Многокомпонентный полупроводниковый термоэлектрический холодильник

¹Сычик В. А., ¹Уласюк Н. Н., ²Глухманчук В. В., ³Шумило В. С. ¹Белорусский национальный технический университет ²НПО «Интеграл» ³ЗАО «Атлант»

Конструктивно термоэлектрический холодильник(ТЭХ) состоит из гетереперехода, включающего обедненную по-область из узкозононого полупроводника и обедненную область из широкозонного полупроводника. Обедненная n₀-область контактирует с n₁- полупроводниковой областью и сильнолегированным n_1^+ слоем, а обедненная p_0 область контактирует с широкозонной p_1 полупроводниковой областью и сильнолегированным p_1^+ слоем. На сильнолегированных n_1^+ и p_1^+ слоях размещены омические контакты, которые жестко связаны с внешними выводами п₁-область ТЭХ изготавливается из укозонного полупроводника, обладающего высокой подвижностью носителей, большим временем их жизни и возможностью методом легирования создавать в его объеме сильнолегированные слои, например из германия. Ширина n₁-области ТЭХ определяется минимумом потерь электронов, инжектируемых источником питания U_n , подключается коммутатором и составляет (0,5...0,8) Ld, где Ld- диффузионная длина пробега электронов в n_1 или p_1 - области. p_1 область ТЭХ формируется из широкозонного полупроводника с большим временем жизни носителей и также возможностью создавать методом легирования в его объеме сильнолегированные слои, например из арсенида галлия. Ширина p_1 области определяется полным поглощением в ней тепловой энергии электронов, экстрагируемых из n_1 в p_1 - область и, составляет (2...5) Ld. Сильнолегированный n_1^+ слой представляет часть n_1 области, который сформирован путем введения высокой концентрации донорной примеси $N_d \cong 10^{20} \text{ см}^{-3}$, обладает малым сопротивлением и обеспечивает омический контак. Узкозонная n_1 область легирована примесью с концентрацией примеси $N_{d1} \cong$ $10^{18} \dots 10^{19} \text{cm}^{-3}$, а широкозонная p_1 - область легирована акцепторной примесью.

Экспериментальный термоэлектрический холодильник при плотности прямого тока 1 A/cм² позволяет получать предельную температуру охлаждения минус 25°C, расчетная надежность безотказной работы устройства составляет 10^5 часов. Для прототипа эти параметры соответственно составляют минус 10 °C и $2\cdot10^4$ часов.