энергетической программы СССР на длительную перспективу. М.: Политиздат, 1984. 32 с.
- 4. Громов, Н. К. Городские теплофикационные системы / Н. К. Громов. — М.: Энергия, 1974. — 256 с.
- 5. Ионин, А. А. Надёжность систем тепловых сетей / А. А. Ионин. М.: Стройиздат, 1989. 302 с.
- 6. Монахов, Г. В. Моделирование управления режимами тепловых сетей / Г. В. Монахов, Ю. А. Войтинская. М.: Энергоатомиздат, 1995. $224~\rm c.$
- 7. Седнин, В. А. Алгоритм решения задачи оптимизации структуры и состава системы централизованного теплоснабжения / Седнин А. В., Седнин В. А., Шкляр И. В., Корзников А. Д. // Наука и техника. 2013. № 6. С. 64—67.
- 8. Седнин, В. А. Внедрение АСУ ТП как основополагающий фактор повышения надёжности и эффективности систем теплоснабжения // Технология, оборудование, качество. Сб. матер. Белорусского промышленного форума 2007., Минск, 15–18 мая 2007 г. / Экспофорум. Мн., 2007. С. 121, 122.
- 9. Седнин, В. А. Оптимизация параметров температурного графика отпуска теплоты в теплофикационных системах /

- В. А. Седнин, А. В. Седнин, М. Λ Богданович // Изв. вузов. Энергетика. 2009. № 4. С. 55–61.
- 10. Седнин, В. А. Концепция создания автоматизированной системы управления технологическими процессами Минских тепловых сетей / В. А. Седнин, А. В. Седнин, Е. О. Воронов // Повышение эффективности энергетического оборудования: Материалы научно-практической конференции, в $2\,\mathrm{T}$. Т. 2. 2012. C. 481–500.
- 11. Седнин, В. А. Оптимизация параметров температурного графика отпуска теплоты в теплофикационных системах / В. А. Седнин, А. В. Седнин, М. Л. Богданович // Изв. вузов. Энергетика. 2009. № 4. С. 55–61.
- 12. H. Lund, 4th Generation District Heating (4GDH) Integrating smart thermal grids into future sustainable energy systems / S. Werner, R. Wiltshire, S. Svendsen, J. E. Thorsen, F. Hvelplund, B. V. Mathiesen // Energy 68. 2014. C. 1–11.
- 13. T. Nuytten, Flexebility of a combined heat and power system with thermal energy storage for district heating / B. Claessens, K. Paredis, J. Van Bael, D. Six // Applied Energy. 2013. C. 83-91.