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PREFACE 

An algorithmic description of a solution of an applied, scientific or 

technical problem is given, for which it is necessary to obtain a high-

performance software implementation on a multiprocessor or multi-core 

system, or a hardware implementation on an FPGA or ASIC. How to 

perform the mapping of the source algorithm onto an efficient parallel 

implementation? How to discover, measure, extract and optimally im-

plement the hidden parallelism is the main objective of this book. This 

book develops a technology for analyzing, transforming, optimizing and 

mapping hard-to-parallel algorithms and programs to pipeline and net-

work implementations. The algorithm analysis is based on the profiling 

of the program in order to measure the computational complexity, the 

critical path and the potential parallelism on realistic input data. The 

transformation performs parallelism extraction from the program, pre-

serving the original functionality. The synthesis and optimization im-

proves the structure and parameters of computational pipelines and net-

work computing schedules.  

This book will be useful for scientific researchers, engineers, PhD 

students and undergraduates. It is mostly based on author’s publications 

written during more than 25 years period and presents state of the art in 

scientific direction under consideration. The author’s works have been 

published by such well known publishers as IEEE, Kluwer Academic 

Publishers, Springer and many others.  

My gratitude is large to my partners and friends Dr. Jean Mermet and 
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The author acknowledges the colleagues of computer and system 
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INTRODUCTION 

 

This book has a coherent logical thread, revealing the topic stated in 

the title. It outlines the models and methods of analysis, transformation 

and optimization of algorithms and programs for effective high-

performance parallel execution on multiprocessor systems. 

Firstly, we explore the metrics of algorithms and programs, providing 

the estimation of the hidden, but potentially retrievable and implementa-

ble dataflow parallelism. We consider three metrics, namely, computa-

tional complexity, critical path and the parallelization factor on the graph 

of program execution. This graph is formed dynamically during the exe-

cution of the program code on specific source data. These data reflect the 

most realistic conditions for the application of the algorithm, and not the 

conditions of the “worst case”, which is crucial for an objective and reli-

able assessment. In order to measure the values of metrics, we develop a 

model and method for instrumenting and extending the program code of 

an algorithm, create appropriate tools, and perform measurements on a 

number of important algorithms for processing video and audio infor-

mation, as well as on cryptographic algorithms. 

After the potential parallelism has been measured, and the expediency 

of paralleling the algorithm is justified, the program code transformation 

stage begins in order to extract the data flow. This book describes a set 

of rules for the transformation of various kinds of statements, control 

structures of the programming language and super positions of them, to 

the basic single-block flow model that is built on a single loop. One part 

of the control instructions is deleted, the other part is split. As a result, 

the data flow becomes extremely dominant in the presentation of algo-

rithm. The proposed method provides the extraction of a dataflow from 

difficultly parallelizable algorithms. 

The basic single-block flow model makes operators less dependent on 

one another and freer with respect to the permutation. However, it makes 

it difficult to analyze the transformed code with respect to identifying 

mutually exclusive branches, compared to the source code. The analysis 

method proposed in the book uses the theory of Boolean functions and 

formal logic. The search for mutually exclusive operators that are under 

conditional  if-then instructions is equivalent to checking the orthogonal-

ity of Boolean conditional variables, which in turn is equivalent to 
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checking the tautology of Boolean expressions. Analysis of algorithms 

with feedback in the control flow due to presence of loop statements is 

performed by the method of mathematical induction. 

The basic single-block flow model of an algorithm is an efficient 

source of synthesis and optimization of computational pipelines. It is a 

source of generating a series of relations and graphs on sets of operators 

and variables. The graph of operator conflicts that arise when operators 

are assigned to pipeline stages, allows us to solve the problem of mini-

mizing the number of stages for a given constraint on the operation time 

of one pipeline stage. Another important parameter is the size of the 

buffers used to push data through the pipeline. The total size of the buff-

ers should be minimized. Two algorithms optimize the pipeline: accurate 

and heuristic. The exact algorithm is capable of finding the global opti-

mum for a small-size pipeline. The heuristic algorithm is capable of find-

ing a near-optimal solution for a large-size pipeline. The developed 

software has allowed to synthesize and optimize pipelines used in practi-

cally significant applied areas. Experiments performed on large algo-

rithmic descriptions taken from real practice and generated by random 

number generators showed that the proposed heuristic pipeline optimiza-

tion algorithm yields significantly better results than such algorithms like 

ASAP and ALAP. 

The quality of the optimization results obtained by the heuristic algo-

rithm substantially depends on the composition of the heuristics and the 

weight of each of them in the integrated heuristic, which is used to select 

the preferred solution when searching for the optimal parallel implemen-

tation of the algorithm. The problem of setting up heuristics for a specif-

ic paralleling problem and a specific paralleling algorithm is solved in 

this book by using a genetic algorithm. We construct chromosomes, a 

fitness function, a generation and population of chromosomes, selection, 

and crossover and mutation genetic operations over chromosomes to de-

termine the significance of each heuristic in the paralleling algorithm. 

The use of the genetic algorithm is illustrated by the example of a heuris-

tic algorithm for optimizing computational pipelines. Experiments have 

shown that the genetic algorithm can significantly improve the quality of 

synthesized pipelines. 

The basic single-block flow model of the algorithm is a source of 

synthesis and optimization of network computing schedules and network 
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algorithms. We give a definition of a network schedule, describes a 

method of estimating the execution time and implementation cost of the 

schedule over the cliques of the graph of sequential execution of opera-

tors and over the cliques of the graph of parallel execution of operators. 

Further, we formulates and solve the problem of the existence of a net-

work schedule for a given level of parallelism. The schedule is optimized 

on the minimum of execution time, or on the minimum of consumed 

computing resources. The book describes an instrumental system that 

supports a graphs-description language, allows to interactively create 

network algorithm graph-descriptions, performs the simulation of the 

graph-descriptions, and optimizes the network schedules.  

All models and methods of analysis, transformation and optimization 

of algorithms for parallel efficient execution are illustrated with a num-

ber of examples. The developed software tools are applied to several 

practically significant hardware and software applications. In particular, 

they are applied to two-dimensional WAVELET codec, RSAREF cryp-

tographic toolkit, MPEG-4 video codec, Bayer filter, 88FDCT, and 

middle-size and large-size random designs. 
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1. EVALUATION OF COMPUTATIONAL COMPLEXITY, 

CRITICAL PATH AND PARALLELIZATION POTENTIAL 

OF ALGORITHMS 

 

1.1. Metrics of algorithms 

 

This chapter presents metrics for evaluating the computational com-

plexity, critical path and parallelization potential of algorithms that are 

represented and executed as a computer program. The model metrics aim 

at the estimation and increase of the upper bound of the algorithm execu-

tion speed on a parallel computing platform. They are particularly tai-

lored for application to network, multimedia, cryptographic, scientific 

and other complex algorithms. 

 

1.1.1. Computational complexity of algorithm 

 

The computational complexity theory [31] classifies computational 

problems according to their difficulty, and relating the complexity clas-

ses to each other. A computational problem is understood to be a task 

that is in principle amenable to being solved by an algorithm, and there-

fore may be solved by a computer. The theory introduces mathematical 

models of computation to study the computational problems and quanti-

fying their computational complexity, i.e., the amount of resources need-

ed to solve them, such as time and storage.  

The analysis of computational complexity of an algorithm aims at an-

alyzing the amount of resources needed by a particular algorithm. Usual-

ly, this involves determining a function that relates the length of an algo-

rithm's input to the number of steps the algorithm takes, or the number of 

storage locations it uses. An algorithm is said to be efficient when this 

function's values grow slowly compared to a growth in the size of the 

input. Different inputs of the same length may cause the algorithm to 

have different behavior. Best, worst and average case trends are often of 

practical interest. The function describing the performance of an algo-

rithm is usually an upper bound, which is determined from the worst 

case inputs to the algorithm. 

The term analysis of algorithms was introduced by Donald Knuth 

[32-34]. Algorithm analysis provides theoretical estimates for the re-

https://en.wikipedia.org/wiki/Models_of_computation
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Donald_Knuth
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sources needed by any algorithm which solves a given computational 

problem. These estimates provide an insight into reasonable directions of 

search for efficient algorithms. 

The theoretical analysis of algorithms determines the complexity 

function for arbitrarily large input, and uses big O notation (big-omega 

notation) and Big-theta notation. Asymptotic estimates are preferable 

because different implementations of the same algorithm may differ in 

efficiency. Exact (not asymptotic) measures of efficiency can sometimes 

be computed but they usually require certain assumptions concerning the 

particular implementation of the algorithm, called model of computation. 

Nowadays, processing and compression algorithms, communication 

protocols and multimedia systems have reached an extremely high level 

of sophistication. Architectural implementation choices based on design-

er feeling or intuition without objective measures and verifications be-

come extremely difficult or impossible tasks. 

The increasing complexity of the algorithms has lead to the need of 

specifications and more intensive validations of such system descriptions 

by means of C/C++ software implementations. These implementations 

are often huge and virtually impossible to be analyzed and manipulated 

without the aid of automated tools and appropriate methodologies. In 

many cases the understanding of the algorithms and the evaluation of 

their complexity and parallelization potential, are fundamental steps for 

correct architectural implementation choices.  

Another important issue is that the interest in the network, multime-

dia, cryptographic and other fields is restricted to evaluations and 

measures under real input conditions, and not through strict worst case 

analysis that would lead to consider pathological cases far from the in-

terest of real efficient implementation solutions.  

It is also desirable to understand and measure the algorithm com-

plexity and the parallelization potential at the highest possible algorith-

mic level. Such understanding at the very early stage is fundamental in 

order to be able to take meaningful and efficient partitioning decisions 

and bring them to actual efficient parallel implementations. 

 

1.1.2. Critical path analysis problem 

 

The problem of identifying one of the longest paths in a circuit or in a  

https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big-theta_notation
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Model_of_computation
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program is called a critical path problem [41]. The critical path analysis 

is an efficient mechanism used at several levels of system design, includ-

ing circuit-, logic-, architecture-, algorithmic-, and system-levels. At sys-

tem level, the process of hardware/software partitioning is a complex 

optimization problem [21]. The final solution depends on a variety of 

design constraints/goals like performance, power consumption, imple-

mentation cost. The critical path analysis can be used for the detection of 

more efficient hardware/software partitions and their implementation 

parameters. 

At circuit level, the length of critical path plays a key role in setting 

the clock cycle time and improving the architecture performance [41]. 

The critical path length is computed as the longest signal propagation 

delay in the circuit. In [41] the speed up of the critical path computation 

is achieved by means of parallel processing. 

In designing VLSI or systems on chips architectures a complex com-

putational task is represented as a directed task graph. The concept of 

critical path on the graph is used in [8] for solving the optimal buffer 

assignment problem by means of formulation of integer linear program-

ming problem and decomposing the graph into a number of sub-graphs. 

In high-level synthesis [43], the static data flow graph model is wide-

ly used for solving such tasks as scheduling, allocation and binding. Dur-

ing scheduling, the achievable iteration period is limited by the critical 

path time on the graphs. Some transformations are proposed in [43] on 

the static graphs in order to reduce the critical path time. 

The idea described in [91] is to insert parallelism analysis code into 

the sequential simulation program. The execution of a discrete event 

simulation follows causality constraints, and the relationships between 

the events can be described by an event precedence graph. When the 

modified sequential program is executed, the time complexity of the par-

allel simulation is computed. 

In [5] the critical path analysis is presented as a method for detailed 

understanding of when and how delays are introduced in data transfers in 

the Internet. By constructing and profiling the critical path, it is possible 

to determine what fraction of the total transfer latency is due to packet 

propagation, delays at the server and at the client, network variation etc. 

In message passing and shared-memory parallel programs [22], 

communication and synchronization events result in multiple paths 
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through a program’s execution. The critical path of the program is simp-

ly defined as the longest time-weighted sequence of events from the start 

of the program to its termination. The parallel computations are de-

scribed by the program activity graph. The critical path of a parallel pro-

gram is the longest path through the graph. 

The critical path profiling is a metrics explicitly developed for paral-

lel programs [22] and proved to be useful for several optimization goals. 

The critical path profile is a list of procedures and the time each proce-

dure contributed to the length of the critical path. Critical path profiling 

is a way to identify the component in a parallel program that limits its 

performance. It is an effective metric for tuning parallel programs and is 

especially useful during the early stages of tuning a parallel program 

when load imbalance is a significant bottleneck. It also helps to find out, 

which components should be prioritized to terminate the program in 

time. Where an operation has to be completed on time, critical path anal-

ysis helps us to focus on the essential activities to which attention and 

resources should be devoted. Work [22] describes a runtime non-trace-

based algorithm to compute the critical path profile of the execution of 

message passing and shared-memory parallel programs. This work also 

presents an online algorithm to compute a variant of critical path, called 

critical path zeroing, which measures the reduction in application’s exe-

cution time after the elimination of a selected procedure. 

The critical path analysis also gives an effective basis for the schedul-

ing of computations. On multiprocessor system, task scheduling is im-

portant to achieve good performance. The work presented in [36] pro-

poses a task scheduling algorithm that allocates tasks followed by cor-

recting the critical path. The technique described in [38] schedules non-

cyclic non-branching task graphs, analyzing dynamically the critical 

paths in current schedule. Papers [61, 71] define the net schedule concur-

rency level with a set of pairs of operations to be executed in parallel. 

The techniques based on the minimization of critical path length that is 

estimated as the maximum clique weight of the sequential and parallel 

operator graphs constitute the most efficient approach to the generation 

of concurrent schedules. 
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1.1.3. Parallelization potential of algorithm 

 

The algorithmic complexity and parallelization potential that is hid-

den in an algorithm does not depend on the type of underlying hardware 

architecture and compiler technology which are used for the complexity 

evaluation. It depends on the algorithm itself and on input data that has 

to be processed to output data. This book focuses on the methodology for 

the measure of the critical path as evaluation of the parallelization poten-

tial of algorithms / architectures that are described /modeled using a high 

level programming or hardware description language. Despite the ap-

proach could in principle be applied to any programming language, the 

implementation using an automatic instrumentation stage presented here 

has been studied and developed for C language. 

 

1.2.  Methodology of evaluating algorithm critical path  

 

This chapter presents a methodology for evaluating the critical path 

on the Data Flow Execution Graph (DFEG) of algorithms specified as C 

programs. It proposes an efficient dynamic critical path evaluation ap-

proach that generates dynamically a data flow execution graph. Such an 

approach includes two key stages: (1) the instrumentation of the C code 

and mapping it into a C++ code version, (2) the execution of the C++ 

code under real input data and dynamically evaluating the actual critical 

path. The methodology and tools of analyzing algorithms / programs aim 

at the estimation and increase of the upper bound of the execution speed 

and parallelization potential of algorithms. The methodology is particu-

larly tailored for application to multimedia, cryptographic and other 

complex algorithms. Critical path analysis and the subsequent algorith-

mic development stage is a fundamental methodological preliminary step 

for the efficient definition of architectures when the objective is the im-

plementation of the multimedia algorithms on parallel homogeneous and 

heterogeneous platforms. 

Summarizing the previous results, we can conclude that the majority 

of already developed methodologies and tools aim at the critical path 

profiling for tuning existing parallel programs executed on basic ma-

chines (Fig. 1a). In this paper, the objective is to propose a critical path 

model metrics that can be obtained using automatic evaluation tools such 
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as the one described in [75, 83] in order to be able to find out in which 

degree a given algorithm described in the C language satisfies the paral-

lel implementation conditions (Fig. 1b). Analyzing the measures of the 

critical path obtained from simulation results using an automatic instru-

mentation tool, the most promising algorithms, from the parallelization 

point of view, can be selected among many alternatives. Moreover, the 

equivalent transformation of algorithms reducing the critical path and 

increasing the possible acceleration of the future parallel architecture can 

be performed. 

The following principles constitute a basis for the methodology of the 

critical path evaluation: 

1. The critical path is defined on the C-code’s data flow execution 

without taking into account the true control flow; 

2. The critical path length and the system parallelization potential are 

defined in terms of the complexity of C language basic operations 

(including read and write operations). The parameters of the ma-

chine executing the instrumented C-code during evaluating the 

critical path are not taken into account 

3. In the definition of the critical path, the Data Flow Execution 

Graph results from the partial computation of the C-code using 

true input data. Therefore, such Data Flow Execution Graph is 

used for the critical path definition instead of the traditional static 

Data Flow Graph. 

 

 

b) a) 
Parallel code 

Critical path 

profiling 

Critical path 
length and crit ical 
path profile (basic 

machine) 

Sequent ial code 

Critical path 

evaluation 

Critical path 
length and 

parallelization 
potential (future 

architecture) 

 
Figure 1.1. Critical path profiling (a) of parallel code on event graphs versus critical path 

evaluation (b) of sequential code on data dependences graphs 



 

19 

 

 

1.2.1. Data Flow Execution Graph 

 

The DFEG is represented as a finite non-cyclic directed weighted 

graph constructed on the two types of node. The first type includes 

name-, address-, and scalar value-nodes.  The second type includes oper-

ator-nodes. The name- and address-nodes are represented as  and the 

value-nodes are represented as . The operator-nodes are denoted 

using the usual C-language notation: =, [], ++, --, +, *, %, ==, /=,<, >, 

+=, /=, read (r), write (w) and others. The graph nodes may be connected 

by two types of arc: the data dependence arc denoted   and the condi-

tional dependence arc denoted  . The data dependence arc connects 

input names, addresses and values with an operator and connects an op-

erator with its output value or address. The conditional dependence arc 

connects a test value with an operator or value covered by a conditional 

instruction. A graph node without incoming arcs is called an initial node 

and a graph node without outgoing arcs is called a final node. A DFEG 

fragment for if (c) d*=2; C-code is shown in Fig. 1.2. It contains four 

value-nodes, one operator-node, three data and one conditional depend-

ence arcs. 

An example C-code for recurrent computations is presented in Fig. 

1.3. The static DFG for the code is shown in Fig. 1.4. The corresponding 

dynamic DFEG for the first iteration of the loop is shown in Fig. 1.5. 

The array components are treated as separate scalar elements. The DFEG 

includes all types of name-, address-, and value-nodes as well as the var-

ious operator-nodes (deref is an implicit dereference operator). 

 

 

 

c d 2 

*= 

d 

 
Figure 1.2. Example DFEG fragment for if (c) d*=2; C-code 
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#define L 10 

void main () { 

    float X[L] = {0.6F,0.1F,0.9F,0.3F,0.8F,0.5F,0.7F,0.2F,0.4F,0.7F}; 
    float Y[L] = {0.3F,0.8F,0.4F,0.2F,0.1F,0.9F,0.5F,0.7F,0.1F,0.6F}; 

    float Z[L];    Z[0] = 0.5F; 

    for ( int i=1;  i < L;  i++)    { int  i1 = i - 1; 
        float& Z0=Z[i1];    float& X0=X[i1];    float& Y0=Y[i1]; 

        float& Z1=Z[i];      float& X1=X[i];      float& Y1=Y[i]; 

        if ( (Z0+X0*0.7F+Y0*0.3F+0.5F) < ((X1/X0)*0.1F+(Y1/Y0)*0.9F) ) 
              Z1=X0*0.4F-Y0*0.3F+X1*0.2F-Y1*0.1F+Z0;     else 

              Z1=X0*0.1F-Y0*0.2F+X1*0.3F-Y1*0.4F+Z0; 

    } 
} 

Figure 1.3. An example C-code for recurrent computations 

 

 

 

1.2.2 Computational complexity of data flow execution graph 

 

The complexity of static DFG is traditionally evaluated as a sum of 

node (in particular operator-node) weights. If we assume that the weight 

of each operator-node equals 1, then the static complexity of the DFG 

presented in Fig. 1.4 equals 81. It is obvious this is the complexity of the 

algorithm description rather than the computational complexity of the 

algorithm. 

The computational complexity of the algorithm can be evaluated on 

DFEG. The DFEG is weighted with the node complexities. All the com-

plexities are accumulated at the operator-nodes and represent each C-

operator by a fragment in the DFEG as shown in Fig. 1.6. A read opera-

tor is associated with each incoming arc of the operator-node and a write 

operator is associated with its outgoing arc. The complexity of the frag-

ment in Fig. 1.6 is equal to 4 basic operators. 

Similarly, assume that each basic operator complexity be equal to 1. 

Table 1.1 represents the C-language operator complexities. When the 

basic operator complexities are different, the table can be easily modified 

to map the critical path length on any target architecture. 

The results of the complexity evaluation of the algorithm DFEG 

fragment shown in Fig. 1.5 are reported in Table 1.2. The overall com-

plexity is of 97 basic operators. The implicit dereference operator com-

plexity is assumed here to be equal to 0. 
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Figure 1.4. The static DFG for the C-code shown in Fig. 1.3. The algorithm description 

complexity equals 81 operator-nodes. The static critical path is shown in bold.  

The critical path length equals 14 operator-nodes 
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Figure 1.5. The DFEG fragment for C-code shown in Fig. 1.3. The nodes generated  

during first iteration of the loop are presented. The critical path is in bold.  

The computational complexity of C-code is estimated through the number of nodes        

in DFEG. These are name-, value-, and operator-nodes. The data dependences  

are represented by lines and the conditional dependences are represented by dashed lines 
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1.2.3 Critical path on data flow execution graph 

 

In literature [43, 52], the concept of static critical path is defined on 

DFG as a simple critical path and a loop critical path. The objective is to 

minimize the iteration period during scheduling and resource allocation 

in high-level VLSI synthesis by means of unfolding, retiming, and pipe-

lining transformations. 

The essential drawback of this concept is that the minimum execution 

time and computational complexity of the overall algorithm cannot be 

estimated and exploited. 
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Figure 1.6. Evaluation of the complexity of a%=b; C-code 

 

 

 

 

Table 1.1 

Complexity and critical path length of C language operators 
Operation Operator Complexity Critical path 

Assignment = 1 1 

Reference & 2 2 

Dereference * 2 2 

Arithmetic +, -, *, /, % 3 2 

Arithmetic-

assignment 

+=, -=, *=, /=, %= 4 3 

Subscript [] 3 2 

Increment (dec-

rement) 

++, -- 3 3 

Unary minus - 2 2 

and others    
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Table 1.2 

Evaluation of the complexity of graph shown in Fig. 1.5 
Operator Operator complexity Number of operators Total complexity 

= 1 7 7 

[] 3 8 24 

< 3 2 6 

++ 3 1 3 

* 3 8 24 

/ 3 2 6 

 3 3 9 

+ 3 6 18 

    = 97 

 

 

The critical path on the DFEG is defined as a sequence of the graph 

nodes with the maximal sum of weights connecting an initial node with a 

final node. The internal critical path length on the graph fragment shown 

in Fig. 1.7 equals 3 because two read operations are executed in parallel. 

Similarly, Table 1.1 represents internal critical path lengths of the C-

language operators. 

 

 

Critical 
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Figure 1.7. Evaluation of the critical path on a%=b; C-code 

 

 

In Fig. 1.5, address- and value-nodes are weighted with external criti-

cal path lengths. The critical path on the DFEG for the first iteration of 

the loop is shown in bold.  

The critical path length equals 28. The maximum path length between 

Z[0] and Z[1] value-nodes equals 19. The nodes describe data depend-



 

25 

 

 

ences between neighbor iterations of the loop and influence of the over-

all critical path length on the C-code that allows several iterations of the 

loop. It should be mentioned that the portion of the overall critical path 

in the DFEG fragment is not the same as shown in bold. 

 

1.2.4 Parallelization potential and feasible acceleration 

 

The C-code computational complexity together with the critical path 

length in DFEG defines the parallelization potential of the algorithm: 

 

Parallelization_Potential = Complexity / Critical_Path_Length. 

 

The algorithm parallelization potential aims at searching for an effi-

cient parallel implementation of the C-code. It describes the possible ac-

celeration that can be achieved due to a parallel implementation of the 

algorithm instead of the sequential implementation, but it does not de-

scribe the way of construction of such a parallel architecture. Various 

parallel implementations are possible for the same C-code. The accelera-

tion due to parallelization depends on input data. Different input data 

imply different possible acceleration of the C-code. The parallelization 

potential is an upper bound for a non-pipelined architecture. Intermediate 

parallelization can be considered depending on the constraints on com-

puting resources. 

The estimated acceleration can be used in two ways: 

 For creating a parallel version of the algorithm 

 For reducing the C-code complexity and its critical path or devel-

oping a better C-code (algorithm) 

The parallelization potential estimates the degree of possible reduc-

tion of the execution time due to parallelization of the overall computa-

tions associated with the given C-code and input data. Note that the defi-

nition of parallelization potential becomes illegal in case the description 

of complexity and critical path on static DFG such as defined in [43, 52] 

is used: 

 The static DFG in [43, 52] is a very specific model not capable of 

representing most of algorithm descriptions in C-codes, assuming 

in particular there are no mutually exclusive branches on DFG 

 The description complexity of DFG can be a basis for the estima-
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tion of the algorithm computational complexity in specific non 

numerous applications 

 The static critical path time represents the iteration period and is 

not capable of evaluating and reducing the overall execution time 

of algorithms in the general case. 

For the C-code shown in Fig. 1.3 and for the DFEG’s fragment pre-

sented in Fig. 1.5, the algorithm complexity for the first iteration is equal 

to 97 and the critical path length is equal to 28. Therefore, the parallel-

ization potential of the C-code portion is equal to 3.5. 

 

 

1.3 Evaluation of computational complexity and critical path       

on data flow execution graph 

 

1.3.1 Explicit evaluation of critical path  

 

One approach to evaluating the critical path length consists in the pre-

liminary generation of the DFEG by means of performing partial compu-

tations on the C-code’s DFG (Fig. 1.8) under certain meaningful input 

data. The partially computed flow graph finally contains the operators 

associated with the scalar operands (values, addresses and variables) and 

does not contain elements associated with the true control structures. All 

scalar operands and operators remain in the DFEG. 

Given the complexity and internal critical path length of each opera-

tor-node in the DFEG, we can evaluate the external critical path for each 

address-, value- and operator-node in DFEG using the following simple 

recursive technique: 

1. If val is an initial name-, address- or value-node then its external 

critical path length cpl(val)=0. 

2. If val is a value- or address-node and op_1,…,op_r are operator-

predecessors of val (Fig. 1.9b), then its critical path length cpl(val) 

= max(cpl(op_1),…, cpl(op_r)). 

3. If op is an operator-node and val_1,…,val_k are value-address-

predecessors of op (Fig. 1.9a), then the operator critical path 

length is cpl(op) = cplint(op)+ max(cpl(val_1),…,cpl(val_k)), 

where cplint(op) is the op operator’s internal critical path length. 
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Figure 1.8. Critical path evaluation by means of explicit generation of DFEG 
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Figure 1.9. The graph fragment (a) for evaluating the critical path for an operator  

and the graph fragment (b) for evaluating the critical path for a value (address) 

 

The technique itself is very efficient, although it cannot be practically 

used. Its drawback is that the DFEG can result to a large graph that is 
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difficult to handle. Fig. 1.5 illustrates the evaluation of critical path on 

the explicitly generated DFEG. The evaluation procedure starts at the 

initial nodes and step by step using the above listed rules computes the 

external critical path length for each address- and value-node. The criti-

cal path for the Z[1] value-node is the overall critical path on this DFEG. 

 

1.3.2 Dynamic evaluation of critical path 

 

Since the number of nodes in the DFEG is equal to the number of op-

eration calls during the program’s execution, explicitly building the 

graph is not practical for long running programs. One way to overcome 

this limitation is to develop a technique that does not require building the 

graph. Such a technique is based on the flow shown in Fig. 1.10. Firstly, 

the C-code is instrumented by overloading all explicit and implicit opera-

tors [83] and is transformed into an equivalent C++-code, in terms of the 

operators applied to the input data. Secondly, the C++-code is executed 

under the given input data, computing output data and evaluating the 

complexity, critical path and parallelization potential of the algorithm. 

In the C++-code, an additional cpl variable is associated with each ac-

tual scalar var variable (a separate variable, a scalar element of an array, 

a scalar element of a structure and so on) of the C-code (Fig. 1.11).  

The execution of a C-code operation also results in computing a new 

value of the associated variable. The cpl variable describes the external 

critical path length for the main var variable. The computation of cpl is 

coupled with the computation of var. The performance of op operator 

results in computing the value of var, re-computing the algorithm com-

plexity, and computing the cpl for var. 

 

 

1.4 Tool for estimation of algorithm parallelization potential  

 

1.4.1 Instrumenting and mapping the C-code onto a C++-code  

 

The dynamic evaluation of the critical path as described in the previ-

ous section is useful if the program can be appropriately instrumented 

and mapped using automatic tools into an equivalent version of the code, 

thus avoiding annoying and resource consuming code rewriting.  
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Figure 1.10. Dynamic evaluation of the critical path by means of instrumenting  

and executing the C-code 
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Figure 1.11. General scheme for the dynamic evaluation of the critical path 



 

30 

 

 

This section provides an example of how such mapping can be im-

plemented. More details of one possible implementation of such non 

trivial mapping can be also found in [83]. During the mapping of the 

source C-code into a C++-code version, the following parts of the C-

code have to be instrumented to evaluate the parallelization potential of 

the algorithm: 

 Data types and data objects 

 Operators 

 Control structures 

 Functions. 

So as to correctly accomplish the evaluation, global and local addi-

tional variables and objects can be used in the instrumented C++-code. 

Global variable declarations can be as follows: 

static unsigned long Algorithm_Complexity = 0; 

static unsigned long Critical_Path_Length = 0; 

static Critical_Path_Stack   _CPS_; 

where Critical_Path_Stack is a class implementing the mechanism of 

processing of conditional dependences associated with the nested control 

structures. An additional class object and its internal data elements can 

be associated with each scalar variable of the C-program. The C++-code 

in Fig. 1.12 will be used in this Section to illustrate and explain the key 

solutions taken during mapping the C-code into an equivalent C++-code. 

The basic types of the C language such as char, int, float, double, 

signed char, unsigned char, short int, long int, unsigned short int, and 

others can be mapped into the classes with similar names CHAR, INT, 

FLOAT, DOUBLE, SIGNEDCHAR, UNSIGNEDCHAR, SHORTINT, 

LONGINT, UNSIGNED SHORTINT and others in the C++ language. 

The structure of the INT class in C++ for the int basic type of C is shown 

in Fig. 1.13. The val data element of the int type represents a variable in 

the source C-code. The cpath data element of the unsigned long (double) 

type describes the external critical path length for the val variable.  

The class functions overload the operators on the data elements. 

Fig. 1.12 illustrates the way in which variables i and i1 of type int (Fig. 

1.3) can be replaced with the same name objects of class INT. 
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#define L 10 

void main()    { 

           CRITICAL_PATH_TURN_ON 
    FLOAT X[L]={0.6F, 0.1F, 0.9F, 0.3F, 0.8F, 0.5F, 0.7F, 0.2F, 0.4F, 0.7F}; 

    FLOAT Y[L]={0.3F, 0.8F, 0.4F, 0.2F, 0.1F, 0.9F, 0.5F, 0.7F, 0.1F, 0.6F}; 

    PointerPrih<FLOAT> Xp=X;            PointerPrih<FLOAT> Yp=Y; 
    FLOAT Z[L];         PointerPrih<FLOAT> Zp=Z;          Zp[0]=0.5F; 

    for(INT i=1;   PUSH_LOOP(i<L);   i++,   POP1)   {     INT i1=i-1; 

          FLOAT& Z0=Zp[i1];    FLOAT& X0=Xp[i1];    FLOAT& Y0=Yp[i1]; 
          FLOAT& Z1=Zp[i];      FLOAT& X1=Xp[i];      FLOAT& Y1=Yp[i]; 

          if(PUSH_IF((Z0 + X0*0.7F + Y0*0.3F + 0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F))) 

                      Z1=Z0 + X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F;     else  
                      Z1=Z0 + X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F;      POP1; 

    } 

           CRITICAL_PATH_TURN_OFF 

} 

 

Figure 1.12. Example of a possible C++ instrumentation of the C-code shown in Fig. 1.3 

 

 

 
class INT { 
     int val; 
     unsigned long cpath; 
  public: 
     constructor & destructor functions 
     functions for overloading operators 
     critical path stack functions 
     other functions 
};  

 
Figure 1.13. Example of possible mapping of the C’s int basic data type to the INT 

 class in C++ 

 

 

 
template <class IT> class PointerPrih { 
     IT * val; 
     unsigned long cpath; 
  public: 
     constructor & destructor functions 
     functions for overloading operators on pointers 
     critical path stack functions 
     other functions 
};  

Figure 1.14. Example of a possible instrumentation of the C’s pointers in C++ 
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Declarations of pointers to basic types char, int, float, double, etc. in 

C-code can be replaced by the PointerPrih classes defined for CHAR, 

INT, FLOAT, DOUBLE, and other instrumented types. The single tem-

plate presented in Fig. 1.14 can generate all the classes, where IT denotes 

an instrumented type. 

An array of elements of a basic type in the C-code can be mapped to 

an array of objects of the corresponding instrumented class in the C++-

code. In order to be able to count operations on the arrays including the 

[] subscript operation, a mechanism of instrumented pointers can be 

used. An appropriate instrumented pointer can be introduced for each 

array in the C++-code. All the operations to be executed on the array in 

the C-code are associated with the pointer in the C++-code. For example, 

the X, Y, and Z arrays of float type in Fig. 1.3 can be replaced with the 

X, Y, and Z arrays of objects of the FLOAT class in Fig. 1.12. Moreo-

ver, the Xp, Yp, and Zp instrumented pointers of the Pointer-

Prih<FLOAT> class are introduced in the C++-code. After that, all array 

operations are executed on the pointers. Other composite types of C lan-

guage can be instrumented in the similar way in C++ language. 

All the operations on addresses and values that will be performed dur-

ing the C-code execution stage are instrumented during transition from 

the C-code to the C++-code. Each operator in the C-code is overloaded 

by an appropriate class function in the C++-code (Fig. 1.15). The opera-

tors on the C-types are replaced with operators on the C++-classes. The 

overloading functions are defined for groups of close operators. 

The true control structures are not taken into account during evaluat-

ing the critical path. The only influence of the structures on the DFEG is 

through the conditional dependences. A critical path stack is introduced 

in the instrumented C++-code in order to find out the dependences. The 

external critical path length of the declared or temporary T test variable 

is an element of the stack record. 

A new record is added to the stack by the functions PUSH_LOOP 

(T), PUSH_IF(T), and PUSH_SWITCH(T) presented in Table 1.3 and 

overloaded for each instrumented basic type by means of the member 

function push(cpath) of the _CPS_ object of the Critical_Path_Stack 

class. Functions PUSH_LOOP and PUSH_IF return a value of the bool 

type. The difference between the functions is that PUSH_IF adds a rec-

ord to the stack in any case not depending on its return value.  
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Overloading function: 

 Main computations taken from the C-code 

 Additional computations evaluating the 

complexity and critical path 

Result object 

 val 

 cpath 

Object_2 

 val 

 cpath 

Object_1 

 val 

 cpath 

Critical path stack 

 cpath 

 
 

Figure 1.15. Overloading a binary operator by a class function 

 

Table 1.3 

PUSH and POP macros/functions on the critical path stack 
N Function/Macro Return type Description 

1 PUSH_IF(Test) bool push in _CPS_ 

2 PUSH_SWITCH(Se) type of Se push in _CPS_ 

3 PUSH_LOOP(Test) bool push in _CPS_ when true 

4 PUSH(CPlen) void push CPlen in _CPS_ 

5 POP(N) void pop N records of _CPS_ 

6 POP1 void pop 1 record   POP(1) 

7 POP_(Expr) type of Expr POP(1) and transmit Expr 

8 POP_(N, Expr) type of Expr POP(N) and transmit Expr 

 

 

The PUSH_LOOP function updates the stack when the return value 

equals true and does not update the stack when the value equals false. 

The return value type of PUSH_SWITCH function is the same as the 

basic type of T argument. The function always adds a record to the stack. 

The top records are removed from the stack by the macros/functions 

presented in Table 1.3. The macros/function POP(N) belongs to the criti-

cal path stack object _CPS_, where N is the number of records to be re-

moved. The value of N equals 1 for loop- if- and switch-statements. It 
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can be greater than 1 for break- continue- and return-statements. A con-

ditional ternary (T ? TE : FE) operator is instrumented as 

POP_(PUSH_IF(T) ? TE : FE ) where TE and FE are expressions exe-

cuted when test expression T is evaluated to true and false respectively, 

and POP_ removes exactly one record from the stack and transmits the 

operator value. In general case, a goto statement makes the use of PUSH 

and POP functions illegal. The goto statements can be eliminated from 

the C/C++-code by equivalently transforming the unstructured program 

to a structured one. The mapping rules between C and C++ code versions 

for control structures are shown in Table 1.4, where Stat is a statement. 

Fig. 1.16 presents an example of the mechanism of interaction of the 

instrumented control structures (Fig. 1.12) and the overloaded operators 

by means of the critical path stack. It is easy to see that the top cpath 

value is always larger than the previous ones in the stack. 

The C-function bodies do not constitute a boarder for the data and 

conditional dependences among external and internal variables. The de-

pendences are transmitted from the external environment to the function 

body and from the function body to the external environment by means 

of function’s arguments and the return value of instrumented types. 

The critical path can be evaluated for any part (parts) of the C-code. 

They should be described as a separated region by two macros: 

CRITICAL_PATH_TURN_ON and CRITICAL_PATH_TURN_OFF. 

The C++-code that is out of the region simply transmits the variable 

critical path lengths. Thus, the critical path on the key functions of C 

code can be evaluated. 

 

1.5 Reduction of critical path and increase of parallelism  

 

1.5.1 Reduction by transformation of C/C++-code 

 

The true control structures of the C-code are an obstacle in the direct 

implementation of parallelization potential and possible acceleration [69, 

70]. The transformation methodology is a mechanism of searching for an 

appropriate architectural implementation [7, 16, 19]. It allows the reduc-

tion of execution time (iteration period, control steps and clock cycles) at 

the same constraints on resources and approaches the actual acceleration 

to the upper bound.  
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Table 1.4 

Mapping of C control structures to C++ instrumented structures 

 

Control structure in C Instrumented structure in C++ 

if, ?:, switch, while, do, for 

if (TestExpr)  ThenStat if (PUSH_IF(TestExpr)) ThenStat  

POP1; 

if (TestExpr)  ThenStat  else  ElseStat if (PUSH_IF(TestExpr)) ThenStat  else  

ElseStat  POP1; 

Var = (TestExpr) ? TrueExpr : 

FalseExpr; 

Var = POP_((PUSH_IF(TestExpr)) ? 

TrueExpr : FalseExpr); 

switch (Select) { 

   case IntVal1:  Stat1  break; 

   case IntVal2:  Stat2  break; 

   … 

   default:  Statn 

} 

switch (PUSH_SWITCH(Select)) { 

   case IntVal1:  Stat1  break; 

   case IntVal2:  Stat2  break; 

   … 

   default:  Statn 

} POP1; 

while (TestExpr) Stat while (PUSH_LOOP(TestExpr))  {Stat  

POP1;} 

do  Stat  while (TestExpr) PUSH(0)  do  Stat  POP1;  while 

(PUSH_LOOP(TestExpr)) 

for (Init;  Cond;  Step)  Stat for (Init;  PUSH_LOOP(Cond);  Step  

POP1)  Stat 

break, continue, return, goto 

for (Init;  Cond;  Step)  {Stat1  if (Test-

Expr)  {Stat2  break;}  Stat3} 

for (Init;  PUSH_LOOP(Cond);  Step  

POP1)  {Stat1  if (PUSH_IF(TestExpr))  

{Stat2  POP(2);  break;}  POP1;  Stat3} 

for (Init;  Cond;  Step)  {Stat1  if (Test-

Expr)  {Stat2  continue;}  Stat3} 

for (Init;  PUSH_LOOP(Cond);  Step  

POP1)  {Stat1  if (PUSH_IF(TestExpr))  

{Stat2  POP(2);  continue;}  POP1;  

Stat3} 

TypeFun  NameFun (Arg1,…, Argk)  

{Stat1  if (TestExpr)  {Stat2  return 

Expr;}  Stat3} 

TypeFun    NameFun(Arg1,…,Argk)  

{Stat1  if (PUSH_IF(TestExpr))  {Stat2  

return POP_(1,Expr);}  POP1;  Stat3} 

goto Label; The unstructured program is trans-

formed to an equivalent structured one 
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Overloaded operators *, 

+, -, /, … in the current 

most enclosed control 

structure 

… 

for (…; PUSH_LOOP(…); 

…,POP1 ) { 

… 

   if (PUSH_IF(…)) 

     { … } else 

     { … }  POP1; 

… 

} 

… 

Test variable 1 

critical path 

Test variable 2 

critical path 

Top 

Critical path stack Overloading functions Instrumented C++-code 

 
Figure 1.16. Generation of the conditional dependences using the critical path stack 

 

 

Two types of transformation are investigated in the context of archi-

tectural synthesis. The transformations of the first type aim at the reduc-

tion of the critical path. The critical path evaluation tool helps to localize 

the transformations. The transformations of second type aim at breaking 

the true control structures in order to increase the effectiveness of behav-

ioral synthesis and scheduling techniques. The transformation methodol-

ogy allows the architectural implementation of parallelization potential 

by means of C-code transformation. The transformations promote the 

approach of DFG to DFEG. 

The equivalent transformation of the source program is also a way of 

achieving the reduction of the critical path length and the increase of the 

parallelization potential of the C-code. No specific coding style is needed 

during creation of the source C-code, although the transformation itself 

may require specific code forms. The control and data flow transfor-

mation rules which are useful in the context of DFEG-based critical path 

reduction are as follows: 

 Restructure, split, and transformation of statements 

 Extraction of computations from control structures 

 Algebraic transformation of arithmetic, logic and other type of ex-

pressions 

 Merge of expressions and statements 

 Unfolding loops and others. 
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Although most of the transformation rules have been previously con-

sidered in literature, these should be analyzed again in the context of dy-

namic global critical path definition and reduction on DFEG. For in-

stance, the unfolding, retiming, and pipelining transformations aim at the 

reduction of iteration period on static DFG which cannot be less than the 

iteration bound [52]. Moreover the global critical path analysis helps to 

find places for the efficient application of the transformation rules. 

It can be noted that the procedure of increase of the parallelization 

potential of a C/C++-code is an iterative process. Firstly, the source C-

code is transformed and rebuild. Then it is instrumented and mapped to a 

C++-code version using an automatic tool. After the execution of the 

C++-code using real input data as stimuli, evaluation of the critical path, 

estimation of the possible acceleration, and localization of further trans-

formations, the intermediate C-code can then be transformed again in 

order to perform the next iteration. 

 

1.5.2 Preliminary transformation of loops 

 

In order to be able to apply other transformation rules to the C/C++-

code, the loop statements should be preliminary transformed by means of 

moving the iteration scheme into the loop body. The for-loop 

for (T; D; S)  { B } 

can be transformed to 

for (T;  ;  )  { _C_=D;  if (_C_) { B  S }  else  break; } 

The while-loop 

while (D)  { B } 

can be mapped to 

while ( true )  { _C_=D;  if (_C_) { B }  else  break; } 

The while-loop 
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do  B  while (D); 

can be transformed to 

do   B   _C_=! D;   if (_C_)  break;  while ( true ); 

After these transformations, the extraction of computations from con-

trol structures, and other types of transformation are possible. 

 

1.5.3 Extraction of computations from control structures 

 

An efficient way of accelerating the computations is the extraction of 

operators from control structures and performing them in advance and in 

parallel. The extraction can follow the preliminary transformation of 

loops. Fig. 1.17 illustrates the extraction mechanism and transformation 

rules on the C-code presented in Fig. 1.3. The extraction implies the in-

troduction of additional variables and computations. The critical path 

length for the first iteration of the loop is reduced from 28 to 16 while 

the complexity increases from 97 to 143 basic operations (Fig. 1.18). 

The maximum path length between the Z[i-1] and Z[i] value-nodes is 

equal to 9. The parallelization potential of the first iteration loop increas-

es from 3.5 to 8.9.  

 
#define L 10 
void main () { 

    float X[L] = {0.6F,0.1F,0.9F,0.3F,0.8F,0.5F,0.7F,0.2F,0.4F,0.7F}; 

    float Y[L]  ={0.3F,0.8F,0.4F,0.2F,0.1F,0.9F,0.5F,0.7F,0.1F,0.6F}; 
    float Z[L];     Z[0]=0.5F; 

    for ( int i = 1;  ;  )    { int _C1_= i < L;   int i1 = i - 1; 

         float& Z0=Z[i1];   float& X0=X[i1];   float& Y0=Y[i1]; 
         float& Z1=Z[i];     float& X1=X[i];     float& Y1=Y[i]; 

         if ( _C1_ )  { 

               int _C2_= (Z0+X0*0.7F+Y0*0.3F+0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F); 
               float _Zi1_= X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F + Z0; 

               float _Zi0_= X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F + Z0; 

               if ( _C2_ )  Z1 =_Zi1_;  else  Z1 =_Zi0_;     i++; 

          }  else   break; 

    } 
} 

 

Figure 1.17. Transformation of the C/C++-code shown in Fig. 1.3 (transformation 

of the for-loop and extracting computations from the if-then-else-statement) 
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Figure 1.18. The DFEG fragment (first iteration of the loop) for the transformed C/C++-

code shown in Fig. 1.17. The transformation is done by means of reconstruction  

of the loop-statement and extraction of computations from if-statements. The graph  

complexity implies the introduction of additional variables and computations.  

The critical path length is in bold. 
 
 

Fig. 1.19 presents the instrumented C++-code that performs the same 

basic computations as the source C-code and additionally providing its 

parallelization potential as result of the program execution grown com-

pared to the non-transformed graph. The critical path shown in bold is 

reduced. The longest path between Z[i-1] and Z[i] nodes is also in bold. 
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#define L 10 

void main()     { 

               CRITICAL_PATH_TURN_ON 
       FLOAT X[L]={0.6F, 0.1F, 0.9F, 0.3F, 0.8F, 0.5F, 0.7F, 0.2F, 0.4F, 0.7F}; 

       FLOAT Y[L]={0.3F, 0.8F, 0.4F, 0.2F, 0.1F, 0.9F, 0.5F, 0.7F, 0.1F, 0.6F}; 

       PointerPrih<FLOAT> Xp=X;            PointerPrih<FLOAT> Yp=Y; 
       FLOAT Z[L];          PointerPrih<FLOAT> Zp=Z;         Zp[0]=0.5F; 

       for(INT i=1  ;   ; ) {        INT _C1_=i<L;         INT i1=i-1; 

             FLOAT& Z0=Zp[i1];        FLOAT& X0=Xp[i1];       FLOAT& Y0=Yp[i1]; 
             FLOAT& Z1=Zp[i];          FLOAT& X1=Xp[i];         FLOAT& Y1=Yp[i]; 

             if(PUSH_LOOP(_C1_))   { 

                    INT _C2_ = (Z0 + X0*0.7F + Y0*0.3F + 0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F); 
                   FLOAT _Zi1_ = Z0 + X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F; 

                   FLOAT _Zi0_ = Z0 + X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F; 

                   if(PUSH_IF(_C2_))   Z1=_Zi1_;    else    Z1=_Zi0_;     POP1; 

                   i++;       POP1; 

            } else break; 

      } 
                CRITICAL_PATH_TURN_OFF 

} 

 

 

Figure 1.19. Equivalent instrumented C++-code for the source code reported in Fig. 1.17 

(Transf_1) 

 

 

 

1.5.4 Transformation of expressions 

 

The transformation of expressions is an efficient way of rebuilding 

the DFG and the DFEG of the C/C++-code. The objective of expression 

transformation is to rebuild the DFG in such a way as to reduce the 

number of operations on the critical path. 

Fig. 1.20 presents a very simple transformation of expressions in the 

C/C++-code shown in Fig. 1.19. The transformation consists in changing 

the order of operation executions by means of using parenthesis. The 

transformed DFEG for the first iteration of the loop is presented in 

Fig. 1.21. The critical path length and the complexity of the loop’s first 

iteration is the same as for the DFEG presented in Fig. 1.18. In the mean-

time, the maximum path length between the Z[i-1] and Z[i] value-nodes 

decreases from 9 to 5 basic operations. This implies the reduction in the 

total critical path length for many iterations of the loop. 
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… 

INT        _C2_ = ( Z0 + ( X0*0.7F + Y0*0.3F + 0.5F ) )  <  ( (X1/X0) *0.1F + (Y1/Y0) *0.9F ); 

FLOAT _Zi1_ =  Z0  +  ( X0*0.4F - Y0*0.3F + (X1*0.2F - Y1*0.1F) ); 
FLOAT _Zi0_ =  Z0  +  ( X0*0.1F - Y0*0.2F + (X1*0.3F - Y1*0.4F) ); 

… 

 

Figure 1.20. Transformation and instrumentation of expressions (Fig. 1.18)  

in the C/C++-code (Transf_2) 

 

 

 

 

1.5.5 Effectiveness of transformations 

 

Table 1.5 provides a comparison of the parallelization potential of 

three different C-codes (and instrumented C++-codes) with the same 

functionality. The number of executed iterations of the loop is the same 

and equals 10. 

It is easy to see that the extraction of computations from control 

structures and the transformation of expressions imply significant in-

crease in the algorithm execution acceleration and in the parallelization 

potential. The Transf_1 performed by means of extraction of computa-

tions reduces the critical path length by 2.16 compared to the source 

code. The Transf_2 performed by means of reordering of operator execu-

tions in expressions additionally reduces the critical path length by 1.44. 

The overall reduction constitutes 3.11. 

In the meantime, some transformations can imply the increase in the 

C-code complexity. Thus, the extraction of computations in Transf_1 

implies the increase in C-code complexity by 1.3. The reasons are as 

follows: 

 The reorganization of the C-code introduces additional variables 

and operators (operator executions) 

 The extraction of computations from the if-statements implies the 

execution of operators in any case not depending on the value of 

test expressions; if the operators were under the control structures 

it would not be necessary to execute some of them. 
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Figure 1.21. The DFEG illustrates reduction of the overall critical path length by means 

of transforming expressions. The reduction is obtained by reordering operators.  

The critical path is in bold. The distance between Z[i-1] and Z[i] nodes constitutes 

5 operator-nodes instead of 9 operator-nodes in the previous DFEG 

 

 

Table 1.5 

Parameters of the source and transformed C/C++-code 

Algorithm Complexity 
Critical 

path 

Parallelization 

potential 

Feasible 

acceleration 

Source 802 171 4.7 1.00 

Transf_1 1039 79 13.2 2.16 

Transf_2 1039 55 18.9 3.11 
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1.6 Evaluation accuracy and limitations 

 

There are some assumptions implemented in the current dynamic crit-

ical path evaluation tool version. One of them is that a value-node in the 

explicitly generated DFEG can have more than one incoming arcs with 

weights (intermediate critical path lengths) to which the max-operation is 

applied. All the weights could be computed simultaneously in a parallel 

implementation version of the tool. But the implemented tool version 

runs on a single-processor machine and executes the instrumented C++-

code sequentially. Since only one additional critical path variable is as-

sociated with each main scalar variable, all the weights at the incoming 

arcs cannot be stored and processed simultaneously. The weights are 

processed sequentially, as the instrumented C++-code is being executed. 

As a result the execution of the max-operation is broken into several 

steps which can imply some slight inaccuracy in the critical path 

measure. 

The second assumption is that the C-code should not contain a varia-

ble representing several other different variables whose lifetimes are not 

intersected. The critical path length for this single variable would differ 

from the critical path length for the several separate variables due to the 

use of the max-operation. This is a source of inaccuracy in the critical 

path evaluation. 

There are few limitations on the evaluation technique. One of the 

most significant takes place for data that are interpreted in different way 

by means of different types. For instance, the following two declarations 

 

long lvar [] = {1, 3, 5, 7, 9, 15}; 

char* cvar = (char*) lvar; 

 

cannot be legally instrumented and processed as 

LONG lvar [] = {1, 3, 5, 7, 9, 15}; 

PointerPrih<CHAR> cvar = (CHAR*) lvar; 

 

However, the mentioned inaccuracies and limitations do not consti-

tute a significant burden for most of the evaluations performed on com-

plex multimedia algorithms. Some alternative implementation of the op-

erators overloading capable of removing such limitations are under 
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study. The critical path evaluation tool has been successfully used for 

large programs such as Wavelet algorithm implementations, the MPEG-

4 Optimized Reference Software, and the Cryptographic toolkit [72, 84] 

and others, without requiring any code rewriting. 

 

1.7 Conclusion 

 

This chapter has presented a methodology for the measure of the par-

allelization potential of complex algorithms. The measure is based on the 

dynamic evaluation of the data flow execution graph and is performed by 

mapping a C-program into an instrumented C++ version, and then exe-

cuting the equivalent C++ program under real input data. By combining 

critical path evaluations with code transformation techniques, an efficient 

methodology can be built for exploring parallel implementations of the 

algorithm, thus detecting efficient architectures the algorithm can be 

mapped to. The mapping from the C description to a C++ instrumented 

description that provides critical path measures can be done by an auto-

matic software tool, avoiding resource consuming code rewriting.  

Analyzing the obtained measures, for each methodological iteration, 

the most promising algorithms in terms of parallelization potential can be 

selected among many possible alternatives. Applying transformations to 

the algorithm and reducing the critical path length, thus further increas-

ing the degree of parallelization, result very effective for the definition of 

efficient implementation architectures. The critical path length signifi-

cantly influences the results of scheduling the implementations at several 

kinds of constraints on computational resources. The schedule cannot be 

faster than the critical path length. A systematic methodology for reduc-

tion of the critical path length guarantees more powerful scheduling re-

sults and implicitly provides improvements in the trade off “complexity–

delay” that is common for software development, high-level synthesis 

and architecture design in various application fields.  



 

45 

 

 

2. PARALLELIZATION POTENTIAL OF MEANINGFUL 

HARDWARE / SOFTWARE APPLICATIONS 

 

2.1. Parallelization potential of two-dimensional            
WAVELET codec 

 

Impressive results on the parallelization potential have been obtained 

for the two-dimensional Wavelet codec implementations proposed in 

[83]. Tables 2.1, 2.2 and 2.3 report experimental results obtained on 

three versions of DFEG that are dynamically generated on different C-

codes with the same functionality: 

 DFEG of the original C-code as it was created (Case I) 

 DFEG of Case I without nodes that describe control computations 

on the two dimensional array representing an image (Case II) 

 The transformed C-code of Case II and its DFEG (Case III). 

In Case I a portion of the C-code is responsible for global iterative 

traversal of the two dimensional array representing an image. In Case II 

the array is considered as a set of directly addressed and accessed sepa-

rate scalar variables. The control computations associated with the itera-

tive global traversal can be eliminated. An architecture which imple-

ments distributed on pixels computations can be generated. In Case III a 

C-code is obtained by means of transforming several expressions consti-

tuting the wavelet core. 

The algorithm computational complexity increases as the image size 

grows. It constitutes from 79 to 493 million operations for Case I and 

from 30 to 187 million operations for Cases II and III. The average num-

ber of operations executed per pixel equals 257 in Case I, and equals 97 

operations in Cases II and III. The data flow computations to be incorpo-

rated in the C-code implementation constitute 37.9%, and the control 

flow computations constitute 62.1%. 

The increase in the image size implies the increase in the critical path 

length. The length varies in the range from 2.55 up to 6.17 thousand op-

erations in Case I, in the range from 168 up to 196 operations for case II 

and in the range from 144 to 168 operations in Case III. After the equiva-

lent transformation of WAVELET C-code and modifying its DFG (Case 

III), the critical path length has been reduced by 16.7% compared to 

Case II. 
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The parallelization potential depends on the image size and varies in 

the range from 30932 up to 79896 in Case I, varies in the range from 

177938 up to 953426 in Case II and varies in the range from 207594 up 

to 1112331 in Case III.  
 

Table 2.1 

Experimental results for WAVELET (Case I) 

N 
Image Algorithm parameters 

Width Height 
Algorithm 

complexity 

Critical  

path 

Parallelization 

potential 

1 640 480 78,876,895 2,550 30,932 

2 800 600 123,272,013 3,146 39,184 

3 1024 576 151,470,377 3,416 44,341 

4 1152 864 255,635,992 4,470 57,189 

5 1280 1024 336,716,669 5,172 65,104 

6 1600 1200 493,277,958 6,174 79,896 

 

 

Table 2.2 

WAVELET without control computations (Case II) 

N 

Image Algorithm parameters 

Width Height 
Algorithm com-

plexity 

Critical 

path 

Parallelization 

potential 

1 640 480 29,893,590 168 177,938 

2 800 600 46,711,523 168 278,045 

3 1024 576 57,395,520 168 341,640 

4 1152 864 96,855,102 168 576,519 

5 1280 1024 127,568,960 196 650,862 

6 1600 1200 186,871,523 196 953,426 

 

 

Table 2.3 

Transformed C-code of WAVELET (Case III) 

N 

Image Algorithm parameters 

Width Height 
Algorithm com-

plexity 
Critical path 

Parallelization 

potential 

1 640 480 29,893,590 144 207,594 

2 800 600 46,711,523 144 324,386 

3 1024 576 57,395,520 144 398,580 

4 1152 864 96,855,102 144 672,605 

5 1280 1024 127,568,960 168 759,339 

6 1600 1200 186,871,523 168 1,112,331 
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Figures 2.1, 2.2 and 2.3 visualize the data reported in Tables 2.1, 2.2, 

and 2.3 and represent the trends in the Wavelet’s complexity, critical 

path, and possible acceleration due to parallelization. 
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Figure 2.1. Algorithm complexity, critical path length, and acceleration due  

to parallelization versus image size for WAVELET with control computations (Case I) 
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Figure 2.2. Algorithm complexity, critical path length, and possible acceleration versus 

image size for WAVELET without control computations (Case II) 
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As an image consists of a lot of pixels, the parallelization per pixel is 

a very important metrics characterizing the WAVELET algorithm. It is 

easy to see that the parallelization per pixel is equal to the complexity 

per pixel divided by the critical path length: 

ParallelizationPerPixel = Parallelization_Potential / Image_Size = 

=  Complexity / (Critical_Path_Length  *  Image_Size)  = 

=  (Complexity / Image_Size) / Critical_Path_Length. 

If the WAVELET’s parallel computations are assumed to be the two 

dimensional computations distributed on the pixels, we may ask the 

question, how many computations are common for neighbor pixels? If 

the critical path length were the same for each pixel and were equal to 

the complexity per pixel, we could conclude there are no common com-

putations for neighbor pixels. Fig. 2.4 shows parallelization per pixel 

versus image size and proves that the common computations constitute 

more than 90% in Case I, constitute from 42% to 50% in Case II, and 

constitute from 33% to 42% in Case III. In Case III, the parallel compu-

tations are the most distributed. 
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Figure 2.3. Algorithm complexity, critical path length, and possible acceleration versus 

image size for transformed code of WAVELET (Case III) 
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Figure 2.4. Parallelization per pixel versus image size (Cases I, II, and III) 

 

 

 

 

2.2. Parallelization potential of RSAREF cryptographic toolkit 

 

The RSAREF is a cryptographic toolkit [72, 84] designed to facilitate 

rapid development of Internet Privacy-Enhanced Mail (PEM) implemen-

tations. RSAREF supports the following PEM-specified algorithms: (1) 

RSA encryption and key generation, as defined by RSA Data Security's 

Public-Key Cryptography Standards (PKCS), (2) MD2 and MD5 mes-

sage digests and (3) DES (Data Encryption Standard) in cipher-block 

chaining mode. The RSAREF is entirely written in C. 

With RDEMO the cryptographic operations of signing, sealing, veri-

fying, and opening files, as well as generating key pairs can be per-

formed. Three series of experiments have been made: (1) Sign a file with 

private key, (2) Generate random DES key, encrypt content, and encrypt 

signature with DES key (seal a file) and (3) Generate RSA public/private 

key pair. Experimental results are presented in Tables 2.4 - 2.7. The pos-

sible acceleration due to parallelization potential of the C-code varies 

from 42.21 up to 136.93. Fig. 2.5 and Fig. 2.6 describe the algorithm 

complexity, critical path length and degree of parallelization versus the 

file and key sizes. 
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Table 2.4 

Experimental results for RSAREF (sign a file) 
 

Content size 
(Bytes) 

Algorithm complexity Critical path 
Parallelization 

potential 

281 21,804,816 502,000 43.44 

621 21,826,260 509,660 42.83 

971 21,846,076 517,582 42.21 

 

 

Table 2.5 

Experimental results for RSAREF (seal with sign) 
 

Content size 
(Bytes) 

Algorithm  
complexity 

Critical  
path 

Parallelization 

potential 

281 26,781,944 502,685 53.28 

621 29,553,488 510,345 57.91 

971 32,455,414 518,267 62.62 

 

 

Table 2.6 

Experimental results for RSAREF (seal without sign) 
 

Content size 
(Bytes) 

Algorithm  
complexity 

Critical  
path 

Parallelization  

potential 

281 4,978,890 77,491 64.25 

621 7,728,936 77,491 99.74 

971 10,611,022 77,491 136.93 

 

 

 

Table 2.7 

Experimental results for RSAREF (key-pair generation) 
 

Key size  
(bits) 

Algorithm  
complexity 

Critical  
path 

Parallelization  

potential 

508 0.6E9 13.8E6 43.89 

767 3.0E9 90.0E6 33.41 

1024 21.9E9 806.4E6 27.12 
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Figure 2.5. Algorithm complexity, critical path length, and possible acceleration versus 

file size for seal 
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Figure 2.6. Algorithm complexity, critical path length, and possible acceleration versus 

key size for key pair generation 

 

 

2.3. Parallelization potential of MPEG-4 video codec 

 

2.3.1. MPEG-4 video codec 

 

The computational complexity, critical path, and parallelization po-

tential profiles measured on the algorithm partition tree or any other par-
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titioning constitute an effective basis for timing and performance analy-

sis of feasible parallel algorithm implementations. The results of metrics 

measuring enable to correctly select partitions that need accurate optimi-

zations or that can produce considerable implementation speed-ups by 

means of parallel implementations. An example of results that enable 

correctly analyzing the critical functions of a complex video coding algo-

rithm is reported. The results obtained on the measurement of the critical 

path and parallelization potential profiles of the MPEG-4 video codec 

and subsequent timing and performance analysis of the C/C++-code 

functions tree discover the ways of efficient code reconstruction and im-

plementation definition. 

The complex algorithm that is under analyses in this chapter is a 

software implementation of a part of MPEG-4 Video tools [38] as speci-

fied by the MPEG-4 Video standard (ISO/IEC 14496-2) reference soft-

ware. This is an optimized enhanced compression codec (document 

M9632 in 65th meeting, July, 2003, Trondheim, Norway) based on the 

simple profile for representing visual data: video, still textures, synthetic 

images, etc. In this version, there are enhanced features: advanced error 

detection and correction services on top of H.263. H.263 is a standard 

video-conferencing codec optimized for low data rates and relatively 

low motion. 

One new part that has been developed is a new video codec. This is 

joint work with the ITU who were defining an H.26L codec (follow on 

beyond H.261 and H.263). The work has been done by Joint Video Task-

force (JVT) working group and has become a new MPEG-4 video stand-

ard as part 10, i.e. ISO/IEC 14496-10 and is called Advanced Video 

Coding or AVC and is technically identical to the ITU-T H.264 standard. 

Fig. 2.7 shows the typical structure of the Moving Picture Experts 

Group (MPEG) encoder. Motion estimation and compensation are key 

parts of video compression. They help remove temporal redundancies in 

images. The MPEG standard depends on two basic algorithms. Motion-

compensated coding uses block-based motion vector estimation and 

compensation to remove temporal redundancies. Block discrete cosine 

transforms reduce spatial redundancy. 

The MPEG standard uses three types of pictures that depend on the 

mode of motion prediction. The intra (I) picture serves as the reference 

picture for prediction. Block discrete cosine transforms code the intra 

http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/H.264
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pictures, and no motion estimation prevents long range error propaga-

tion. Coding the predicted (P) pictures uses forward prediction of mo-

tion. Each image is divided into macro blocks of size pixels and search 

blocks of the same size in the prior reference I frame or P frame. A sec-

ond type of picture is the bidirectional interpolated (B) picture. Both 

forward and backward motion predictions are performed with respect to 

the prior or future reference I or P frames. 

The two main types of motion estimation use pel-recursive algorithms 

or block matching algorithms. Pel-recursive algorithms predict the mo-

tion field at the decoder based on how neighboring pixels decoded in the 

current frame relate to pixels in the prior frame. Exhaustive search within 

a maximum displacement range leads to the absolute minimum for the 

energy of the prediction error and is optimal in this sense. Motion-

compensated video coding relates the intensity of each pixel in the cur-

rent frame to the intensity of some pixel in a prior frame. It links these 

pixels by predicting the motion of objects in the scene. 
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Figure 2.7. Block diagram of the MPEG encoder: DCT is discrete cosine transform, ZZ 

is zigzag scanning, Q is quantizer, VLC is variable length coding, IQ is inverse quantizer, 

IZZ is inverse zigzag scanning, and IDCT is inverse discrete cosine transform 
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The experimental results have been obtained for the following con-

figuration of the EMPEG-4 video encoder software: the Microsoft Visual 

Studio 6.0 platform, the VM5+ rate control, the MVFAST in N4554 fast 

motion search, no error resilient, and the disabled post-filter.  

The profiling is performed for the C/C++-code functions tree of the 

MPEG-4 video encoder shown in Fig. 2.8. The intra encoding is applied 

to the first frame and inter encoding is applied to the subsequent frames. 
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Figure 2.8. The tree of key functions of MPEG-4 encoder reference software 

(inter encoding) 
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2.3.2. Source video sequence 

 

The video coder is performed on the following input sequence of 

frames: the Foreman source video sequences, 100 input/output frames, 

the CIF (352x288) and QCIF (176x144) picture sizes, the YUV (4:2:0) 

format, the I-PPP coding type, and 8 bits per pixel.  

 

2.3.3. Profiling computational complexity 

 

The video encoder computational complexity profile that is measured 

in the number of C/C++ operations is reported in Table 2.8 and Fig. 2.9. 

The number of calls is additionally reported for each function.  

 

Table 2.8 

Computational complexity and critical path of MPEG-4 encoder 

Function 

Own  

computational 

complexity 

Number 

of func-

tion calls 

Share (%) 

 in overall 

complexity 

main 9930795562 1 100.00 

CodeBaseVol 9930773442 99 100.00 

ReadVopGeneric 75274848 99 0.76 

GetVopBounded 153268929 99 1.54 

WriteVopGeneric 135777114 99 1.37 

VopProcess 9566444136 99 96.33 

VopCode 9491144637 99 95.57 

VopShapeMotText 1873222888 99 18.86 

VopMotionCompensate 195466324 99 2.37 

SubVOP 125453097 99 1.97 

RCQ2_MB_init 234913737 99 1.26 

VopPadding 110013453 99 1.11 

MotionEstimation 6940357262 99 69.89 

InterpolateImage 692083854 99 6.97 

MotionEstimatePicture 6243294170 99 62.87 

FindSubPel 2897497781 182720 29.18 

FindMB 69872128 36544 0.70 

FullPelMotionEstMB 3273115389 39204 32.96 

ChooseMode 259256052 39204 2.61 

MBMotionEstimation 3013192869 39204 30.34 

SAD_Block 1839728800 3728588 18.53 

SAD_Macroblock 981290638 470111 9.88 

FindMB 74958048 39204 0.75 

ObtainRange8 9205936 156816 0.09 
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Figure 2.9. Own computational complexity of MPEG-4 encoder functions 

 

 
Figure 2.10. Computational complexity profiling of MPEG-4 video codec 
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Figure 2.11. Computational complexity profiling of MotionEstimation 

 

 

 

The encoder overall computational complexity equals 9’930’773’442 

operations for 99 frames. MotionEstimation (69.89%) and 

VopShapeMotText (18.86%) are the most computational complexity con-

suming composite functions (Fig. 2.10). 

The results of computational complexity profiling of MotionEstima-

tion are shown in Fig. 2.11 The basic functions of MotionEstimation 

which mostly contribute to the computational complexity are: 

FindSubPel (29.18%), SAD_Block (18.53%), SAD_Macroblock (9.88%) 

and InterpolateImage (6.97%).  

 

2.3.4. Profiling critical path 

 

The video encoder critical path profile that is measured in the number 

of C/C++ operations is described by Table 2.9 and Fig. 2.12. We distin-

guish the own critical path of each function and the share of a function in 

the overall critical path of the encoder. The overall critical path of en-

coder is equal to 6’054’211 operations. MotionEstimation is the most 

contributing (83.42%) composite function in the overall path (Fig. 2.13). 

The basic functions which have significant share in the overall critical 

path are (Fig. 2.14): FindSubPel (37.21%), SAD_Macroblock (18.57%), 

VopShapeMotText (11.81%) and SAD_Block (4.60%). 
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Table 2.9 

Own critical path and share in overall critical path of MPEG-4 en-

coder functions 

Function 

Own 

critical 

path 

Share in 

overall criti-

cal path 

Share in 

% 

main 6054211 6054211 100.00 

CodeBaseVol 6054211 6054211 100.00 

ReadVopGeneric 101378 0 0.00 

GetVopBounded 101732 101444 1.68 

WriteVopGeneric 152065 0 0.00 

VopProcess 6050363 5952722 98.32 

VopCode 6050357 5952722 98.32 

VopShapeMotText 2209971 714819 11.81 

VopMotionCompensate 7417 8145 0.13 

SubVOP 101577 442 0.01 

RCQ2_MB_init 57979 30 0.00 

VopPadding 15563 18 0.00 

MotionEstimation 5819926 5050491 83.42 

InterpolateImage 2233 95 0.00 

MotionEstimatePicture 5819849 5050287 83.42 

FindSubPel 2533334 2252627 37.21 

FindMB 557468 0 0.00 

FullPelMotionEstMB 3292285 2712966 44.81 

ChooseMode 76274 68397 1.13 

MBMotionEstimation 3188680 2617335 43.23 

SAD_Block 313592 278560 4.60 

SAD_Macroblock 1434231 1123982 18.57 

FindMB 68 0 0.00 

ObtainRange8 109719 97496 1.61 

 
 

The comparison of the two profiles on the computational complexi-

ty and critical path proves that there are functions like SAD_Block 

whose share in the overall complexity (18.53%) is larger than their 

share (4.60%) in the overall critical path. It also proves that there are 

functions like MotionEstimation and FindSubPel whose share in the 

overall critical path (83.42% and 37.21% respectively) is larger than 

their share (69.89% and 29.18% respectively) in the overall complexi-

ty. If the goal is to reduce the critical path such functions should be 

considered and transformed, first of all, in order to increase their paral-

lelization potential. 
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Figure 2.12. Own critical path of MPEG- encoder functions 

 

 

 
Figure 2.13. Critical path profiling of MPEG-4 video codec 
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Figure 2.14. Critical path profiling of MotionEstimation 

 

 

Some results of more detailed analyses of the critical path are report-

ed in Table 2.10 and are shown in Fig. 2.15. A comparison of the own 

critical path, critical path profile, and critical path zeroing is given for 

video encoder functions. For some functions like FindSubPel the critical 

path share of 88.92% is almost the same as the own critical path (100%). 

For other functions like VopShapeMotText the critical path contribution 

of 32.35% is significantly less than the own critical path. It means the 

own path and the overall path are not significantly intersected. 

 

Table 2.10 

Own critical path share in overall critical path and critical path  

zeroing 

Function 
Own critical 

path, %  

Share in overall 

critical path, % 

Critical path 

zeroing, %  

GetVopBounded 100 99.72 0.35 

VopShapeMotText 100 32.35 7.56 

MotionEstimation 100 86.78 49.47 

FindSubPel 100 88.92 64.64 

FullPelMotionEstMB 100 82.40 68.05 

ChooseMode 100 89.67 89.61 

SAD_Block 100 88.83 88.19 

SAD_Macroblock 100 78.37 71.02 

ObtainRange8 100 88.86 62.09 



 

61 

 

 

 
Figure 2.15. Own critical path, share in overall critical path, and critical path zeroing  

in MPEG-4 video codec functions 

 

 

The critical path zeroing characterizes a possible reduction in the 

overall critical path due to reduction in the own critical path of a func-

tion. The amount of reduction varies in a wide range. For example, the 

critical path zeroing of function SAD_Macroblock is 71.02% at the share 

in the overall critical path of 78.37%. It means the most part of share can 

be potentially reduced due to the reconstruction of function 

SAD_Macroblock. Contrary, the critical path zeroing of function 

VopShapeMotText is 7.56% at the critical path share of 32.35%. Alt-

hough the share is not too high against the own critical path, it is difficult 

to reduce it significantly. 

 

2.3.5. Profiling parallelization potential 

 

Table 2.11 presents the own parallelization potential of each function 

(column 2) and the parallelization potential of a function in the functions 
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tree (column 3). They are estimated over the computational complexity 

(Table 2.8), critical path length and the share in the overall critical path 

(Table 2.9) of each function of the functions tree. The overall paralleliza-

tion potential of the whole algorithm is 1640. The video encoder own 

parallelization potential profile with respect to the key functions of 

MPEG-4 video codec (Fig. 2.16), which consume the highest amount of 

computational complexity estimates the feasible acceleration of the fu-

ture distributed architecture. The own parallelization potential defined as 

the computational complexity divided by the own critical path varies 

from 684 (SAD_Macroblock) to 309934 (InterpolateImage) and to 

1102324 (FindMB). 

 

Table 2.11 

Parallelization potential of MPEG-4 video encoder functions 

Function 

Own  

parallelization 

potential 

Parallelization 

potential in 

functions tree 

main 1640.31 1640.31 

CodeBaseVol 1640.31 1640.31 

ReadVopGeneric 742.52 infinity 

GetVopBounded 1506.60 1510.9 

WriteVopGeneric 892.89 infinity 

VopProcess 1581.14 1607.07 

VopCode 1568.69 1594.42 

VopShapeMotText 847.62 2620.6 

VopMotionCompensate 26353.83 442231.5 

SubVOP 1235.05 4181769.9 

RCQ2_MB_init 4051.70 7830457.9 

VopPadding 7068.91 6111858.5 

MotionEstimation 1192.52 1374.2 

InterpolateImage 309934.55 7285093.2 

MotionEstimatePicture 1072.76 1236.22 

FindSubPel 1143.75 1286.3 

FindMB 125.34 infinity 

FullPelMotionEstMB 994.18 1206.47 

ChooseMode 3399.01 3790.5 

MBMotionEstimation 944.97 1151.24 

SAD_Block 5866.63 6604.4 

SAD_Macroblock 684.19 873.0 

FindMB 1102324.24 infinity 

ObtainRange8 83.90 94.42 
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Figure 2.16. Parallelization potential of MPEG-4 video codec key functions 

 

 

Another important characteristic of a function is the parallelization 

potential in the functions tree that is defined as the computational com-

plexity divided by the share of the function in the overall critical path. As 

the critical path share is less than the own critical path, the parallelization 

potential in the functions tree is always not less than the own paralleliza-

tion potential. Its value varies from 873 (SAD_Macroblock) till infinity 

(ReadVopGeneric, WriteVopGeneric, FindMB). The infinity value is 

obtained due to the zero share of the function in the overall critical path. 

Growth of parallelization potential versus number of frames. Table 

2.12 describes the growth of computational complexity, critical path and 

parallelization potential depending on the number of encoded video 

frames. Increasing the number of frames twice implies the growth of the 

complexity about twice (Fig. 2.17). The critical path length grows signif-

icantly slowly. The critical path length has grown by 38.4 times for 99 



 

64 

 

 

frames against 1 frame. It means, the parallelization among computations 

of consecutive frames of the same video sequence is possible.  

Fig. 2.18 shows the degree of parallelization versus number of 

frames. The algorithm of encoding 10 frames can be 2.297 time parallel-

ized against the algorithm of encoding 1 frame. On 20 frames the encod-

ing algorithm can be 2.449 times parallelized over encoding 1 frame. For 

99 frame the parallelization potential grows to 2.618 time. It is interest-

ing that the parallelization potential of 2.626 for 50 frames is larger than 

that for 99 frames. It depends on the video sequence. 

 

 

Table 2.12 

Computational complexity, critical path and parallelization potential 

of MPEG-4 video encoder versus number of frames 

 
Number of 

frames 

Computational 

complexity 
Critical path 

Parallelization po-

tential 

1 98678728 157492 626.56 

2 196200376 175382 1118.70 

3 297762503 239334 1244.13 

4 399369531 311858 1280.61 

5 499918543 374486 1334.95 

6 600758570 433265 1386.58 

7 700916076 481945 1454.35 

8 802059492 567969 1412.15 

9 901871124 627270 1437.77 

10 999191080 694366 1439.00 

12 1200758747 819560 1465.13 

14 1401196194 969017 1446.00 

16 1601740755 1089697 1469.90 

18 1799544062 1183045 1521.11 

20 2001069072 1303941 1534.63 

30 3006092583 1927676 1559.44 

40 3993971189 2544380 1569.72 

50 4981470788 3027194 1645.57 

60 5974901481 3735201 1599.62 

70 6917099291 4343810 1592.40 

80 7947724259 5164862 1538.81 

90 8996846808 5717979 1573.43 

99 9930773442 6054211 1640.31 
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Figure 2.17. Growth of overall computational complexity and critical path length 

 of MPEG-4 video encoder versus number of frames 
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Figure 2.18. Growth of overall parallelization potential of MPEG-4 video encoder versus 

number of frames 
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2.4. Conclusion 

 

The methodology of measuring the parallelization potential of com-

plex algorithms that is presented in chapter 1, is applied to the reference 

software of several meaningful applications: two-dimensional 

WAVELET codec, RSAREF cryptographic toolkit, MPEG-4 video co-

dec and others. This chapter has presented the results of measuring the 

computational complexity, critical path and level of parallelism which 

are hidden in the C-code of the applications. 
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3. TRANSFORMATION OF ALGORITHM TO BASIC 

SINGLE-BLOCK MODEL 

 

3.1. Algorithm transformation flow 

 

The idea of a step-by-step transformation of an algorithm [58, 63, 64, 

66, 69, 70, 74, 76], which improves key parameters of complex sequen-

tial program code that is associated with an algorithm subsequent parallel 

implementation (Fig. 3.1) lies in the basis of the parallelism extraction 

method we develop in this chapter. Parallelism that is extracted from the 

sequential code is implemented further in a functionally equivalent paral-

lel code or in a parallel hardware architecture. Extracting parallelism 

which improves parameters of subsequent implementation is a complex 

process that requires knowledge of key concepts about the static and dy-

namic properties of a program. The proposed method is based on the fol-

lowing key principles: 

1. measurement of parameters of sequential code that predict param-

eters of subsequent parallel implementations; 

2. step-by-step transformation of a serial code in order to improve 

parameters of an equivalent parallel code; 

3. mapping sequential code into an efficient parallel implementation 

using a basic single-block flow model. 

The measurement of parallelism hidden in sequential code is based on 

metrics and object-oriented instrumentation technology proposed in [61]. 

The main metrics characterizing parallelism, laid out in a sequential pro-

gram, include the computational complexity of the program code, the 

critical path on the data flow graph of the program execution (DFEG - 

Data Flow Execution Graph), and the factor of maximum parallelization 

potential. We give brief definitions of these concepts, following this 

work. The computational complexity of a program code on a typical in-

put data set is measured in the number of basic operations (operators or 

instructions) of the programming language, in which the code is written 

and performed during the execution of the program. Operations of access 

to data elements, including write operations to memory and read from 
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memory, can be taken into account together with logical and arithmetic 

operations, comparison operations, etc.  
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Figure 3.1. Algorithm parallelization flow by means of code transformation 

 

 

Accounting for data exchange operations between parallel parts of the 

code is not possible at an early design stage, since the decomposition of 

the entire code into parallel parts will be carried out later. 
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Graph DFEG is an acyclic directed finite graph constructed on a set 

of vertices that are variables or operators, taken part in program execu-

tion. A set of arcs represents data dependencies between input variables 

and operators, and between operators and output variables, realized dur-

ing execution of the code. The graph is generated for one set of input 

data. Changes in the input data entail, in general, changes in the size and 

structure of the graph. In fact one program code can produce tremendous 

number of different DFEGs. Implementation costs are associated with 

vertices-operators and vertices-variables of the graph. The number of 

vertices and their costs characterize the computational complexity of the 

code on the given input data. The longest weighted path on the graph is 

called the critical path. It characterizes the maximum execution time of 

the code in case of its parallel implementation. The ratio of the computa-

tional complexity to the critical path of the code is the parallelization 

potential factor. It characterizes the feasible maximum acceleration of 

the parallel implementation against the sequential implementation. 

The serial code transformation method, which improves the pa-

rameters of the subsequent parallel implementation, is built on two 

components: 

 transformation rules that can increase the parallelization factor of 

the code; 

 the method of localization of code fragments, the transformation 

of which is most effective in reducing the computational complex-

ity and reducing the critical path. 

The following transformation rules are most promising, since they 

lead to the restructuring of control flow and data flow graphs that are 

beneficial for resolving parallelism and increasing the code paral-

lelizability: 

 splitting of control structures 

 speculative computing of operators which are extracted from con-

trol structures; 

 merging assignment operators and transforming expressions to re-

duce the maximum depth of expression trees 

 unrolling of loops with static and dynamic iteration schemes and 

others 

Localization of the points of rules application in the program code is 

carried out by building a computational complexity profile, a critical 
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path profile, and parallelization potential profile. The computational 

complexity profile describes the contribution of each function in the total 

computational complexity of the entire code, expressed ultimately as a 

percentage. The critical path profile is a list of functions lying on the crit-

ical path and the contribution of each function to the total length of the 

overall critical path of the program code. The potential parallelization 

profile characterizes the level of feasible parallelization of each function 

in the functions tree. In order to improve the parameters of the entire 

code, functions and their components are revealed, which make the 

greatest contribution to the computational complexity and critical 

path, and these functions are purposefully transformed, increasing the 

parallelization factor while maintaining the algorithm optimization 

flow described in Fig. 3.1. 

The method of mapping a sequential code to a parallel implementa-

tion provides a transition from the original sequential control flow to a 

parallel control flow while maintaining the original data flow. In this 

case, the system is divided into parts, taking into account the measured 

and detected parallelism in the sequential code, by decomposing both the 

operation part of the code and the data structures processed by the code. 

The original sequential control flow often prevents the system from be-

ing divided into parallel subsystems. Our method transforms the initial 

sequential control flow of the code and its parts to a basic single-block 

flow model [69-71, 76]. The equivalent parallel code is represented by 

means of basic primitives of the operating system, primitives of the MPI 

library, and by other facilities. 

The advantages of the developed method are manifested in the fol-

lowing fundamental possibilities. 

 The same behavioral description can be reduced to a form ade-

quate to one or another parallel architecture; 

 Limits of parallelization and limits of the system implementation 

can be extended; 

 The transformed behavioral description may be more effective in 

terms of the applicability of the methods, strategies, and algo-

rithms for solving optimization problems of automatic paralleliza-

tion and scheduling. 

 At the same constraints on a system parameter, it is possible to ob-

tain more favorable values of other parameters. 
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 The method extends capabilities for design space exploration re-

garding software implementations and regarding hardware imple-

mentations. 

 

3.2. Preliminary transformation of algorithm 

 

One of the key concepts of a sequential program that has a decisive 

influence on the operation, properties and capabilities of models and 

methods for the extraction of parallelism is the concept of a linear block 

(basic block). A linear segment is a chain of operators sequentially exe-

cuted one after another, which does not include transitions over branch-

ing instructions. 

It is difficult to extract parallelism from looping / branching pro-

grams that are built using a combination or superposition of while, 

do-while, if, switch and other similar instructions, and perform pro-

cessing of data of arbitrary types, in particular, pointers. Methods for 

the extraction of parallelism from programs in this category are little 

developed or not studied at all. 

The most important step in transformation process is the elimination 

of multiple use of one variable by means of the introduction of new addi-

tional variables. Bellow we assume that single assignment requirement is 

met by all variables in the program code. 

The rules for transforming the source code to a basic single-block 

model, that is introduced in this chapter, are constructed in such a way as 

to make the transition to using a limited subset of constructs, which are 

typical for an algorithm description language like C/C++. After that, they 

eliminate all complex control structures from the code, and separate the 

data flow from the control flow. As a result, the transformation of the 

source code is carried out in two stages, each of which uses its own set of 

transformation rules: 

 Rules for transformation of sequential control flow for using a re-

stricted subset of control instruction of the programming language; 

 Rules for data flow extraction by means of stepwise elimination of 

original control structures and control flow. 

The transition from a source code written in C language to a basic 

single-block model is performed by applying the transformation rules 

of the form 
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Left_part  =>  Right part. (3.1) 

 

In rule (3.1), Left_part and Right part represent program code 

fragments that are semantically (functionally) equivalent in sense of 

describing in different ways the same mapping of input data into 

output data.  

The rules use the notation as follows: V, V1,… are Boolean variables, 

C, C1,… are Boolean expressions, Q, ,Q1,… are instructions, S, S1,…,R, 

R1,… are sequences of instruction, and L, L1,… are labels of loops. 

The rules for preliminary transformation of the control flow of the 

original algorithm are shown in Fig. 3.2. They allow to transform such 

control structures as if, switch, while, do-while, for, break, continue and 

others. As a result it is possible to proceed to the use of a restricted sub-

set of the C/C++ language. 

 
Rule Left part Right part 

R1 while (C) { S } while (1) { if (C ) { S } else break; 

} 

R2 do { S } while (C); while (1) { S if (!C) break; } 

R3 for( S1; C; S2) { S3 } S1; for (;;) { if (C) { S3 S2 } else 

break; } 

R4 S1 if (C) { while (1) { S2 } } V=1; while (1) {if (V) { S1 V=0; } if 

(C) { S2 } else break; } 

R5 S1 if (C) { while (1) { S2 } } V=1; while (1) {if (V) { S1 } if 

(!V||C) { S2 V=0; } else break; } 

R6 if (C1) { break; } if (C2) { 

break; } 

if (C1||C2) { break; } 

R7 if (C) { break; } S V=C; if (!V) { S } if (V) { break; } 

R8 for( S1 ; C1; S2 ) { S3 if (C2) 

continue; S4 } 

S1 for(;;) { { if (!C1) break; S3 if 

(!C2) { S4 }; S2 } 

R9 while (1) { S1 if (C) continue; 

S2 } 

while (1) { S1 if (!C) {S2} } 

R10 if (C) { S1 } else { S0 } V1=C; V2=!C; if (V1) { S1 } if V2) { 

S0 } 

R11 if (V) { Q1;…Qk; } if (V) {Q1 } … if (V) { Qk } 

R12 if (V1) { if (V2) { S } } V:=V1 && V2; if (V) { S } 

R13 if (V1) { V2=E; } V2 = (V1 && E) || (!V1 && V2); 

R14 switch (E) { case H1: S1 … 

case Hn : Sn default: Sn+1 } 

V=E; if (V==H1) { S1 } else … if 

(V==Hn) { Sn } else { Sn+1 } 

 

Figure 3.2. Rules for preliminary transformation of C code  
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Rule R1 converts a while loop to a loop with an infinite iteration 

scheme and a conditional break statement, which provides an exit 

from the loop when it is executed sequentially with the sequence S of 

operators. Rule R2 converts a loop do-while to a loop while with the 

infite iteration scheme and operator break under a conditional 

instruction, after executing the statements of the sequence S. Rule R3 

converts the loop with an iteration scheme for to a loop with an infi-

nite iteration scheme and a body, that includes an additional operator 

break under a conditional statement, body S3 of the original loop, and 

part S2 of the original iteration scheme.  

Rule R4 allows to put an if-instruction covering a loop with an infi-

nite iteration scheme and statements S1 located before the if-instruction, 

inside the loop body in case the loop body statements S2 do not change 

the value of the expression C, introducing one additional Boolean varia-

ble V. Rule R5 is a generalization of the previous rule for the general 

case; it allows to insert an if-instruction covering a loop with an infinite 

iteration scheme and statements S2 that are located before the if-

instruction, inside the loop body.  

Rule R6 merges two operators break, covered by conditional state-

ments, into one statement. Rule R7 allows the permutation of operator 

break that is under an if-instruction with condition C, with sequence S of 

statements located after break.  

Rule R8 transforms operator continue covered by a conditional opera-

tor, which is a part of a loop body with iteration scheme for, to condi-

tional execution of a part of the loop body. Rule R9 transforms operator 

continue covered by a conditional operator, to conditional execution of a 

part of the loop body.  

Rule R10 splits one conditional if-instruction into two short condi-

tional instructions; the passing condition of each of them is calculated by 

an additional assignment instruction. Rule R11 splits one short if-

instruction with a sequence of statements, into an equivalent sequence of 

simpler short if-instructions with one nested statement; such a transfor-

mation is admissible if the value of variable V is not changed by opera-

tors Q1,...,Qk-1. Rule R12 reduces the system of two nested if-instructions 

to one conditional resultant instruction. Rule R13 allows to get rid of a 

short if-instruction, if it includes an assignment operator that works with 
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Boolean variables and expressions. Rule R14 transforms instruction 

switch to a system of nested conditional statements. 

We demonstrate the application of control flow conversion rules us-

ing the RSA cryptographic standard [84], namely, using the C-code of 

function NN_DigitDiv that is shown in Fig. 3.3. The code can be classi-

fied as difficult to parallelize because its control flow is built from the 

superposition of if and while instructions. Applying the rules from 

Fig. 3.2 to the source code shown in Fig. 3.3, we obtain the preliminary 

transformed code shown in Fig. 3.4. All control structures are split and 

unified, the loops have an infinite iteration scheme in this code. Complex 

expressions are split, assignment instructions are associated with one 

logical, arithmetic, or other operator of the C language. Despite simplifi-

cations, the code contains 11 larger and 4 smaller linear basic blocks. It 

is difficult to extract parallelism from so many nested basic blocks. 

 

 

3.3. Basic single-block flow model 

 

This chapter presents a basic single-block flow model (BSBM) of a 

sequential algorithm in which the data flow is separated from the control 

flow [69, 70]. The goal of building BSBM is to efficiently extract data 

flow parallelism from difficult-to-parallel sequential looping-branching 

algorithms of general form by means of reducing the original control 

flow. The number of paths on the control flow graph of the algorithm, 

which determines the complexity of analyzing the source sequential code 

and synthesizing the parallel result code, grows exponentially depending 

on the size of the graph and is determined mainly by the number of basic 

blocks in the algorithm code. Reducing the number of basic blocks sim-

plifies the control flow graph from the point of view of parallelization 

efficiency. The OBBM model includes only one basic block and pro-

vides real extraction of all types of parallelism from the original basic 

blocks. In fact, the model provides for merging the data flows of indi-

vidual basic blocks into a single data flow of a single basic block while 

preserving potential parallelism and possible acceleration for execution 

on a multiprocessor system. 
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typedef unsigned long nnd; 

typedef unsigned short nnfd; 

#define nnhdb 16 

#define mnnfd 0xffff 

#define mnnd 0xffffffff 

#define lhf(x) (nnfd)((x)&mnnfd) 

#define hhf(x) (nnfd)(((x)>>nnhdb)&mnnfd) 

#define tohf(x) (((nnd)(x))<<nnhdb) 

 

void NN_DigitDiv (nnd *a, nnd b[2], nnd c) { 

  nnd t[2], u, v; 

  nnfd aHigh, aLow, cHigh, cLow; 

  cHigh = hhf(c);  cLow = lhf(c); 

  t[0] = b[0];  t[1] = b[1]; 

// Underestimate high half of quotient and subtract. 

  if(cHigh == mnnfd)  aHigh = hhf(t[1]);  else 

    aHigh = (nnfd)(t[1] / (cHigh + 1)); 

  u = (nnd)aHigh * (nnd)cLow; 

  v = (nnd)aHigh * (nnd)cHigh; 

  if((t[0] -= tohf(u)) > (mnnd - tohf(u)))  t[1]--; 

  t[1] -= hhf(u);   t[1] -= v; 

// Correct estimate. 

  while((t[1]>cHigh)||((t[1]==cHigh)&&(t[0]>=tohf(cLow)))) { 

    if((t[0]-=tohf(cLow))>mnnd-tohf(cLow)) t[1]--; 

    t[1] -= cHigh; 

    aHigh++; 

  } 

// Underestimate low half of quotient and subtract. 

  if(cHigh==mnnfd) 

    aLow = lhf(t[1]); 

  else 

    aLow = (nnfd)((nnd)(tohf(t[1])+hhf(t[0]))/(cHigh+1)); 

  u = (nnd)aLow * (nnd)cLow; 

  v = (nnd)aLow * (nnd)cHigh; 

  if((t[0]-=u) > (mnnd - u)) t[1]--; 

  if((t[0]-=tohf(v))>(mnnd-tohf(v))) t[1]--; 

  t[1] -= hhf(v); 

// Correct estimate. 

  while((t[1]>0)||((t[1]==0)&&t[0]>=c)) { 

    if ((t[0]-=c)>(mnnd-c)) t[1]--; 

    aLow++; 

  } 

  *a = tohf(aHigh) + aLow; 

} 

Figure 3.3. A fragment of C code for RSA 
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typedef unsigned long nnd; 

typedef unsigned short nnfd; 

#define nnhdb 16 

#define mnnfd 0xffff 

#define mnnd 0xffffffff 

#define lhf(x) (nnfd)((x)&mnnfd) 

#define hhf(x) \ 

  (nnfd)(((x)>>nnhdb)&mnnfd) 

#define tohf(x) (((nnd)(x))<<nnhdb) 

 

void NN_DigitDiv1(nnd *a, 

      nnd b[2], nnd c) { 

 nnd t[2],u,v; 

 nnfd aHigh,aLow,cHigh,cLow; 

 int c1,c2,c3,c4,c5,c6,c7,c8,c9; 

 nnfd x1; 

 nnd x2,x7,x8,x9,x10,x11,x16,x17; 

 int x3,x4,x5,x6,x12,x13,x14,x15; 

 

 cHigh = hhf(c);             // 1 

 cLow = lhf(c); 

 t[0] = b[0];   t[1] = b[1]; 

 c1 = cHigh==mnnfd; 

 if(c1) { 

aHigh = hhf(t[1]);         // 2 

 } else { 

x1 = cHigh+1;              // 3 

aHigh = (nnfd)(t[1]/x1); 

 } 

 u = (nnd)aHigh*(nnd)cLow; 

 v = (nnd)aHigh*(nnd)cHigh; 

 t[0]-= tohf(u); 

 x2 = mnnd-tohf(u); 

 c2 = t[0]>x2; 

 if(c2)   t[1]--; 

 t[1]-=hhf(u); 

 t[1]-=v; 

 while(1) { 

x3=t[1]>cHigh;           // 4 

x4=t[1]==cHigh; 

x5=t[0]>=tohf(cLow); 

x6= x4&&x5;    

c3= x3||x6; 

if(c3) { 

t[0]-=tohf(cLow);          // 5 

x7=mnnd-tohf(cLow); 

c4=t[0]>x7; 

if(c4) t[1]--; 

t[1]-=cHigh; 

aHigh++; 

} else {   break;  };             // 6 

 } 

 c5 = cHigh==mnnfd 

 if(c5) { 

aLow=lhf(t[1]);                 // 7 

 } else { 

x8=tohf(t[1])+hhf(t[0]);    // 8 

x9=cHigh+1; 

aLow=(nnfd)((nnd)x8/x9); 

 } 

 u = (nnd)aLow*(nnd)cLow; 

 v = (nnd)aLow*(nnd)cHigh; 

 t[0] -= u;     x10 = mnnd-u; 

 c6 = t[0]>x10; 

 if(c6) t[1]--; 

 t[0]-=tohf(v); 

 x11=mnnd-tohf(v); 

 c7=t[0]>x11; 

 if(c7) t[1]--; 

 t[1]-=hhf(v); 

 while(1) { 

x12=t[1]>0;                // 9 

x13=t[1]==0; 

x14=t[0]>=c; 

x15=x13&&x14; 

c8=x12||x15; 

if(c8) { 

x16=t[0]-=c;       // 10 

x17=mnnd-c; 

c9=x16>x17; 

if(c9) t[1]--; 

aLow++; 

} else { 

break;                 // 11 

} 

 } 

 *a=tohf(aHigh)+aLow;  

} 

Figure 3.4. Preliminary transformed fragment of C code for RSA 
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A schematic representation of OBBM in the C language is given in 

Fig. 3.5. Fig. 3.5a depicts the framework of the model at the level of a 

single function. Here RType is a type of the function’s return value; 

FName is a name of the function; FArgs are descriptions of the formal 

arguments (parameters) of the function. 

FDeclarations are local declarations within a function, including 

declarations of data flow variables and control variables, whose values 

are initialized. The entire operation part of the function is represented by 

a single while loop with an infinite iteration scheme. In case of simple 

algorithms, the loop may be absent altogether.  

The body of the loop is unified. It is a sequence of single-type 

constructions which are truncated conditional instructions if-then, 

describing conditions C1, C2, ..., Ck of executing statements 

Q1, Q2, ..., Qk. The expressions C1, C2, ..., Ck are represented by scalar 

Boolean variables, the values of which can be calculated by the 

preceding operators Qi.  

If a constant representing the truth value is used instead of Ci, the 

execution of Qi is unconditional, and it can be released from the 

condition by removing the if-instruction. Possible variants of statement 

Qi are presented in Fig. 3.5b - 3.5g. It can be an assignment statement 

with a unary or binary operator , a function call with actual 

parameters e1, ..., en, break, return and others. The exit from the loop 

is performed using break statement, the exit from the function is 

performed using return statement, which returns the value of the 

function, defined by expression expr.  

What is new in BSBM to extract concurrency? Since several basic 

blocks of the source code are executed within one iteration of the 

equivalent BSBM, while only one basic block is executed in the 

structured model, the total number of iterations in the BSBM loop is 

always less against the structured model.  

Since all operators of the source code are incorporated in BSBM, it 

provides a complete analysis of data dependencies between the 

operators, followed by identifying pairs of parallelizable operators, pairs 

of orthogonal mutually exclusive operators, parallel branches in the 

algorithm, and a critical path that allows determining the performance of 

the parallelized code.  

 



 

78 

 

 

a) <RType>  <FName>(<FArgs>) { 

<FDeclarations> 

while (1) { 

    if(C1) { Q1 } 

    if(C2) { Q2 } 

    if(C3) { Q3 } 

    … 

    if(Ck) { Qk } 

} 

} 

b) v =  u; 

 c) v = u  w; 

 d) v = u; 

 e) v = f(e1,…,en); 

 f) break; 

 g) return expr; 

 

Figure 3.5. Basic single-block model of a function in C 

 

 

 

When analyzing dependencies, variable Ci that represents the 

exacution condition is added to the input operands of Qi. Due to the 

extraction of external parallelism among basic blocks, the potential 

parallelization factor of BSBM increases, the execution of the parallel 

code implementation is accelerated, and the algorithm can be 

effectively pipelined. 

We illustrate BSBM with an example algorithm that finds the greatest 

common divisor (GCD). The representation of the model in C language 

is given in Fig. 3.6. It uses five variables C0, ... C4, which control the 

execution of single loop with an infinite iteration scheme. The body of 

the loop includes eight serialy executed statements. Half of them is 

executed unconditionally, implicitly using value true instead of 

conditional variables.  

The variables and operators which calculate the values of these 

variables determine the conditions for terminating GCD with return, 

conditions for continuing calculations, and methods for recalculating 

the values of integer variables X and Y. Due to the absence of 

branching in the loop body and alignment of operators in one ruler, 

the procedure of analyzing dependencies among operators and 

parallelizing operators is an effective one. It is easy to see that the 

following pairs of statements can be executed in parallel: (2,3), (2,4), 

(2,5), (2,6), (2,7), (5,6), (5, 8), (6.7), (7.8). 
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3.4. Transformation of loops for basic single-block model 

 

This chapter proposes a method [70, 71, 76] of the step-by-step trans-

formation of an arbitrary sequential algorithm presented in C or in other 

algorithmic language to one loop of a basic single-block model. The 

method guarantees the generation of a model code in a finite number of 

steps for any source algorithm. The method is based on the application of 

the following key transformations of the algorithm: 

 

 
int GCD (int X, int Y) { 
 int C0=1, C1, C2, C3, C4; 
 while (1) { 
  C0 = X == Y;  // 1 
  if (C0) return X;   // 2 
  C2 = ! C0;    // 3 
  if (C2) C1 = X < Y;  // 4 
  C3 = C2 && C1;  // 5 
  C4 = C2 && !C1;  // 6 
  if (C3) Y = Y - X;   // 7 
  if (C4) X = X - Y;   // 8 
 } 
} 
 

 
Figure 3.6. Basic single-block model of GCD algorithm 

 

 

1. insertion into the loop of operators that are located behind the 

loop; 

2. insertion into the loop of operators that are located before the loop; 

3. merging two adjacent nested loops into one; 

4. merging breaking statements while merging loops. 

A nontrivial program code typically contains an arbitrary structure of 

loops with various iteration schemes. In this loops structure, there are 

usually pairs of loops that are executed sequentially and pairs of loops 

nested one in other. We show that for any source system of loops, one 

can obtain an equivalent system of nested loops with infinite iteration 

schemes and break statements. Such a nested loops system can be further 

transformed into BSBM. 
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The basic rules of transforming an algorithm code to BSBM make ex-

tensive use of while (1) {S} and for (;;) {S} loops with infinite iteration 

schemes and a sequence S of statements. The transformation rules that 

are proposed in previous section allow the loops of an arbitrary structure 

to be converted into these iteration schemes. 

The basic rules M1-M5 of transforming an algorithm to BSBM that is 

presented in C/C++ are given in Fig. 3.7. Rule M1 ensures that state-

ments of sequence S4 which is located behind the loop, are inserted into 

the loop body that is constructed of sequences S1, S2 and S3 of statements 

and two break statements executed under conditions V1 and V2. Two 

break statements are merged into one, and sequence S4 before the single 

break. Additional conditional variable V3 is introduced. 

Sequence S1 of statements that are located in front of the loop with 

the iteration scheme while (1) and body S2, is inserted into the loop by 

Rule M2. Sequence S1 is put at the beginning of the loop body under the 

if-instruction using a conditional variable V that is assigned value 1 be-

fore the loop and is assigned value 0 inside the loop. Due to such control 

structure, sequence S1 executes exactly once at the beginning of the first 

iteration of the loop. 

Rule M3 is an extension of rule M2. It inserts into the loop not only 

the sequence S1 of statements that located in front of the loop, but also 

inserts the conditional if-instruction, which covers this loop. In this rule, 

an additional conditional variable V and an additional break statement 

are introduced. 

Rule M4 is a further extension of rules M2 and M3. It inserts into the 

loop which is located in else-part of the conditional instruction, every-

thing that is in front of and inside the conditional statement. The rule 

shows that all statements that are located before and behind the loop can 

be inserted into the body of the loop. 

Rule M5 merges two adjacent nested loops into one. Due to the elim-

ination of one loop, the depth of the nested system of loops is reduced by 

one. We assume that in the left part of the rule, variable V appears at the 

moment when statements S1 that are located before the inner loop are 

inserted in the body of this inner loop. The initialization operator V = 1 

that is put at the previous location of statements S1 is the only obstacle 

for merging two loops into one loop.  
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№ Фрагмент до преобразования Фрагмент после преобразования 

M1 while(1) { S1 if(V1) break; S2 

if(V2) break; S3} S4 

while(1) { S1 if(!V1) { S2 } V3=V1||V2; 

if(V3) { S4 break; } S3 } 

M2 S1 while(1) { S2 } V=1; while(1) { if(V) { S1 V=0; } S2 } 

M3 S1 if(C) { while(1) { S2 } } V=1; while(1) { if(V) { S1 V=0; } if(C) { 

S2 } else break; } 

M4 S1 if(C1) { S2 } else { S3 

while(1) { S4 if(C2) break; S5 } 

S6 } 

V2=1; while(1) { if(V2) { S1 V1=C1; 

if(V1) { S2 } else { S3 } V2=0; } if(V1) { 

S4 if(C2) { S6 break; } S5 } else break; } 

M5 while(1) { V=1; while(1) { if(V) 

{ S1 V=0; } S2 if(C) break; S3 } 

} 

V=1; while(1) { if(V) { S1 V=0; } S2 

if(C) V=1; S3 } 

 

Figure 3.7. Transformation rules for loops to obtain BSBM 

 

 

Since the initialization statement executes after exit from the inner 

loop due to the execution of break statement, we can replace break with 

the initialization statement, eliminate the inner loop and the initialization 

statement standing in front of the inner loop, and move forward the ex-

ternal loop. As a result, we obtain the right part of Rule M5. 

Any algorithm in C language, that is preliminary transformed by 

means of rules R1-R14 to an intermediate form, can then be transformed 

by means of rules M1-M5 to BSBM with one loop. To explain our tech-

nique of such a transformation, let us transform a system of nested loops 

to one functionally equivalent loop, and transform a sequence of loops to 

one equivalent loop.  

Fig. 3.8 shows a technique of transforming two nested loops L1 and 

L2 to one loop. Inner loop L2 consists of iteration scheme while(1), a 

head sequence S2 of statements, a berak statement under condition if(C2), 

and a tail sequence R2 of statements (Fig. 3.8a). The outer loop L1 

consists of iteration scheme while(1), a head sequence S1 of statements, a 

berak statement under condition if(C1), a sequence R1 of statements, the 

inner loop L2, and a tail sequence T1 of statements. At the first step of 

transformation the technique inserts all statements of the body of loop 

L1, which are located before and behind L2, into loop L2 (Fig. 3.8b). 

Comments /*L1*/ and /*L2*/ indicate the loops associated with break 

statements. 
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L1: while(1) { S1 if(C1) break; R1 

L2: while(1) { S2 if(C2) break; R2 } T1 

} 

a) 

 

L1: while(1) { V2=1;  

   L2: while(1) { if(V2) { S1 if(C1) break;/*L1*/ R1 V2=0;} 

      S2 if(C2) { T1 break;/*L2*/ } R2  

}} 

b) 

 

V2=1; L1: while(1) { 

   if(V2) { S1 if(C1) break; R1 V2=0;} S2 if(C2) { T1 V2=1;} else R2  

} 

c) 

 

Figure 3.8. Transformation of two nested loops to one loop 

 

 

 

At the second step of transformation the technique splits the 

initialization assignment “V2=1;” into two copies, which are located be-

fore L1 and within L2. Then it merges loops L1 and L2 into one result-

ing loop (Fig. 3.8c). 

The proposed technique of transforming two nested loops is 

generalized for arbitriraly number of nested loops using a method of 

mathematical induction. The induction step assumes that n-1 nested 

loops are merged in one loop, and proves that this resulting loop can be 

converted to a general form and then can be merged with the nth nested 

source loop. 

Fig. 3.9 presents a technique of transforming two sequential loops L1 

and L2 to one loop. Loop L1 consists of iteration scheme while(1) and a 

block, which includes a sequence S1 of statements, a berak statement in 

then-part of conditional statement with condition C1, and a tail sequence 

R1 of statements in else-part (Fig. 3.9a).  

The second loop L2 has the same structure. At the first step of 

transformation the technique inserts loop L2 into the body of loop L1. 

Now loop L2 is located in then-part of if-statement before break 

(Fig. 3.9b). At the second step (Fig. 3.9c), the technique separates loop 

L2 from the statements following it. 
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L1: while(1) { S1 if(C1) break; else {R1} } 

L2: while(1) { S2 if(C2) break; else {R2} } 

a) 

 

L1: while(1) { S1 if(C1) { 

   L2: while(1) { S2 if(C2) {break; /*L2*/} else {R2} } 

   break; /*L1*/ } else {R1} 

} 

b) 

 

L1: while(1) { S1 if(C1) { 

   L2: while(1) { S2 if(C2) {break; /*L2*/} else {R2} } 

   } if(C1) {break; /*L1*/} else {R1} 

} 

c) 

 

L1: while(1) { V2=1; 

   L2: while(1) { if(V2) { S1 V2=0; } 

            if(C1) { S2 if(C2) {break; /*L2*/} else {R2}} else break; /*L2*/ 

   }  

   if(C1) {break; /*L1*/} else {R1} 

} 

d) 

 

L1: while(1) { V2=1; 

   L2: while(1) { if(V2) { S1 V2=0; } 

            if(C1) { S2 if(C2) { 

                      if(C1) {break; /*L1*/} else {R1} break; /*L2*/ } else {R2} 

           } else { if(C1) {break; /*L1*/} else {R1} break; /*L2*/} 

}} 

e) 

 

L1: while(1) { V2=1; 

   L2: while(1) { if(V2) { S1 V2=0; } 

       if(C1) { S2 if(C2) {break; /*L1*/} else {R2}} else {R1 break; /*L2*/} 

}} 

f) 

V2=1;  

while(1) { 

      if(V2) { S1 V2=0; } 

      if(C1) { S2 if(C2) break; else {R2}} else {R1 V2=1;} 

} 

g) 

 

Figure 3.9. Transformation of two sequential loops to one loop 
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At the third step (Fig. 3.9d), the technique insertes sequence S1 of 

statements and conditional statement if(C1) into the body of loop L2, 

using an additional variable V2. It is assumed, statements S2 and R2 do 

not change the value of C1.  

At the fourth step (Fig. 3.9e), the if-statement located behind loop 

L2 is inserted into then- and else parts of if-statement that is in loop 

L2. At the fifth step (Fig. 3.9f), transformations are performed, which 

simplify the body of loop L2. Condition if(C1) occors three times in 

loop L2, due to this two branches may be eliminated, and two 

subsequent break statements may be merged. At the sixth step 

(Fig. 3.9g), two nested loops can be directly merged. 

The proposed technique of transforming two sequential loops is 

generalized for many sequential loops using a method of mathematical 

induction. The induction step assumes that n-1 sequential loops are 

merged in one loop, and proves that this resulting loop can be 

transformed to a general form and then can be merged with the nth 

sequentoal source loop.  

We illustrate the proposed transformation techniques by performing 

the C-code transformation into BSBM of function NN_DigitDiv of the 

cryptographic RSA standard, with a preliminary converted control flow 

(Fig. 3.4). The partitioning of the body of function NN_DigitDiv into 

seven large basic blocks B1, ..., B7 gives the skeleton, shown in 

Fig. 3.10a. Fig. 3.10 presents eight steps of transformation of this 

skeleton fragment. The following transformation rules are implemented 

at these steps. 

a) inserting basic block B7 into the body of loop L2; 

b) inserting basic block B4 and loop L2 into the body of loop L1, 

comments that represent loop labels are associated with break 

statements; 

c) split of statement if(c1) and separate of loop L2 from basic blocks 

B3, B4; 

d) split and insert of statement if(!c1) inside of loop L2; 

e) insert of statements B3 and if(c1) break; inside of loop L2; 

f) insert of basic blocks B2, B3, B4 inside of loop L2; 

g) elimination of loop L2; 

h) insert of basic block B1 inside of loop L1. 
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It is easy to see that the body of the resulting loop does not satisfy all 

the requirements of BSBM (Fig. 3.5), as the transformation process is 

not complete. Long conditional statements should be split into several 

short conditional statements. For instance, conditional statement 

“if (u1) {B1 u1 = 0;}” can be split into two simpler conditional state-

ment: “if (u1) {B1}” and “if (u1) {u1 = 0;}”. The nested statements 

“if (u2) {B2 if (c1) {B3} else {B4} u2 = 0;}” can be split into the state-

ments chain “if (u2) {B2} u3 = u2 && c1; u4 = u2 &&! c1; if (u3) {B3} 

if (u4) {B4} if (u2) {u2 = 0;}”. As a result, all basic blocks of the source 

code are finally located in the body of a single loop which contains one 

basic block. For its construction, only two additional Boolean variables 

u1 and u2 are used, which do not affect the internal and external parallel-

ism of the basic blocks. The implicit dependences of basic blocks B2, 

B3, B4, B5, B6 and B7 on conditional variables c1 and c2 in the source 

code become explicit in BSBM, without reducing the amount of poten-

tial parallelism that is hidden in the original algorithm. 

Fig. 3.11 shows the C-code which is obtained from the transformed 

skeleton fragment presented in Fig. 3.10h by means of substituting actual 

basic blocks in C instead of blocks symbols. 

 

3.5. Transformation of nested branching code to basic single-block 

model 

 

In BSBM the control flow is represented in a different way against 

the initial source code in C. Instead of nested general control structures it 

is a single loop with a set of assignments and break statements in the 

body, which are covered or uncovered with the short if-then statements. 

Fig. 3.12 shows an algorithm that is represented with recursive function 

Split, which is capable of splitting nested conditional instructions and 

generating a purely linear basic block. The split of control structures and 

the generation of BSBM preserve the original data flow in C-code, and 

convert the original control flow to additional data flow.  

Recursive function Split has two formal parameters: block p and ex-

pression c describing the condition of executing the block. It assumes 

that the source C-code is a structured program which uses the objects as 

follows. The source code is represented as a block of statements.  
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a) B1 

L1: while (1) { 

    B2 

    if(c1) {B3} else break; 

} B4 

L2: while (1) { B5 

    if(c2) {B6} else { B7 break;} 

} 

b) B1 

L1: while (1) { 

  B2 

  if(c1) {B3} else { B4 

    L2: while (1) { B5 

      if(c2) {B6} else {B7 break; /*L2*/ } 

    } break; /*L1*/ 

}} 

  

 

  

c) B1 

L1: while (1) { B2 

  if(c1) {B3} else {B4} 

  if(!c1) { 

    L2: while (1) { B5 

      if(c2) {B6} else {B7 break; /*L2*/ } 

    } 

    break; /*L1*/ 

  }  

} 

d) B1 

L1: while (1) { B2 

  if(c1) {B3} else {B4} 

  L2: while (1) { 

    if(!c1) { B5 

      if(c2) {B6} else {B7 break; /*L2*/ } 

    } else break; /*L2*/ 

  } 

  if(!c1) break; /*L1*/ 

} 

  

 

  

e) B1 

L1: while (1) { 

  B2 

  if(c1) {B3} else {B4} 

  L2: while (1) { 

    if(!c1) { 

      B5 

      if(c2) {B6} else {B7 break; /*L1*/ } 

    } else break; /*L2*/ 

  } 

} 

f) B1 

L1: while (1) { u2=1; 

  L2: while (1) { 

    if(u2) { B2 

      if(c1) {B3} else {B4} u2=0; 

    } 

    if(!c1) { B5 

      if(c2) {B6} else {B7 break; /*L1*/ } 

    } else break; /*L2*/ 

  } 

} 

  

 

  

g) B1 u2=1; 

L1: while (1) { 

  if(u2) { 

    B2 

    if(c1) {B3} else {B4} 

    u2=0; 

  } 

  if(!c1) { 

    B5 

    if(c2) {B6} else {B7 break; } 

  } else u2=1; 

} 

h) u1=1; u2=1; 

L1: while (1) { 

  if(u1) {B1 u1=0;} 

  if(u2) { B2 

    if(c1) {B3} else {B4} 

    u2=0; 

  } 

  if(!c1) { 

    B5 

    if(c2) {B6} else {B7 break; } 

  } else u2=1; 

} 

 

 Figure 3.10. Transformation of C code fragment for RSA to Basic single-block model 
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void NN_DigitDiv3( 

       nnd *a, nnd b[2], nnd c) { 

 nndt[2],u,v; 

 nnfd aHigh,aLow,cHigh,cLow; 

 int c1,c2,c3,c4,c5,c6,c7,c8,c9; 

 int c10=1,c11=1; 

 nnfd x1; 

 nnd  x2,x7,x8,x9,x10,x11,x16,x17; 

 int x3,x4,x5,x6,x12,x13,x14,x15; 

 while(1) { 

  if(c11) { 

   cHigh=hhf(c);  // 1 

   cLow=lhf(c);  // 2 

   t[0]=b[0];  // 3 

   t[1]=b[1];  // 4 

   c1=cHigh==mnnfd;  // 5 

   if(c1) { 

    aHigh=hhf(t[1]);  // 6 

   } else { 

    x1=cHigh+1;  // 7 

    aHigh=(nnfd)(t[1]/x1);  // 8 

   } 

   u=(nnd)aHigh*(nnd)cLow;  // 9 

   v=(nnd)aHigh*(nnd)cHigh; // 10 

   t[0]-=tohf(u);  // 11 

   x2=mnnd-tohf(u);  // 12 

   c2=t[0]>x2;  // 13 

   if(c2) t[1]--;  // 14 

   t[1]-=hhf(u);  // 15 

   t[1]-=v;  // 16 

   c11=0;  // 17 

  } 

  if(c10) { 

   x3=t[1]>cHigh;  // 18 

   x4=t[1]==cHigh;  // 19 

   x5=t[0]>=tohf(cLow);   // 20 

   x6=x4&&x5;  // 21 

   c3=x3||x6;  // 22 

   if(c3) { 

    t[0]-=tohf(cLow);  // 23 

    x7=mnnd-tohf(cLow);  // 24 

    c4=t[0]>x7;  // 25 

    if(c4) t[1]--;   // 26 

    t[1]-=cHigh;  // 27 

     aHigh++; // 28 

   } else { 

    c5=cHigh==mnnfd;  // 29 

    if(c5) { 

     aLow=lhf(t[1]);  // 30 

    } else { 

     x8=tohf(t[1])+hhf(t[0]);  // 31 

     x9=cHigh+1;  // 32 

     aLow=(nnfd)((nnd)x8/x9);  // 33 

    } 

    u=(nnd)aLow*(nnd)cLow;  // 34 

    v=(nnd)aLow*(nnd)cHigh;  // 35 

    t[0]-=u;  // 36 

    x10=mnnd-u;  // 37 

    c6=t[0]>x10;  // 38 

    if(c6) t[1]--;  // 39 

    t[0]-=tohf(v);  // 40 

    x11=mnnd-tohf(v);  // 41 

    c7=t[0]>x11;  // 42 

    if(c7) t[1]--;  // 43 

    t[1]-=hhf(v);  // 44 

   } 

   c10 = 0;  // 45 

  } 

  if(!c3) { 

   x12=t[1]>0;  // 46 

   x13=t[1]==0;  // 47 

   x14=t[0]>=c;  // 48 

   x15=x13&&x14;  // 49 

   c8=x12||x15;  // 50 

   if(c8) { 

    x16=t[0]-=c;  // 51 

    x17=mnnd-c;  // 52 

    c9=x16>x17;  // 53 

    if(c9) t[1]--;  // 54 

    aLow++; // 55 

   } else { 

    *a=tohf(aHigh)+aLow;  // 56 

    break; 

   } 

  } else 

   c10 = 1;  // 57 

 } 

} 

Figure 3.11. C-code of basic single-block model for RSA  
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The block can be an empty block or a block of instructions. The in-

struction can be if-instruction, assignment, break or other instruction. 

The if-instruction consists of a condition, a then-part that is a block, and 

optionally an else-part that is also a block. It is assumed that the right 

part of assignment is an expression that is constructed of only one logi-

cal, arithmetic or other operator. 

Function Split splits the nested and sequential conditional instructions 

into a single branched purely linear basic block that is constructed of the 

short if-then instructions with one operator in then-part and with the con-

dition that is represented with a simple Boolean variable. It uses predi-

cates as follows for analysis of the code: 

 is_if(s) returns true if statement s is a conditional instruction, and 

returns false otherwise; 

 is_block(s) returns true if statement s is a block (list of instruc-

tions), and returns false otherwise; 

 

 
function Split(block p, condition c) { 

if (is_block(p)) { 

while (p != empty) { 

Split(head(p),c);  p := tail(p); 

Split(p,c); 

} 

} else if (is_if(p)) { 

ci := cond(p);  ct := generate();  s := build_and(c,ci,ct); 

add(Result, s);  split(then(p),ct); 

if (has_else(p)) { 

cn := generate();  sn := build_not(ci,cn);  add(Result, sn); 

ce := generate();  se := build_and(c,cn,ce); 

add(Result, se);  split(else(p),ce); 

} 

} else { 

othif := build_if(c,p);  add(Result, othif); 

} 

} 

Figure 3.12. Recursive algorithm of split of nested conditional instructions 

 and generating the purely linear basic block 
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 has_else(s) returns true if conditional instruction s has an else-

part, and returns false otherwise. 

Function Split explores the following functions for analysis of blocks 

and if-statements: 

 head(p) returns the first instruction of block p; 

 tail(p) returns the rest instructions of block p or returns empty; 

 cond(s) returns the conditional expression of if-instruction s. 

 then(s) returns then-part of if-instruction s. 

 else(s) returns else-part of if-instruction s. 

The functions as follows are used in Split for synthesis of BSBM: 

 build_and(in1,in2,out) returns assign-instruction that is built of 

Boolean operator and, Boolean input variables in1 and in2 and 

output variable out; 

 build_not(in,out) returns assign-instruction that is built of operator 

not, input variable in and output variable out; 

 build_if(c,s) returns statement s if condition c is null, otherwise it 

returns instruction if-then that is built of condition c and instruc-

tion s in then-part; 

 Result is a global variable that represents a block of new instruc-

tions represented a a list that is generated by algorithm Split (ini-

tially the list is empty); 

 add(Result, s) concatenates instruction s at the end of list Result; 

 generate() returns a new Boolean variable. 

A remarkable feature of BSBM is that the parallel-sequential entry of 

the statements of the original basic blocks into the body of the single 

loop of BSBM is a source of further parallelism extraction when using 

other methods, rules and facilities of transformation. Since the majority 

of statements of the BSBM’s loop are under the short if-then instruction, 

rules for extracting operators from if-then are very attractive. The es-

sence of the rules is as follows. Let the operators of basic block B1 be in 

then-part of the conditional if-then statement, whose test variable c1 gets 

the value in basic block B0, as shown in Fig. 3.13a. Obviously, in such a 
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code, operators from B1 can be executed no earlier than operators from 

B0. Pairwise paralleling of operators from B0 and B1 is difficult. 

Speculative execution is an optimization technique where a comput-

er system performs some task that may not be needed. In order to apply 

such an execution to B1, we extract B1 from the if-then instruction, 

introducing some additional variables v’1, …, v’n, which are duplicates 

of resulting variables of B1, and add some reassignment statements in 

then-part (Fig. 3.13b). After such a step, more operators of B1 can exe-

cute in parallel with operators of B0. The critical path of the loop body 

becomes shorter. 

 

 

a) B0 

if(c1) { B1 } 
b) B0 

B1'’ 

if(c1) { v1=v1’;…vn=vn’; } 
  
Figure 3.13. Extraction of basic block B1 from if-then for speculative execution 
 

 

The application of the speculative execution rule (Fig. 3.13) to the 

RSA skeleton shown in Fig. 3.10h and to the corresponding C-code 

shown in Fig. 3.11 yields the BSBM code shown in Fig. 3.14. We move 

basic block B3 ahead of instruction if (c1) and move the basic block B6 

ahead of instruction if (c2) according to this rule. The new code hereinaf-

ter referred to as TRANSF is faster than the original code of the RSA 

fragment, shown in Fig. 3.11. 

 

3.6. Efficiency of basic single-block model 

 

Let us perform a more thorough analysis of the static and dynamic 

parameters of the basic blocks of all versions of the parallelism extrac-

tion model, such as the original (SOURCE), structured (STRUCT), basic 

single-block (BSBM) and transformed basic single-block (TRANSF). 

To estimate the static parameters of the bodies of all loops, as well as 

then and else parts of all conditional operators of the source code, we 

will consider them as independent basic blocks. To estimate the dynamic 

parameters, we will execute all the code models on the same input data. 

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Computer_system
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void NN_DigitDiv3( 

        nnd *a, nnd b[2], nnd c) { 

 nndt[2],u,v,t0,t1; 

 nnfd aHigh,aLow,cHigh,cLow; 

 nnfd aL,aH,x1; 

 int c1,c2,c3,c4,c5,c6,c7,c8,c9; 

 int c10=1,c11=1; 

 nnd x2,x7,x8,x9,x10,x11,x16,x17; 

 int x3,x4,x5,x6,x12,x13,x14,x15; 

 while(1) { 

  if(c11) { 

   cHigh=hhf(c);  // 1 

   cLow=lhf(c);  // 2 

   t[0]=b[0];   t[1]=b[1]; // 3,4 

   c1=cHigh==mnnfd; // 5 

   if(c1) { 

    aHigh=hhf(t[1]);  // 6 

   } else { 

    x1=cHigh+1;  // 7 

    aHigh=(nnfd)(t[1]/x1); // 8 

   } 

   u=(nnd)aHigh*(nnd)cLow; // 9 

   v=(nnd)aHigh*(nnd)cHigh;  // 10 

   t[0]-=tohf(u);  // 11 

   x2=mnnd-tohf(u); // 12 

   c2=t[0]>x2;  // 13 

   if(c2) t[1]--;  // 14 

   t[1]-=hhf(u);   t[1]-=v; // 15,16 

   c11=0;   // 17 

  } 

  if(c10) { 

   x3=t[1]>cHigh;  // 18 

   x4=t[1]==cHigh;  // 19 

   x5=t[0]>=tohf(cLow); // 20 

   x6=x4&&x5;  // 21 

   c3=x3||x6;  // 22 

   t0=t[0]-tohf(cLow); // 23 

   x7=mnnd-tohf(cLow); // 24 

   c4=t0>x7;  // 25 

   t1=t[1]-cHigh;  // 27 

   if(c4)   t1--;  // 26 

   aH=aHigh+1;  // 28 

   if(c3) { 

    t[0]=t0;  // 28a 

     t[1]=t1; aHigh=aH; 

   } else { 

    c5=cHigh==mnnfd; // 29 

    if(c5) { 

     aLow=lhf(t[1]);  // 30 

    } else { 

     x8=tohf(t[1])+hhf(t[0]);     // 31 

     x9=cHigh+1;  // 32 

     aLow=(nnfd)((nnd)x8/x9); // 33 

    } 

    u=(nnd)aLow*(nnd)cLow; // 34 

    v=(nnd)aLow*(nnd)cHigh; // 35 

    t[0]-=u;  // 36 

    x10=mnnd-u;  // 37 

    c6=t[0]>x10;  // 38 

    if(c6) t[1]--;  // 39 

    t[0]-=tohf(v);  // 40 

    x11=mnnd-tohf(v); // 41 

    c7=t[0]>x11;  // 42 

    if(c7) t[1]--;  // 43 

    t[1]-=hhf(v);  // 44 

   } 

   c10 = 0;   // 45 

  } 

  if(!c3) { 

   x12=t[1]>0;  // 46 

   x13=t[1]==0;  // 47 

   x14=t[0]>=c;  // 48 

   x15=x13&&x14;  // 49 

   c8=x12||x15;  // 50 

   x16=t[0]-c;  // 51 

   x17=mnnd-c;  // 52 

   c9=x16>x17;  // 53 

   if(c9)t1=t[1]-1;else t1=t[1];//54 

   aL=aLow+1;  // 55 

   if(c8) { 

    t[0]=x16;  // 55a 

    t[1]=t1; aLow=aL; 

   } else { 

     *a=tohf(aHigh)+aLow; // 56 

     break; 

   } 

  } else   c10 = 1;  // 57 

 }} 

Figure 3.14. Accelerated basic single-block model of C code fragment for RSA  
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Let us demonstrate the estimation of model parameters on the C-code 

of the NN_DigitDiv function (model SOURCE) that is a part of the RSA 

standard (the developers of this standard are Ronald Rivest, Adi Shamir 

and Leonard Adleman, 1977) [84], the skeleton of which, that is built on 

seven large basic blocks B1, ..., B7, is shown in Fig. 3.15a. 

By transforming the fragment shown in Fig. 3.15a, we obtain a struc-

tured model STRUCT, presented in Fig. 3.15b. To do this, we have in-

troduced a variable N, which takes the value of a basic block number, 

and have introduced a loop for, the iterations of which are repeated until 

the value of N falls outside the range of basic block numbers.  

At each iteration of the loop, the switch statement switches to the cor-

responding basic block, followed by statements that determine the num-

ber of the next basic block which will be selected at the next iteration of 

the loop. The basic single-block model BSBM of function NN_DigitDiv 

is shown in Fig. 3.15c, and the result of its accelerating transformation 

(model TRANSF) is shown in Fig. 3.14. 

 

 
a) B1 

L1: while (1) { B2 

    if(c1) {B3} else break; 

} B4 

L2: while (1) { B5 

    if(c2) {B6} else break; 

} B7 

c) u1 = 1; 

u2 = 1; 

while (1) { 

    if(u1) { B1 } 

    if(u1) { u1 = 0; } 

    if(u2) { B2 } 

    u3 = u2&&c1; 

    u4 = u2&&!c1; 

    if(u3) { B3 } 

    if(u4) { B4 } 

    if(u2) { u2 = 0; } 

    u5 = !c1; 

    if(u5) { B5 } 

    u6 = u5&&c2; 

    u7 = u5&&!c2; 

    if(u6) { B6 } 

    if(u7) { B7 break; } 

    if(c1) { u2 = 1; } 

} 

   

b) for(N=1; N<8; ) { 

  switch(N) { 

    case 1: B1  N=2; break; 

    case 2: B2  if(c1) N=3; else N=4; break; 

    case 3: B2  N=2; break; 

    case 4: B4  N=5; break; 

    case 5: B5  if(c2) N=6; else N=7; break; 

    case 6: B6  N=5; break; 

    case 7: B7  N=8; break; 

  } 

} 

 

  
 

Figure 3.15. Transform of C/C++ code fragment for RSA to structured model 
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These four models SOURCE, STRUCT, BSBM and TRANSF are 

executed on the following input data: the dividend is represented with 

b[0] = 717576735 nad b[1] = 2379867; the divisor is c=12345678. The 

obtained results are reported in Tables 3.1- 3.4.  

 

 

Table 3.1 

Dynamic parameters of the SOURCE model 
Basic block Statements Exrecutions Complexity Critical path 

1 5 1 5 5 
2 1 0   

3 2 1 2 2 

4 8 1 8 8 
5 5 43 215 215 

6 6 42 252 252 

7 1 1 1 1 
8 1 0   

9 3 1 3 3 

10 11 1 11 11 
11 5 71 355 355 

12 5 70 350 350 

13 1 1 1 1 

  233 1203 1203 

 

 

Table 3.2 

Dynamic parameters of the STRUCT model 

Basic 

block 

State-

ments 

Execu-

tions 

Local 

critical 

path 

Comple-

xity 

Total 

critical 

path 

for(;N<14;) 1 234 1 234 234 

switch(N) 1 233 1 233 233 

1 5 1 2 5 2 
2 1 0 1   

3 2 1 2 2 2 

4 8 1 6 8 6 
5 5 43 3 215 129 

6 6 42 4 252 168 

7 1 1 1 1 1 

8 1 0 1   

9 3 1 2 3 2 
10 11 1 6 11 6 

11 5 71 3 355 213 

12 5 70 3 350 210 
13 1 1 1 1 1 

  699  1670 1207 
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The dynamic parameters of the SOURCE model (Table 3.1) and 

STRUCT model (Table 3.2) are estimated in terms of basic blocks 

(Fig. 3.4), and the dynamic parameters of the BSBM (Table 3.3) and 

TRANSF (Table 3.4)  models are described in more detail in terms of 

individual statements.  

The parameters of a basic block are the number of its statements, the 

total number of their executions, the total computational complexity, 

measured as the total number of statements executions, and the total 

critical path length, while taking into account all the performances. 

 

 

 

Table 3.3 

Dynamic parameters of the BSBM model 

Statement Complexity 
Critical 

path 
 Statement Complexity 

Critical 

path 

1 1 1  30   
2 1   31 1 1 

3 1   32 1  

4 1   33 1 1 
5 1 1  34 1 1 

6    35 1  

7 1 1  36 1 1 
8 1 1  37 1  

9 1 1  38 1 1 

10 1 1  39 1 1 
11 1   40 1  

12 1   41 1  

13 1   42 1  
14 1   43 1 1 

15 1   44 1 1 

16 1   45 43  
17 1   46 71  

18 43   47 71 71 

19 43   48 71  
20 43 43  49 71 71 

21 43 43  50 71 71 

22 43 43  51 70 70 

23 42 42  52 70  

24 42   53 70 70 

25 42 42  54 70 70 
26 42 42  55 70  

27 42 42  56 1 1 

28 42   57 42  

29 1 1   1289 736 
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Table 3.4 

Dynamic parameters of the TRANSF model 

Statement Complexity 
Critical 

path 
 Statement Complexity 

Critical 

path 

1 1 1  30   

2 1   31 1 1 
3 1   32 1  

4 1   33 1 1 

5 1 1  34 1 1 
6    35 1  

7 1   36 1 1 

8 1 1  37 1  
9 1 1  38 1 1 

10 1 1  39 1 1 

11 1   40 1  

12 1   41 1  

13 1   42 1  
14 1   43 1 1 

15 1   44 1 1 

16 1   45 43  
17 1   46 71  

18 43   47 71 71 

19 43   48 71  
20 43 43  49 71 71 

21 43 43  50 71 71 

22 43 43  51 70  
23 42   52 70  

24 42   53 70  

25 42   54 70  
26 42   54a 70 70 

27 42   55 70  

28 42   56 1 1 
28a 42 42  57 42  

29 1 1   1401 469 

 

 

For each basic block of the STRUCT model, the local critical path is 

also estimated. For each individual statement of the BSBM and 

TRANSF models, the contribution to the total computational 

complexity and the total critical path is estimated using the statements 

precedence graph shown in Fig. 3.16. The SOURCE code has 13 

detailed basic blocks, the STRUCT code has 15 blocks, including two 

additional blocks which are for and switch statements. The OBBM 

model code and the transformed model TRANSF code have a single 

basic block. The total number of executions of basic blocks of the source 
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code is 233, the structured code is three times more (699). The only basic 

block of BSBM and TRANSF models has 113 executions, which is 

equal to the number of complete iterations of the single loop. 
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Figure 3.16. Statements precedence graph for basic single-block model  
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Static parameters of the models include the average number of 

statements in a basic block, which is equal to 4.15 and 3.73 for SOURCE 

and STRUCT respectively, and equal to 57 and 59 for BSBM and 

TRANSF respectively. Dynamic parameters include the average number 

of statements executions in a basic block. For models SOURCE and 

STRUCT it is equal to 5.15 and 2.39 respectively, and equal to 11.41 and 

12.40 for BSBM and TRANSF respectively. The increase in the average 

number of statements executions against the static average number of 

statements in SOURCE is due to the frequent long runs.  

The reduction of this parameter is approximately five times higher for 

BSBM and TRANSF, which is explained by the fact that the statements 

of the single block are executed only when certain conditions are met. 

Static and dynamic estimates of the average number of statements on 

the critical path of the single basic block characterize the parallelization 

potential of the models. Taking into account the frequency of execution 

of basic blocks, these estimates give an evaluation of the total execution 

time of the entire code. 

Since the total number of executions of all basic blocks of the BSBM 

is 113, we conclude that on average a 2.06 of basic blocks execute within 

on iteration of single loop.  

At the same time, the number of iterations in the single loop of 

source code is 233, and the internal parallelism of the basic blocks of 

the source code provides a parallelization factor of 1.38. 

Let's give a comparison of the parallelism extraction models, using 

the C-code of function NN_DigitDiv. Analyzing the skeleton of 

SOURCE model that is presented in Fig. 3.15a, it is easy to see that two 

while loops with labels L1, L2 separate the basic blocks B1, B4, B7 from 

each other. Basic blocks B2 and B3 of loop L1 and basic blocks B5 and 

B6 of loop L2 are separated by conditional instructions.  

The basic blocks that are inside of a loop are also separated from the 

basic blocks outside the loop. Thus, the statements of different basic 

blocks of the source code are not mutually parallelizable. 

It is easy to see that in STRUCT model shown in Fig. 3.15b, only 

one basic block of the source code executes at the current iteration of 

the loop. Consequently, the total number of iterations is equal to the 

sum of the numbers of block executions plus one. Along with notice-

able overhead, this is a significant drawback of this model. It is im-
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possible to perform and even more to parallelize two or more basic 

blocks within one iteration of the loop, although parallelization within 

basic block is possible. This is a serious obstacle for the subsequent 

use of other methods and tools for the extraction of parallelism that 

are based on the STRUCT model. 

Both static and dynamic comparisons of parallelism extraction mod-

els are possible. The static comparison uses parameters of the control 

flow graphs and the data flow graphs of the models codes. The most im-

portant static parameters are the size of the graph, the length of the criti-

cal path on the graph, and others. The disadvantage of the static compari-

son is the inability to take into account the behavioral properties of the 

models in the process of solving typical problems. 

As a consequence, the dynamic parameters of the models are prefera-

ble. The first dynamic parameter is the computational complexity 

CCompl(M) of the model M, which is measured in the number of execut-

ed operations of the programming language (or in the sum of the weights 

of the operations) on the sets of input data that are most typical at solv-

ing the problem. The second important dynamic parameter is the length 

of the critical path CPath(M) on the data flow graph, which is expanded 

during code execution. The third parameter can be calculated over the 

dividing the first parameter by the second one, it is a factor of potential 

parallelism PFactor(M) of model M that is calculated as 

 

.
)(

)(
)(

MCPath
MCCompl

MPFactor   (3.2) 

 

The fourth parameter is the acceleration Accel(M) of model M against 

model SOURCE that is considered as a reference model. It does not de-

pend on the computational complexity of both M and SOURCE. The 

acceleration can be calculated using the operation of dividing the critical 

path length of SOURCE by the critical path length of M:  

 

.
)(

)(
)(

MCPath
SOURCECPath

MAccel   (3.3) 
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It is obviously, the smaller the length of the critical path, the larger 

the factor of parallelization potential of the model, and the higher the 

acceleration it yields. 

Table 3.5 reports the parameters of models SOURCE, STRUCT, 

BSBM and TRASF which are measured on function NN_DigitDiv. The 

transition from SOURCE to STRUCT has increased the computational 

complexity from 1203 to 1670 statements executions, or by 40.5%. The 

transition from SOURCE to BSBM has implied lower growth of the 

computational complexity from 1203 to 1289. The transition from 

BSBM to TRASF has increased the computational complexity to 1401 or 

8.7% higher. As for the critical path, the trend here is completely oppo-

site to the computational complexity. The length of the critical path in 

the STRUCT model remains almost the same as in the SOURCE model 

(1207 against 1203). In the BSBM and TRASF models it is reduced 

against SOURCE from 1203 down to 736 and further down to 469, or by 

38.8% and 60.0% respectively.  

 

Table 3.5 

Parameters of parallelism extraction models of RSA 
Параметр SOURCE STRUCT OBBM TRASF 

Вычислительная сложность 1203 1670 1289 1401 

Критический путь 1203 1207 736 469 

Коэффициент распараллели-

вания 
1.00 1.38 1.75 2.99 

Ускорение 1.00 1.00 1.64 2.57 

 

 

The parallelization factor is an integrated indicator that takes into ac-

count changes both in computational complexity and in the critical path. 

The parallelization factor of STRUCT, BSBM and TRASF models in-

creased by 1.38, 1.75 and 2.99 times compared to the original SOURCE 

model. It should be noted that in the STRUCT model, the growth is ex-

plained by increase in the computational complexity, the acceleration of 

computations has not occurred.  

In contrast, in the BSBM and TRASF models, an acceleration of 1.64 

and 2.57 times is achieved due to the extraction of parallelism.  

Thus, the BSBM model with one basic block is organized in such a 

way, that the potential parallelism of operators is not reduced by the 
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dominance of the sequential execution of control structures. The parallel-

ism has effectively extracted by the split and eliminate of sequential con-

trol structures from the code. 

 

3.7. Conclusion 

 

A method of extraction of parallelism from a difficult to parallelize 

sequential algorithm is proposed. It uses a set of transformation rules and 

applies them step-by-step to the source code. The selection of the rules 

and choosing of the preferable code fragments, which have to be trans-

formed, is performed in such a way as to obtain better parameters of the 

equivalent parallel code.  

The transformation of the control flow of the source algorithm and its 

basic blocks ensure the extraction of the most important types of 

parallelism from hard-to-parallel loop / branching programs, which 

process arbitrary data types and are built using while, do-while, if, switch 

and other statements. 

A basic single-block flow model (BSBM) of the algorithm, that is 

constructed of a single loop whose body includes a single basic-block, 

provides real extraction of parallelism of many types from the source 

code. The model provides efficient techniques for analyzing 

dependencies among statements, identifying pairs of parallelizable 

operators, pairs of orthogonal mutually exclusive operators, and parallel 

paths in the algorithm. It allows for efficient estimation of the 

computatioinal complexity, critical path length and parallelization factor 

of the code. 

A step-by-step transformation method of an arbitrary sequential algo-

rithm to the basic single-block flow model is proposed. It guarantees ob-

taining a model code in a finite number of steps for any source algo-

rithm, based on universal transformation rules such as inserting operators 

before and after a loop, merging sequential and nested loops in one loop, 

eliminating loops’ continue statements and merging break statements 

into one break, and others.  

A technique of evaluating the static and dynamic parameters (includ-

ing the level of hidden parallelism) of algorithm models has been devel-

oped. It is applied to the source, structured, single-block and transformed 

single-block models. The influence of the parameters of the basic blocks 
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on the parameters of the whole models, including the degree of implicit 

potential parallelism of blocks and models is shown. 

A detailed comparison of parameters of the four parallelism extrac-

tion models on the RSA standard is carried out. It proves the possibility 

of a significant reduction in the critical path length, of an increase of the 

parallelization factor, and an increase in the acceleration factor of the 

basic single-block flow model, and further modifications of this model 

against the known models. 
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4. ANALYSIS OF BASIC SINGLE-BLOCK MODEL 

 

4.1. Goals of analysis 

 

The main goal of analysis is the precise estimation of the computa-

tional complexity, critical path and parallelization potential of the basic 

single-block model. The estimation crucially depend on finding out data 

dependences among statements within one iteration of the loop and be-

tween consecutive loop iterations. In its turn, data dependences analysis 

cannot be performed without finding the statements which are mutually 

exclusive, and which of them are not. Mutually exclusive statements 

cannot be data dependent. 

In this work, the algorithm (program code) transformation and analy-

sis techniques are essentially base on single assignment model of a vari-

able. It requires that each variable to be used once, although it may have 

several producers and several consumers. All producers must belong to 

mutually exclusive branches of nested conditional statements within one 

iteration of the loop and among several loop iterations. 

 

4.2. Analysis of structured basic single-block model 

 

The structured program improves the clarity, quality, and develop-

ment time of an algorithm [11, 13]. It is constructed by use of the struc-

tured control flow constructs of selection (if-then-else), repetition (while 

and for), block structures, and procedures and functions. It explicitly de-

fines all pairs of mutually exclusive operators over branches of nested if-

then-else statements.  

Example 4.1. Fig. 4.1 presents an example C/C++ code of structured 

program that is constructed of one loop and three branching statements. 

The loop contains data flow feedback. All pairs of mutually exclusive 

operators can be easily seen. All of them belong to one iteration of the 

loop. These cannot be seen for different loop iterations. Fig. 4.2 shows 

the equivalent basic single-block model that is a result of transformation 

of the source code. The iteration scheme of the loop is quite simple, but 

the number of short if-then statements equals 17 that is much larger than 

the number of if-then-else statements in the source code. It is difficultly 

https://en.wikipedia.org/wiki/Block_(programming)
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to find out in the basic single-block model what pairs of operators are 

mutually exclusive and what of them are not. 

 

 
void DataFlowFeedback(float *A, float *B, float *C, int n) { 

float a0, b0, c0, d1, d0 = 0.0f; 

for (int i = 0; i < n; ++i) { 

a0 = A[i]; 

b0 = B[i]; 

if (a0 == b0) { 

c0 = 0.0f; 

} else { 

d1 = a0 - b0; 

if (b0 < 0)   c0 = d1 + 1.0f;  

else { 

if (d0 > 0)   c0 = d1 - 1.0f;   

else   c0 = d0; 

} 

d0 = d1; 

} 

C[i] = c0; 

} 

} 

Figure 4.1. Example C/C++ structured looping/branching code with dataflow feedback 

 

 

Given two if-then statements “if (ti) Si” and “if (tj) Sj”, how to find out, 

wither Si and Sj are mutually exclusive or not? It is clear that everything 

depends on the Boolean conditional variables ti and tj. In addition to val-

ue false (0), each of them can take value true (1). If both variables can 

take value 1 simultaneously, then Si and Sj are not mutually exclusive. 

Therefore, Si and Sj are mutually exclusive if the pair (ti, tj) can only take 

values 00, 10 and 01.  

 

4.2.1. Evaluating conditional variables using Boolean expressions 

 

Let T be a set of conditional Boolean variables occurred in if-then 

statements of the basic single-block model. The conditional variables 

determine the control flow of the single loop body. Let B be a set of oth-

er Boolean variables of the model which are used for evaluating the con-
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ditional variables. The set of primary Boolean variables is denoted as P. 

The basic single-block model evaluates these variables mostly using re-

lational operators.  

void DataFlowFeedback(float *A, float *B, float *C, int n) { 

float a0, b0, c0, d1, d0=0.0f; 

int i = 0; 

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13; 

while (true) { 

t0 = i < n;  // 1 

t1 = ! t0;  // 2 

if(t1)   break;  // 3 

if (t0)   a0 = A[i];  // 4 

if (t0)   b0 = B[i];  // 5 

if (t0)   t2 = a0 == b0;  // 6 

if (t0)   t3 = ! t2;  // 7 

t8 = t0 && t2;  // 8 

if (t8)   c0 = 0.0f;  // 9 

t9 = t0 && t3;  // 10 

if (t9)   d1 = a0 - b0;  // 11 

if (t9)   t4 = b0 < 0;  // 12 

if (t9)   t5 = ! t4;  // 13 

t10 = t9 && t4;  // 14 

if (t10)   c0 = d1 + 1;  // 15 

t11 = t9 && t5;  // 16 

if (t11)   t6 = d0 > 0;  // 17 

if (t11)   t7 = ! t6;  // 18 

t12 = t11 && t6;  // 19 

if (t12)   c0 = d1 - 1;  // 20 

t13 = t11 && t7;  // 21 

if (t13)   c0 = d0;  // 22 

if (t9)   d0 = d1;  // 23 

if (t0)   C[i] = c0;  // 24 

if (t0)   ++i;  // 25 

} 

} 

Figure 4.2. Example structured basic single-block model with dataflow feedback 

 

 

Intermediate Boolean variables of set B \ P are evaluated over prima-

ry variables, and conditional variables are evaluated over primary and 

intermediate variables. 



 

105 

 

 

Example 4.2. There are 8 conditional Boolean variables in the basic 

single-block model shown in Fig. 4.2. They belong to set T = {t0, t1, t8, 

t9, t10, t11, t12, t13}. Set B = {t0, t2, t3, t4, t5, t6, t7} of additional 7 

Boolean variables helps to evaluate the conditional variables. It includes 

4 primary variables, i.e. P = {t0, t2, t4, t6}. It also includes 3 intermedi-

ate variables, i.e. B \ P = {t3, t5, t7}.  

We can evaluate all conditional variables with Boolean expressions, 

which can be extracted from the code. Thus conditional variable t0 is 

evaluated with expression “i<n” over relational operation, therefore it is 

simultaneously a primary variable. Conditional variable t1 is evaluated 

with expression “t0” over Boolean negation. Conditional variable t11 is 

evaluated with expression “t9  t5” over Boolean conjunction. In its 

turn, variable t9 is evaluated with expression “t0  t3”, variable t5 is 

evaluated with expression “t4”, and variable t3 is evaluated with ex-

pression “t2”. After substitution, variable t11 can be evaluated with 

expression “t0  t2  t4” over three primary variables. Variable t11 

takes values which depend on the combinations of values of variables t0, 

t2 and t4.   

 

 

4.2.2. Relations among values of primary Boolean variables 

 

Dependences among values of primary Boolean variables strongly 

influence dependences among values of conditional Boolean varia-

bles. These dependences can be described with relations on tuples of 

Boolean values. 

When the values of conditional variable t11 are analyzed (Fig. 4.2), 

relations among values of primary variables t0, t2 and t4 must be consid-

ered. These relations are associated with the feasible bit-vector values of 

the primary variables which can appear during code execution. Expres-

sions “i < n”, “a0 == b0” and “b0 < 0” evaluate variables t0, t2 and t4 

and, as can be easily seen, are independent. It means their vector value 

can take any tuple from 000 to 111. 

Matrix F of feasible values of pairs of primary variables is repre-

sented with Equation (4.1). 
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F  . (4.1) 

In matrix F, rows and columns correspond to primary variables ti; 

feasibility characteristic function fij is a binary Boolean function f(ti,tj) 

which determines a four-bit vector, which is encoded with decimal num-

bers 0…15, and whose elements show the feasibility (value 1) or infeasi-

bility (value 0) of the corresponding two-bit values of primary variables 

ti and tj. Value 9 in the principal diagonal of matrix F represents the 

equivalence () binary Boolean function (1001). 

Matrix F allows computation of feasible bit-vector values of n varia-

bles over feasible values of variable pairs.  

Example 4.3. For our example primary variables t0, t2 and t4, matrix 

F is as follows: 

 

91515

15915

15159

4

2

0

t

t

t

F  . 

 

In this matrix, value 15 (1111) represents binary Boolean function 

Constant 1 which means that all values 00, 01, 10 and 11 of pair (ti,tj) are 

feasible during execution of the code. Bellow we will see that fij can be 

other binary Boolean function. 

 

4.2.3. Pairs of orthogonal conditional variables 

 

We assume that two conditional Boolean variables ti and tj depend on 

the same set of primary variables. They are orthogonal if they never take 

value 1 simultaneously. In other words, if ti takes 1 then tj takes 0, and if 

tj takes 1 then ti takes 0.  

In the structured basic single-block model, the orthogonal pairs of 

conditional variables can be found out using Boolean logic. Thus 
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source conditional statement “if (t0) Si else Sj” produces in the single-

block model the code with additional Boolean variable t1, assignment 

statement and two short if-then statements: “t1=!t0; if (t0) Si  if (t1) 

Sj”. It is easy to see that variables t0 and t1 are orthogonal, and two 

short if-then statements with Si and Sj inside are mutually exclusive. 

Nested conditional statements “if (t0) if (t1) Si else Sj” produce code 

“t2 = ! t1; t3 = t0 && t1; t4 = t0 && t2; if (t3) Si; if (t4) Sj”, which 

explores three additional Boolean variables. Variable pairs (t0, t3) 

and (t0, t4) are not orthogonal, while variables t3 and t4 are orthogo-

nal as t1 and t2 are orthogonal. 

In general form, the orthogonal condition can be represented with the 

following logical equation:  

 

 )()( ijji ttttp  , (4.2) 

 

where  is Boolean negation,  is Boolean conjunction,  is Boolean 

implication, p is a vector of primary variables which ti and tj depend on, 

and  is a universal quantifier (for all p) which ties variables of p. After 

substitution of the evaluating expressions instead of variables ti and tj, 

Equation 4.2 can be expressed in terms of primary variables. 

Example 4.4. Let us consider pair t9 and t13 of conditional variables. 

The expression of evaluating t9 is “t0  t2” and the expression of eval-

uating t13 is “t0  t2   t4  t6”. After substituting these expres-

sions in Equation (4.2) we obtain: 

 

((t0  t2)  (t0  t2  t4  t6))   

((t0  t2   t4  t6)  (t0  t2))  =  

 

((t0  t2)  (t0  t2  t4  t6))   

((t0  t2   t4  t6)  (t0  t2))  =  

 

t0  t2  t4  t6. 

 

The inferred disjunction of four literals is not Boolean function Con-

stant 1, therefore variables t9 and t13 are not orthogonal. 
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Example 4.5. Now we consider variables t10 and t13. The expression 

of evaluating t10 is “t0  t2  t4” and the expression of evaluating t13 

is “t0  t2   t4  t6”. After substituting these expressions in Equa-

tion (4.2) we obtain: 

 

((t0  t2  t4)  (t0  t2  t4  t6))   

((t0  t2   t4  t6)  (t0  t2  t4))  =  

((t0  t2  t4)  (t0  t2  t4  t6))   

((t0  t2   t4  t6)  (t0  t2  t4))  =  

 

t0  t2  t4  t4  t6 = 1. 

 

The inferred disjunction has literals t4 and t4 as operands and is 

equivalent to Boolean function Constant 1, therefore variables t10 and 

t13 are orthogonal. 

Matrix Ort (Equation 4.3) describes all pairs of orthogonal and all 

pairs of non-orthogonal conditional variables of the example basic sin-

gle-block model. This matrix completely determines all pairs of mutually 

exclusive operators in the basic single-block mode. 
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. (4.3) 

 

4.2.4. Estimating parameters of basic single-block model 

 

Analysis of the basic single-block model yields computational com-

plexity, critical path and parallelization potential of the block. These pa-

rameters depend on input data of the algorithm. 
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Various aspects of the model are important while estimating compu-

tational complexity: the cost of operators, the cost of control structures, 

and the cost of memory operations. The complexity of operators is de-

rived directly from the behavioral description. The complexity of control 

structures and memory operations depends on the implementation meth-

od of algorithm and on the basic parallel architecture. 

Example 4.6. The loop body shown in Fig. 4.2 includes 25 statements 

which contain only 4 arithmetic operators and 4 relational operators. It 

includes 10 low cost logic scalar operators and 17 if-then statements. 

Only 6 if-then statements may not be removed; one of them covers break 

operator, 4 of them select one value of 4 producers for variable c0, and 

another one select new value for state variable d0 which has two produc-

ers: operator 22 and the current state value. The model also includes 24 

assignments and 3 array indexing operators. 

The basic single-block model includes many if-then statements which 

allow flexible reordering of statements in the block and efficient partition 

of the model. Both pipelined and non-pipelined partitioning can be ac-

complished. Most of if-then statements need no implementation in the 

target architecture. In hardware architecture, only if-then statements are 

saved and implemented which describe more than one producers of a 

variable; other if-then statements may be removed from the model. In 

software architecture, if-then statements with identical conditional varia-

ble can be merged into one if-then statement, and one if-then-else state-

ment can be generated of several if-then statements, thus reducing the 

amount of computations on one processor.  

Now we transform the basic single-block model shown in Fig. 4.2 to 

a model for hardware implementation which is presented in Fig. 4.3. We 

remove 11 if-then statements which may be omitted without changing 

the algorithm behavior. We extract computations from 2 of 4 producers 

of variable c0 and merge these producers to one long conditional state-

ment which can be implemented with multiplexor. Input and output vari-

ables of statements and matrix Ort of orthogonal conditional variables 

(Equation 4.3) which determine mutually exclusive operators are the ba-

sis for data dependences analyses. The main rule is as follows. If condi-

tional variables ti and tj are orthogonal according to Ort, then statements 

“if (ti) y=x;” and “if (tj) z=y;” are independent, although variable y is out-
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put of the first statement and is input of the second statement. If ti and tj 

are not orthogonal, then the statements are data dependent. 

Fig. 4.4 shows the data dependency graph for the transformed basic 

single-block model presented in Fig. 4.3. State variables i and d0 consti-

tute dataflow feedback in the graph. Their values produced in one itera-

tion of the loop are consumed in next loop iteration. 

 

 

 
void DataFlowFeedback(float *A, float *B, float *C, int n) { 

float a0, b0, c0, d1, d0=0.0f; 

int i = 0; 

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13; 

while (true) { 

t0 = i < n;  // 1 

t1 = ! t0;  // 2 

if(t1)   break;  // 3 

a0 = A[i];  // 4 

b0 = B[i];  // 5 

t2 = a0 == b0;  // 6 

t3 = ! t2;  // 7 

t8 = t0 && t2;  // 8 

t9 = t0 && t3;  // 9 

d1 = a0 - b0;  // 10 

t4 = b0 < 0;  // 11 

t5 = ! t4;  // 12 

t10 = t9 && t4;  // 13 

t11 = t9 && t5;  // 14 

t6 = d0 > 0;  // 15 

t7 = ! t6;  // 16 

t12 = t11 && t6;  // 17 

t13 = t11 && t7;  // 18 

c00 = d1 + 1;  // 19 

c01 = d1 - 1;  // 20 

if (t8) c0 = 0; else if (t10) c0 = c00; else  

if (t12) c0 = c01; if (t13) c0 = d0;  // 21 

if (t9)   d0 = d1;  // 22 

C[i] = c0;  // 23 

++i;  // 24 

} 

} 

Figure 4.3. Transformation of example model for hardware implementation 
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Figure 4.4. Data dependency graph of example basic single-block model in Fig. 4.3 

 

 

The data dependencies among statements allow evaluation of the crit-

ical path and parallelization potential of the code. These parameters may 

vary depending on input data. In any case, the parallelization potential of 

code shown in Fig. 4.3 is higher than that one shown in Fig. 4.2. 

 

4.3. Advanced analysis of basic single-block model 

 

Very often programmers do not write purely structured code although 

this code is close to structured one. Fig. 4.5 shows an example of such 

code. This code indicates mutually exclusive branches rather with condi-

tional expressions than with then and else alternatives. Such expressions 

intensively use relational operators. 

The loop body contains at top level two if-then statements whose 

conditional expressions are constructed of variables a0 and b0, and are 
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constructed of two relational operators “>” and “<=”. In its turn, the sec-

ond if-then statement contains two additional if-then statements whose 

conditional expressions are constructed of two relational operators “<=” 

and “>”, and are constructed of variable a0 and literals 0 and 4. 

Fig. 4.6 presents the basic single-block model that is functionally 

equivalent the source code. The logic part of the model differs from that 

of the previous model. Thus statement 18 describes a conditional expres-

sion for the fourth producer of variable c0. This producer must be mutu-

ally exclusive against three previous producers.  

Analysis of such basic single-block model differs from the above 

considered structured basic single-block model.  

 
void relationalOperators(float *A, float *B, float *C, int n) { 

float a0, b0, c0, d0 = 3; 

for (int i = 0; i < n; ++i) { 

a0 = A[i]; 

b0 = B[i]; 

if (a0 > b0) { 

c0 = a0 - d0 * b0; 

} 

if (a0 <= b0) { 

c0 = b0 - a0; 

if (a0 <= 0) { 

c0 = b0 + 1; 

} 

if (a0 > 4) { 

c0 = a0 - 5; 

} 

} 

C[i] = c0; 

d0 = c0; 

} 

} 

Figure 4.5. Example C/C++ non-structured code with dataflow feedback 

 

 

4.3.1. Feasibility functions for pairs of primary Boolean variables 

 

Section 4.3.2 proves that the feasibility function for two independent 

primary Boolean variables is Boolean constant 1. Various kinds of de-
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pendency between primary variables may exist in program code 

(Fig. 4.6). In this section, we analyze relational operators ==, !=, >, >=, < 

and <=from this point of view.  

 

 
void relationalOperators_(float *A, float *B, float *C, int n) { 

float a0, b0, c0, c1, d0 = 3; 

int i = 0; 

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11; 

while (true) { 

t0 = i < n;  // 1 

t1 = ! t0;  // 2 

if (t1) break;  // 3 

if (t0)   a0 = A[i];  // 4 

if (t0)   b0 = B[i];  // 5 

if (t0)   t2 = a0 > b0;  // 6 

t7 = t0 && t2;  // 7 

if (t7)   c1 = d0 * b0;  // 8 

if (t7)   c0 = a0 - c1;  // 9 

if (t0)   t3 = a0 <= b0;  // 10 

t8 = t0 && t3;  // 11 

if (t8)   t4 = a0 <= 0;  // 12 

t9 = t8 && t4;  // 13 

if (t9)   c0 = b0 + 1;  // 14 

if (t8)   t5 = a0 > 4;  // 15 

t10 = t8 && t5;  // 16 

if (t10)   c0 = a0 - 5;  // 17 

if (t8)   t6 = ! (t4 || t5);  // 18 

t11 = t8 && t6;  // 19 

if (t11)   c0 = b0 - a0;  // 20 

if (t0)   C[i] = c0;  // 21 

if (t0)   d0 = c0;  // 22 

if (t0)   ++i;  // 23 

} 

} 

Figure 4.6. Example non-structured basic single-block model with dataflow feedback 

 

 

Let primary Boolean variables ti and tj be assigned values with two 

assignment statements, which contain binary relational operators in the 

right part whose input variables are identical (Equation (4.4)): x and y are 

numerical (may be other type of) variables, and Ri and Rj are relational 
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operators. As many as 36 combinations of Ri and Rj are possible. All of 

them are represented with matrix RV shown in Fig. 4.7.  

 

91176711

1396141314

76911711

6141391314

71171196

1314131469

!

!















RV
 

 

Figure 4.7. Feasibility functions for relational operators with identical input variables  

 

Element fRi,Rj of the matrix is a function that determines the feasibility 

of vector values of pair (ti, tj). Function 6 is Boolean exclusive or, func-

tion 7 is disjunction, functions 11 and 13 are implication, and function 

14 is Sheffer stroke (negation of conjunction). 

 

ti = x Ri y; (4.4) 

tj = x Rj y; 

 

Example 4.7. For instance, the feasibility function for operators >= 

and > and statements (4.4) has decimal code 11 that equivalent to binary 

code 1011. It means that pair (ti, tj) of Boolean variables can take values 

00, 10 and 11, and cannot take value 01.  

Indeed, if x >= y equals 0, then x > y cannot be equal to 1. Similarly, 

the feasibility function for operators <= and >= has decimal code 7 (bi-

nary code 0111). Value 00 is infeasible as x <= y equals 0 implies x >= y 

equals 1. The code in Fig. 4.6 contains statements “t2 = a0 > b0;” and 

“t3 = a0 <= b0;”. The feasibility function for > and <= (Fig. 4.7) has 

code 6 (0110), as values 00 and 11 are infeasible, and values 01 and 10 

are feasible. 

Let variables ti and tj be assigned values by two assignment state-

ments with relational operators, one identical variable and two different 

literals in the right part: 
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ti = x Ri li; (4.5) 

tj = x Rj lj; 

 

where li and lj are numerical literals that satisfy inequality li < lj. Matrix 

RL (Fig. 4.8) describes feasibility functions for statements (4.5) and all 

36 pairs of relational operators.  

Example 4.8. For instance, the feasibility function (Fig. 4.8) for oper-

ators = and > has decimal code 14 (binary code 1110). It means that pair 

(ti, tj) of Boolean variables can take values 00, 01 and 10, and cannot 

take value 11. Indeed, at li < lj, if x = li equals 0, then x > lj equals 0 at 

x < li. Moreover, if x = li equals 1, then x > lj cannot be equal to 1. The 

code in Fig. 4.6 contains statements “t4 = a0 <= 0;” and “t5 = a0 > 4;”. 

The feasibility function for <=and > has code 14 (1110) in matrix RL, as 

values 00, 01 and 10 are feasible while value 11 is infeasible. 

It should be noted that the feasibility functions that are located on 

principal diagonal of matrix RL may be different.  
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Figure 4.8. Feasibility functions for relational operators with identical input variable 

 and different numerical literals  

 

 

4.3.2. Feasibility functions and pairs of orthogonal variables 

 

The orthogonal condition for two conditional variables ti and tj can be 

represented with the following logical equation:  

 

  )()()( ijji ttttpp   , (4.6) 
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where p is a vector of primary Boolean variables, and (p) is a conjunc-

tion of feasibility functions for all pairs of conditional variables. Equa-

tion (4.6) means that in case (p) is true we need a proof that (ti  tj)  

(tj  ti) is true, and in case (p) is false we need no any such proof.  

There are five primary Boolean variables t0, t2, t3, t4 and t5 in the 

code shown in Fig. 4.6. Equation (4.7) describes feasibility functions for 

all pairs of these variables.  
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We can represent functions 9 and 15 with Boolean constant 1. The 

matrix is a basis for construction of the conjunction of feasibility func-

tions: 

 

(p) = (t2  t3)  (t4  t5). 

 

Example 4.9. Let us check, if conditional variables t7 and t8 are 

orthogonal. The code shown in Fig. 4.6 allows the derivation of evaluat-

ing expressions for t7 and t8: 

 

 

t7 = t0  t2, 

t8 = t0  t3. 

 

Substitution of these expressions in (4.2) yields the logical equation 

as follows: 

 

(t2  t3) (t4  t5)   

((t0  t2 (t0  t3))  (t0  t3   (t0  t2))) = 

(t2  t3)  t2  t3  (t4  t5)  t0 = 1. 
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As it can be seen, this equation is equivalent to Boolean function 

Constant 1, therefore variables t7 and t8 are orthogonal. 

Example 4.10. Let us now consider conditional variables t9 and t11: 

 

t9 = t8  t4 = t0  t3  t4 

t11 = t8  t6 = t0  t3  t4  t5. 

 

Equation (4.2) for these variables is as follows: 

 

(t2  t3) (t4  t5)   

((t0  t3  t4 (t0  t3  t4  t5))   

(t0  t3  t4  t5   (t0  t3  t4))) = 

 

(t2  t3)  (t4  t5)  t0  t3  t4  t4  t5 = 1. 

 

The inferred disjunction contains literals t4 and t4 and is equiva-

lent to Boolean function Constant 1, therefore variables t9 and t11 are 

orthogonal. 

Matrix Ort (4.8) describes all pairs of orthogonal conditional varia-

bles in the code shown in Fig. 4.6.  
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Matrix Ort determines all pairs of mutually exclusive operators which 

are covered by 16 if-then statements (Fig. 4.6). 

There are other cases when a set of primary variables may not take 

arbitrary vector value. All the cases and corresponding rules for compu-
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ting the feasibility functions are accumulated in a data base and are used 

during analysis of the basic single-block model. 

 

4.4. Formal method of basic single-block model analysis 

 

Now we formulate in general form the equations and tasks that are 

used for analysis of the basic single-block model. Let t=t1,…tn be a vec-

tor of conditional Boolean variables, p=p1,…,pk be a vector of primary 

Boolean variables, g=g1(p),…,gn(p) be a vector of Boolean functions that 

evaluate conditional variables over primary variables, and F = {f(pi, pj) | 

i, j = 1,…,k, i<j} is a set of feasible functions for values of pairs of pri-

mary variables. 

 

4.4.1. Tautology problem for a pair of conditional variables 

 

For two conditional variables ti and tj, whose evaluating functions are 

gi(p) and gj(p), the orthogonal condition can be represented with Boolean 

Equation (4.9), if all pairs of primary variables are mutually independent: 

 

 .))()(())()(( pgpgpgpgp ijji   (4.9) 

This equation can be transformed to the equation as follows: 

 

  ,)( pp   (4.10) 

 

where (p) = gi(p)  gj(p) . Equation (4.10) represents a logical tau-

tology. It must be solved in terms of primary variables which are inde-

pendent. Any vector value of primary variables must satisfy the equation. 

Solving this equation may have high computational complexity and con-

sume huge CPU time, if the number of primary variables grows signifi-

cantly. 

 

4.4.2. Partial tautology problem for orthogonal variables 

 

If at least one pair of primary variables is dependent, the conjunction 

(p) of Boolean feasibility functions is not equivalent to Boolean con-
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stant 1. In this case, the characteristic function (p) describes the set of 

feasible vector values of primary variables p:  

 

).,()(
}...1{,

ji

ji
kji

ppfANDp




  (4.11) 

 

A relaxation of Equation (4.10) is possible, as only a part of primary 

variables values is feasible. The orthogonal condition for two conditional 

variables ti and tj with evaluating functions gi(p) and gj(p) can be repre-

sented with Boolean equation (4.12): 

 

 .)()( ppp    (4.12) 

 

In fact, Equation (4.12) is a partial tautology as we do not need a 

proof of (p)  1 if (p) = 0. At the same time, the procedure of traversal 

all vector values of p has very high computational complexity. We can 

avoid this procedure by reformulating tautology (4.12) to a satisfiability 

(SAT) problem. 

 

4.4.3. Contradiction procedure and SAT problem for orthogonal 

variables 

 

Very often it is easier to solve the orthogonal variables problem by 

means of transition to an inverse problem. Applying the first De Mor-

gan's law to expression (4.12), we obtain:  

 

 ,)()( ppp    (4.13) 

 

where  is an existential quantifier (there exists p) which ties variables of 

p. After substituting the evaluating functions instead of (p), replacing 

implication with disjunction and applying the second De Morgan’s law 

we have: 

 

 ppp ()(     = 

 

https://en.wikipedia.org/wiki/Existential_quantification
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 ppp ()(     = 

 

 .)()()( pgpgpp ji    (4.14) 

 

Such approach to solving the problem is called a contradiction proce-

dure, and Equation (4.14) formulates a satisfiability problem. To perform 

objection of (4.14), it is sufficient to find a vector value of p which satis-

fies function (p)gi(p)  gj(p). In case such value does not exist, this 

function is equivalent to Boolean constant 0, and problems (4.14) and 

(4.12) are solved.  

Example 4.11. For example, we apply the problem (4.14) to proving 

that conditional variables t7 and t8 are orthogonal in the code shown in 

Fig. 4.6. Substitution of expression (t2t3)(t4t5) instead of (p), 

expression t0t2 instead of gi(p)=t7, and expression t0t3 instead of 

gj(p)=t8 in (4.14) leads to transformations as follows: 

 

 [((t2  t3) (t4  t5)  t0  t2  t0  t3)]  =  

 [(t2  t3 (t4  t5)  t0  t2  t3)  

(t2  t3 (t4  t5)  t0  t2  t3)]  =  

 

 [0  0]  =  [0]  =  1. 

 

The source expression is equivalent to disjunction of two conjunc-

tions. The first conjunction contains opposite literals t3 and t3 and is 

equal to 0. The second conjunction contains opposite literals t2 and t2 

and is also equal to 0. As a result, expression (4.14) is equal to 1, and 

variables t7 and t8 are orthogonal 

 

4.4.4. Problem solving over minimization of partial functions 

 

Using a pair of completely specified functions (p) and (p) we can 

construct a partial (incompletely specified) Boolean function  

 

)).(),(()( ppp    (4.15) 
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This function depends on Boolean arguments p and can take three 

values: 0, 1 and dc (don’t care value). Boolean function (p)(p) de-

scribes off-set off(p) of partial function (p). Boolean function 

(p)(p) describes on-set on(p) of function (p). Boolean function 

(p) describes don’t-care-set dc(p) of function (p). 

Solving the orthogonal variables problem can be performed by mini-

mization of function (p) through appropriate changing its value with 

new value 0 or 1 on those values a of variable p for which (a) is false. 

If new function ’(p) is Boolean constant 1, then conditional variables ti 

and tj are orthogonal, otherwise they are not orthogonal. The minimiza-

tion of function can be performed with Karnaugh map.  

For example, for conditional variables t7 and t8 function (p) is de-

scribed with expression (t0t2)(t0t3), and function (p) is de-

scribed with expression (t2t3)(t4t5). Function (p) depends on 

three variables t0, t2 and t3, meanwhile function (p) depends on four 

variables t2, t3, t4 and t5. Function (p) does not depend on t4 and t5, 

therefore we omit them in new function ’(p) = t2t3. The on-set of 

’(p) is larger than that one of (p). This is a guarantee for the correct 

minimization of (p).  

Example 4.12. Fig. 4.9 shows the Karnaugh map of partial function 

’(p) = ((p), ’(p)). It is easy to see, function (p) can be replaced with 

Boolean constant 1 in (p), and therefore conditional variables t7 and t8 

are proved to be orthogonal. 

 

 

 
 

1 dc 1 dc 

1 dc 1 dc 

t2 
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t3 
 

Figure 4.9. Karnaugh map of partial function ’(p) 
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4.4.5. Orthogonal subsets of the set of conditional variables  

 

Let C = {c1…cm} be a subset of all set of the Boolean conditional var-

iables that are represented with vector t. Variables of C are orthogonal if 

only one of them can take value 1, while the others take value 0 at any 

state of the code execution. This is formalized with expressions as fol-

lows. 

 

  )()(
,...,1

ppANDp i
mi

 


, (4.16) 

where 
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Solving the orthogonal problem for m conditional variables is equiva-

lent to solving the orthogonal problem of all non-ordered pairs of these 

variables. All subsets of orthogonal conditional variables can be deter-

mined from matrix Ort, for example, from matrix (4.8). Thus subset 

C = {t1, t7, t9, t10, t11} is maximal one for matrix (4.8). The set of all 

such subsets can be considered as a set of cliques of a non-directed graph 

that is represented with matrix Ort. 

 

4.5. Analysis of basic single-block model with control flow feedback 

 

The conditional variables and if-then statements define the control 

flow within one iteration of the single loop of the basic single-block 

model. The dataflow feedback can influence the control flow implicitly 

over recalculating conditional variables which depend on dataflow varia-

bles at each iteration of the loop. Very often, algorithms obtain the prop-

erty of control flow feedback. In this case, conditional variables are 

global with respect to the loop, and their values are recalculated within 

the loop body.  

Example 4.13. Fig. 4.10 shows an example C/C++ looping/ branching 

code with control flow feedback. Boolean variables s0 and s1, which are 

initialized in their declaration, represent control flow state in the loop 
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body. The body recalculates the values of the variables in one iteration. 

Fig. 4.11 presents a basic single-block model that is derived from the 

example code by means of equivalent code transformation. 

 

 
void ControlFlowFeedback(float *A, float *B, float *C, int n) { 

float a0, b0, c0, d1; 

bool s0 = true; 

bool s1 = false; 

for (int i = 0; i < N; ++i) { 

a0 = A[i]; 

b0 = B[i]; 

d1 = a0 - b0; 

if (d1 > 0) { 

if (s0) c0 = d1 - 2; 

if (s1) { 

c0 = d1; 

s0 = true;   s1 = false; 

} 

} else { 

if (s0) { 

c0 = d1; 

s0 = false;   s1 = true; 

} 

if (s1) c0 = d1 + 2; 

} 

C[i] = c0; 

} 

} 

Figure 4.10. Example C/C++ looping/branching code with control flow feedback 

 

 

A problem is how to recognize, what pairs of conditional variables 

are orthogonal and what pairs are not in the model. Our focus is on con-

trol flow state variables, as the analysis technique for other type of pairs 

of conditional variables we have already considered and developed. Re-

garding the example basic single-block model, our focus is on state vari-

ables s0 and s1. It should be noted that although these variables are con-

ditional in the source C/C++ code (Fig. 4.10), they are rather intermedi-

ate than conditional in the basic single-block model (Fig. 4.11). The 

orthogonal problem remains in any case. 
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void ControlFlowFeedback_(float *A, float *B, float *C, int n) { 

float a0, b0, c0, d1; 

bool s0 = true; 

bool s1 = false; 

int i = 0; 

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11; 

while (true) { 

t0 = i < n; 

t1 = ! t0; 

if (t1)   break; 

if (t0)   a0 = A[i]; 

if (t0)   b0 = B[i]; 

if (t0)   d1 = a0 - b0; 

if (t0)   t2 = d1 > 0; 

if (t0)   t3 = !t2; 

if (t0)   t4 = t2 && s0; 

if (t0)   t5 = t2 && s1; 

t8 = t0 && t4; 

if (t8)   c0 = d1 - 2; 

t9 = t0 && t5; 

if (t9)   c0 = d1; 

if (t9)   s0 = true; 

if (t9)   s1 = false; 

if (t0)   t6 = t3 && s0; 

t10 = t0 && t6; 

if (t10)   c0 = d1; 

if (t10)   s0 = false; 

if (t10)   s1 = true; 

if (t0)   t7 = t3 && s1; 

t11 = t0 && t7; 

if (t11)   c0 = d1 + 2; 

if (t0)   C[i] = c0; 

if (t0)   ++i; 

} 

} 

Figure 4.11. Example basic single-block model with control flow feedback 

 

 

Below we develop a formal method that is based on mathematical in-

duction technique. This technique requires two cases to be proved. The 

base case proves that the orthogonal variables property holds for the ini-

tial computational state before entering the loop. The induction step 

proves that, if the property holds for one loop iteration l, then it holds for 
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the next iteration l+1. The base case uses the initial values of the state 

variables. The induction step uses the statements of the loop body which 

update the values of state variables. 

Let si and sj be two Boolean control flow state variables whose or-

thogonal property we are going to prove.  

Base case. If one of two variables is initialized to 1 and other variable 

is initialized to 0, then the orthogonal property holds. 

Induction step. Represent the values of state variables si and sj in next 

iteration of the loop with s’i and s’j. These variables can be evaluated 

over primary variables and current-iteration variables si and sj, using 

evaluating Boolean functions gi(q) and gj(q). Vector q represents both 

primary variables and state variables within current iteration.  

If the orthogonal variables property holds for variables si and sj at the 

current iteration of loop, then our goal is to prove that it holds at the next 

iteration for variables s’i and s’j. This can be represented with implica-

tion  

 

 )''()( jiji ssssp  = 

 ))()(()( qgqgssp jiji  . (4.18) 

 

If expression (4.18) is a tautology, i.e. is satisfied for any value of p, 

then state variables si and sj are orthogonal. 

The C/C++ code, and in particular statements “if (tb) si= eb;” which 

assign a new value to state variable si, are a source for construction of 

evaluating function gi(q): 
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where B is the number if-then statements for si. The first term of disjunc-

tion in (4.19) represents new value of si, and the second term represents 

current value. 

In case, the primary variables are dependent, and the feasibility func-

tion (p) is not equivalent to Boolean constant 1, expression (4.18) for 

the orthogonal state variables property should be modified in order to 
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take into account two situations: when the values of state variables are 

updated in the loop body, and when they save previous values: 
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Expression (4.20) describes that variables si and sj can update their 

values when (p) is true, and these variables do not change their values 

when (p) is false. 

Example 4.14. Let us prove the orthogonal property for state variables 

s0 and s1 of the code shown in Fig. 4.11.   

It is easy to see, that in base case the initial values 1 (true) and 0 

(false) of the variables are orthogonal. 

In induction step, we assume that s0 and s1 are orthogonal in current 

iteration, and the Boolean function s0  s1 is true.  

Function gs0 that evaluates new value of s0 is 

 

gs0 = t0  (t91  t100  (t9t10)  s0)  t0s0 =  

= t0t2s1  t2s0s1  t0s0. 

 

Function gs1 that evaluates new value of s1 is 

 

gs1 = t0  (t90  t101  (t9t10)  s1)  t0s1 =  

= t0t2s0  t2s0s1  t0s1. 

 

In the C/C++ code, all primary variables are independent, there-

fore (p) = 1 and the orthogonal property for s0 and s1 holds when 

(4.18) is tautology. Performing transformations for a sub-expression 

of (4.18) we obtain: 

 

gs0  gs1 =  (t0t2s1  t2s0s1  t0s0)   

 (t0t2s0  t2s0s1  t0s1) = 

= t0  s0  s1. 
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The whole expression (4.18) for s0 and s1 can be written and 

transformed as: 

 

(s0  s1)  (t0  s0  s1) =  

s0s1  t0  s0  s1 = 1. 

 

This expression is equivalent to Boolean constant 1, therefore state 

variables s0 and s1 are orthogonal in induction step.  

Finally we can conclude that state variables s0 and s1 are orthogonal 

in the code shown in Fig. 4.11. 

It should be noted, the proposed method can be generalized for more 

than two state variables. For many variables, the orthogonal property can 

be represented using expressions (4.16) and (4.17). 

 

4.6. Conclusion 

 

The evaluation of the computational complexity, critical path and 

parallelization potential of an algorithm that is represented with the basic 

single-block model is more complicated against the algorithm structural 

model where mutually exclusive operators are described explicitly. This 

is due to implicit dependences among statements in the basic single-

block model. 

To find the mutually exclusive short if-then statements, a logic 

analysis technique has been proposed that is capable of determining 

pairs of orthogonal conditional variables. For structured BSBM, it 

uses a mechanism of the conditional variable evaluation with Boolean 

expressions and functions, relations among values of primary Boolean 

variables, and a definition of the orthogonal condition with a tauto-

logical logical equation.  

To perform the advanced analysis of basic single-block model, a con-

cept of feasibility functions for pairs of primary Boolean variables has 

been introduced, which allows for determining values combinations the 

primary variables can take during algorithm execution. The formulation 

of the orthogonal condition for conditional variables is extended taking 

into account the feasibility functions.  
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In the case of basic single-block model with control flow feedback, a 

mathematical induction technique is proposed for determining orthogo-

nal pairs of conditional variables. 
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5. SYNTHESIS AND OPTIMIZATION                                       

OF COMPUTATIONAL PIPELINES 

 

This chapter introduces a new methodology for pipeline synthesis 

with applications to data flow high level system design. The pipeline 

synthesis is applied to BSBM whose operators are translated into graphs 

and dependencies relations that are then processed for the pipeline archi-

tecture optimization. For each pipeline-stage time, firstly a minimal 

number of pipeline stages is determined and then an optimal assignment 

of operators to stages is generated with the objective of minimizing the 

total pipeline register size. The obtained optimal pipeline schedule is au-

tomatically transformed into a pipeline structure that then can be synthe-

sized to efficient hardware implementations. Two new pipeline schedul-

ing techniques, i.e., a least cost search branch and bound technique, and 

a heuristic technique have been developed. The first technique yields 

global optimum solutions for middle size designs, whereas the second 

one generates close-to-optimal solutions for large designs. Experimental 

results on FPGA designs show that the total pipeline registers size gain 

in a range up to 4.68x can be achieved. The new algorithms overcome 

the known ASAP and ALAP techniques concerning the amount of pipe-

line registers size by up to 100% on average. 

 

5.1 Computational pipelines 

 

Pipelining is a well-known, efficient and effective way of increasing 

the operating frequency and the associated throughput of data intensive 

digital systems in various application fields. A pipelined system is usual-

ly described by an appropriate concurrent design language.  

Pipelining can be seen as the transformation of a source behavioral 

specification into a functionally equivalent description, which partitions 

all operators into pipeline-stage-fragments that are executed in time-

sliced fashion. Complex digital systems are typically characterized by 

irregular structures, thus it is impossible to perform a straightforward 

mapping of the behavioral specification into a pipeline implementation.  

In this chapter, an approach for the transformation of an irregular 

complex digital system, which is described in a system description lan-
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guage, into pipelined implementations achieving increased operating 

frequency after hardware synthesis is developed. Therefore, this chapter 

develops an efficient pipelining model for large digital system designs 

implying several "low cost" chained operators in one basic processing 

block, which takes into account key parameters of behavioral elements 

including the variable sizes, the operators delay, the relations on the set 

of variables and operators, and finally the mutually exclusive operators 

handling. The approach does not explore the resource sharing for both 

functional units and registers as such option would result in the serializa-

tion of the operator execution and would cause a slowdown of the overall 

dataflow implementation.  

Two optimization problems are crucial for this approach: the compo-

nent selection and the optimization of the pipeline registers. The first 

problem is thoroughly developed in [3]. The second problem is attacked 

in [77-82]. It is the main subject of this chapter. We explicitly define the 

whole pipeline solutions space and propose an efficient heuristic optimi-

zation algorithm which is capable of pipelining large designs with the 

objective of minimizing the overall registers size and to increase the op-

erating frequency after register transfer level (RTL) synthesis. 

This chapter is organized as follows: firstly it provides an overview of 

related works on pipeline synthesis and optimizations. Secondly, it de-

scribes the methodology based on dataflow pipeline synthesis. Thirdly, it 

presents the relations and associated graphs for the pipeline modeling 

and its optimization. Fourthly, it describes the time constrained optimiza-

tion for pipelines. Then it presents a new heuristic algorithm which 

speeds up the optimization process for very large designs. And finally, 

experimental results are reported for several video processing applica-

tions, which are followed by conclusions. 

 

5.2 Pipelining of algorithms 

 

In computing, a pipeline is a set of data processing elements connect-

ed in series, so that the output of one element is the input of the next one 

[3], [17]. The elements of a pipeline are executed in a time-sliced fash-

ion; in such case, pipeline registers are inserted in between pipeline stag-
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es. The pipeline stage time has to be larger than the longest delay be-

tween pipeline stages. A pipelined system requires more resources than 

one that executes one batch at a time, because its stages cannot reuse the 

resources of a previous stage. Numerous languages and intermediate rep-

resentations have been created for describing pipelines, among them can 

be mentioned the programming language C [89], [51], [12], data flow 

graphs (DFG) [9], signal flow graphs [28], [88], transactional specifica-

tions [50] and other notations [39], [29], [61]. Pipelines can also be syn-

thesized directly from binaries [51]. CAL is a formal dataflow language 

that was recently developed and standardized to address the goal of high-

level system specification and design, particularly addressing the wide 

field of streaming applications [16], [49]. The concurrent algorithmic 

language, CAL is capable of representing pipelined networks of actors. 

A pipeline system is characterized by several parameters such as the 

clock cycle time, the stage cycle time, the number of pipeline stages, the 

latency, the data initiation interval, the turnaround time and the through-

put. The pipeline synthesis problem can be constrained either by re-

sources or time, or by a combination of both.  

An important concept in the pipelining circuit is retiming, which ex-

ploits the ability to move registers in the circuit so as to decrease the 

length of the longest path and preserve its functional behavior [40], [44], 

[85]. The concept is based on the assumption that the pipeline structure 

has already been fixed and considers only the problem of adding pipeline 

buffers with the objective of improving the performance. 

The work of Sehwa [53] can be considered as the first pipeline syn-

thesis program. It minimizes the time delay using a modified list sched-

uling algorithm with a resource allocation table. The force directed 

scheduling that has been proposed in [54] and modified in [88], [25] per-

forms a time-constrained functional pipelining. ATOMICS [20] per-

forms loop optima-zation starting by estimating a latency and an inter-

iteration precedence. The pipelined DSP data-path synthesis system 

called SODAS [28], receives a signal flow graph as input and generates a 

trade-off for the pipeline designs by changing the synthesis parameters of 

the data initiation interval, the clock cycle time and the number of pipe-

line stages. In [86] an adaptation of the ASAP list scheduling and the 
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iterative modulo scheduling are used for the design space exploration 

based on slow, but area efficient modules, and fast, but area consuming 

modules. Speculative loop pipelining from binaries, proposed in [51], 

speculatively generates a pipeline netlist at compile time and modifies 

it according to the result of the runtime analysis. The automatic pipe-

lining proposed in [50] requires user-specified pipeline-stage bounda-

ries and synthesizes a pipeline which allows the concurrent execution 

of multiple overlapped transactions in different stages. Integer linear 

programming formulations of the pipeline optimization problem, as 

an efficient approach for the design space exploration, are also pre-

sented in [10], [26], [23]. 

Pipelining is an effective method for optimizing the execution of 

loops. The loop winding method is proposed in Elf [18]. The percolation 

based scheduling [56] deals with the loop winding by starting with an 

optimal schedule [2] that is obtained without considering resource con-

straints. The PLS pipelining [24] is another effective method to optimize 

loops for DSP. The rotation scheduling of loop pipelining by means of 

the retiming the processing nodes is introduced in [9]. The pipeline vec-

torization method, based on pipelining the inner most loops in a loop 

nest by removing the vector dependences, is proposed in [89].  

The problem of pipeline scheduling of DFGs for a variable number of 

pipeline stages under throughput constraints is addressed in [4], [35], [3]. 

The macro pipelining based scheduling technique [4] aims at pipelining 

heterogeneous multiprocessor systems. The number of pipeline stages is 

identified during the scheduling and the pipeline cycle delay is mini-

mized in two steps. The first step finds a global coarse solution by using 

the ratio cut partitioning, and the second step improves the result by rep-

artitioning the solution. The ratio balances the load on processors with 

the communication traffic in the interconnection network. This model 

cannot be directly applied to high-level synthesis with the objective of 

register size minimization as it is based on pure timing model.  

A novel pipeline decomposition tree (PDT) based scheduling frame-

work at system level is presented in [35]. It groups the tasks into clusters 

and groups the clusters into partitions which are assigned to pipeline 

stages. Partitions at different depth levels of the PDT can be flexibly 

configured to generate various stage-length pipelines. The equations that 
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are used for decomposing the cluster dependency graph into two sub-

graphs equalize the partitions with regard to execution times and inter 

cluster dependences within one stage. The cluster-partition concept does 

not aim at minimizing the data transfer between adjacent pipeline stages 

and cannot be directly used for pipeline register minimization, as our 

method presented in this chapter can do.  

The cost-optimized algorithm for selecting the components and pipe-

lining a DFG, given a library of multiple implementations of operators 

and latency constraint, is presented in [3]. The algorithm starts by map-

ping each operator to the fastest component and then slows down opera-

tors by mapping them to progressively slower components in order to 

balance the use of slow and fast components and minimize the total cost. 

At each slowdown the algorithm partitions the DFG into a minimal 

number of stages to meet the stage delay constraint. Then it traverses the 

graph in downward and upward directions and accumulates delays in 

order to associate pipeline registers with edges. In comparison with [3] 

our methodology does not consider the component selection, but ex-

haustively minimize the register size over all the pipeline stages for the 

selected component implementations. The ASAP and ALAP algorithms 

constructed on the operator conflict graph in this book are similar to the 

downward and upward direction traversal algorithms.  

Several previous works, including [19], [15] have discussed the rela-

tionship between design scheduling and register size. Most of them are 

devoted to the non-pipelined designs and all of them exploit resource 

sharing. The interdependent heuristic code scheduling technique and the 

DAG-driven register allocator are proposed in [19]. Such method reduc-

es stage delays of a given pipeline for the given number of general pur-

pose registers. Contrary to our work it explores intensively the resource 

sharing for registers and pipelined functional units keeping a constant 

size for the variables.  

Modulo scheduling followed by stage scheduling is another efficient 

technique for exploiting instruction level parallelism in loops [15]. The 

stage scheduling performs exhaustive and heuristic searches of minimum 

register requirements for one modulo schedule by shifting operations by 

multiples of the initiation interval cycles. The resource sharing is used 

twice, for functional units and also for registers. The stage scheduling 

processes only a restricted part of the whole solution space as modifica-
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tions of only one modulo schedule are considered.  Differently from 

[15], our work searches for the fastest pipeline schedule at a minimum 

pipeline register cost over all the solution space for large dataflow hard-

ware designs at various stage counts without any resource sharing.  

Since deep-submicron silicon technology provides large amounts of 

available resources, faster pipelines without (or with minimal) sharing of 

resources can be synthesized with advantages in performance, without 

incurring in too much penalties in terms of additional silicon surface. 

The pipeline optimization model proposed in [34] is based on precise 

mathematical formulation of the optimization problem which uses the 

coloring of vertices of an operator conflict directed graph and an explicit 

stack mechanism for optimal solution search. 

 

5.3 Pipelining data flow programs 

 

For the pipelining methodology introduced here, it is also important 

that, as described in [69], a method of transforming a mixed control-data 

flow high-level behavioral description to a purely dataflow description 

consisting of the single basic block by means of elimination of control 

structures is available. Therefore, here the emphasis is again on efficient 

and affective techniques of pipeline synthesis and optimization that are 

based on the single basic block model. Resource sharing approaches are 

not employed, but pipeline scheduling for chained operators is exploited 

intensively. These two basics are well associated with FPGA based syn-

thesis of pipelines from DFGs with many low cost operators describing 

random logic. In this book the focus is on pipelines with only one clock 

cycle for each stage (Fig. 5.1). 

 

5.4 Modeling pipelines with relations and graphs 

 

5.4.1 Relations and graphs on sets of operators, variables           

and pipeline stages 

 

The dataflow program under pipelining is transformed to an acyclic 

DFG ([48], [7]). After that the DFG is analyzed. The analysis of DFG 

results in a number of relations and other graphs which constitute a basis 

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%20%d0%be%d1%82%d0%bb%d0%b8%d1%87%d0%b8%d0%b5%20%d0%be%d1%82&translation=as%20distinct%20from&srcLang=ru&destLang=en
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for the creation of pipeline optimization methodologies. 

Let N={1,…,n} be a set of algorithm operators, M={1,…,m} be a set 

of algorithm variables including input and output tokens and S={1,…,k} 

be a set of pipeline stages. A set of input variables of operator i=1,…,n is 

denoted as in(i) and a set of its output variables is denoted as out(p).  

 

 

 

… 

stage 1 

stage k 

pipeline registers 

operator chains 

no resource sharing 

among operators 

low cost operators 

one clock cycle 

one clock cycle 

Input data flow 

Output data flow 

 
Figure 5.1. Pipeline scheduling with chaining and without resource sharing 

 

 

From the sets, a set cons(j)N of consumers and a set prod(j)N of 

producers is being computed for each variable jM. 

The operator precedence relation P describes a partial order on the 

set of operators that is derived from the analysis of data dependences 

between operators in DFG. The operator direct precedence relation Pdi-

rect is computed as minimal anti-transitive relation of precedence relation 

P. This relation also represents the direct precedence graph, GP. In this 
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book only acyclic graphs GP are considered. 

The pipeline stage time Tstage is defined as a worst case delay of all 

operator chains within one stage. In pipeline optimization, the time can 

be treated as pipeline constraint. The constraint essentially influences the 

pipeline frequency, throughput and load of equipment. 

The longest path delays between operators constitute a basis for de-

fining pipeline constraints and are called the lengths of longest paths on 

the operator direct precedence graph. A matrix L=li,j  li,j,i,jN of 

dimension nn describes the delays. As graph Gp is DAG matrix L can 

be computed in a polynomial time. For DFG shown in Fig. 5.2 and for its 

elements that are described in Table 5.1, matrix L is given in Fig. 5.3.  

In Table 5.1, for the operand size of 8 the relative delays of “”, “”, 

bitand and bitxor operators are taken as 1.0, 1.1, 0.1 and 0.1 respectively. 

For other operand sizes the operator relative delays are recalculated us-

ing a linear timing model. Constants are not listed in this table. The addi-

tive timing model has been used, although we consider more complex 

timing models of operators and paths. 

 

 
Figure 5.2. Example data flow graph consisting of 15 operators and 18 variables.  

Variables i1, i2 and i3 are inputs and variables o1, o2 and o3 are outputs 
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25.1

00.048.2

00.010.463.1

00.000.000.048.2

18.300.000.000.093.1

28.300.000.000.003.210.0

00.030.683.300.000.000.020.2

00.000.000.058.200.000.000.010.0

35.100.000.000.000.000.000.000.010.0

00.030.882.500.000.000.020.400.000.000.2

00.058.200.068.200.000.000.020.000.000.010.0

03.505.1057.723.478.385.195.500.000.075.300.075.1

18.510.663.300.093.300.000.000.000.000.000.000.000.2

68.670.1123.988.543.550.360.700.075.140.500.040.300.065.1

00.050.1002.888.400.000.040.640.200.020.430.200.000.000.020.2

L

 
 

Figure 5.3. Longest paths matrix L for the dataflow graph in Fig. 5.2 

 

 

Table 5.1 

Elements of example data flow graph 

Operators Variables 

N Type Relative delay N Name Mode Size 

1  2.20 1 i1 in 16 

2  1.65 2 i2 in 12 

3  2.00 3 i3 in 12 

4  1.75 4 a loc 16 

5 bitxor 0.10 5 b loc 10 

6  2.00 6 c loc 13 

7 bitxor 0.10 7 d loc 14 

8 bitand 0.10 8 e loc 18 

9  2.20 9 f loc 16 

10 bitand 0.10 10 g loc 6 

11  1.93 11 h loc 18 

12  2.48 12 p loc 13 

13  1.62 13 q loc 14 

14  2.48 14 r loc 13 

15 + 1.25 15 s loc 10 

   16 o1 out 17 

   17 o2 out 14 

   18 o3 out 10 
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Operator conflict relation. If in matrix L the value of li j is larger than 

Tstage we say that there is a pipeline stage conflict between operators i and 

j. In order to avoid the conflict, such operators must be scheduled to dif-

ferent pipeline stages. The operator conflict relation is a set 

C = (i,j)  i,jN,lij>Tstage. Inclusion CP holds for this relation. In pipe-

line scheduling, C may be replaced with its minimal anti-transitive ver-

sion Ca. 

Operator nonconflict relation. It is defined as Cn=P\C. Inclusion 

CnP holds for the relation. In pipeline scheduling Cn may be re-

placed with its minimal anti-transitive version Cna. For matrix L and 

Tstage=3.825 the conflict C and nonconflict Cn relations are presented in 

Fig. 5.4. 

Operator conflict graph. The conflict relation, Ca describes a minimal 

ant-transitive operator conflict graph, GC
a. A set of direct predecessors of 

operator p in the graph will be denoted as cdpred(p) and a set of direct 

successors will be denoted as cdsucc(p). 

An operator minimal ant-transitive nonconflict graph, GCn is created 

in a similar way. A set of direct predecessors of operator p in the graph 

will be denoted as ncdpred(p) and a set of direct successors will be de-

noted as ncdsucc(p). To speed up the optimization process, we consider 

only minimal anti-transitive operator conflict and nonconflict graphs. 
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Figure 5.4. Example matrices C and Cn for the dataflow graph in Fig. 5.2 
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Mapping of operators onto pipeline stages is defined as stage: 

NS. According to the mapping, s=stage(p) is a stage sS assigned 

to operator pN . 

 

5.4.2 Number of pipeline stages versus stage time 

 

The number l of pipeline stages is defined by the length of a longest 

path in GC. For l-stage pipeline a minimum stage time is denoted as 

Tstage(l). The stage time for l is larger than the stage time for l+1. There-

fore all pipelines that are generated for a stage time Tstage from the range 

Fstage(l+1)≤Tstage<Tstage(l) have the same number l of stages as shown in 

Fig. 5.5. In order to generate all possible pipelines all values of elements 

lij that occur in matrix L have to be used as stage time. We denote the 

least stage time that is equal to a largest operator delay as Tmin and denote 

the largest stage time that is equal to the length of a longest path in ma-

trix L as Tmax. At Tstage=Tmin the number of stages is a maximum and is 

equal to Smax. At Tstage=Tmax the number of stages is a minimum and is 

equal to 1. 

 

 

Tmin 

Smax 

Tmax 

1 

Tstage(l) Tstage(l+1) 

l 

… 

… 

Tstage 

l+1 

stageCount 

 
Figure 5.5. Number of pipeline stages versus stage delay 
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5.4.3 As soon as possible (ASAP) and as late as possible (ALAP) 

pipeline schedules 

 

Classical ASAP may not be applied to scheduling of pipelines. We 

propose a modified version of ASAP. The main modification is that the 

operator precedence relation that is used as input data is replaced with 

the operator conflict relation. Due to this the operators are distributed not 

on a set of control steps but on a set of pipeline stages. Besides that the 

technique gives the fastest pipeline schedule without sharing resources. 

The number of stages in the schedule is equal to the length of a longest 

path in the operator conflict graph. 

Similar observations concern ALAP. The mobility of operator p in 

pipeline under optimization is defined as its ability to be scheduled to 

various pipeline stages. The earliest stage operator p may be assigned to 

is asap(p) and the latest stage is alap(p). Hence the operator p mobility 

can be estimated as mobility(p)=alap(p)-asap(p)+1. Fig. 5.6 shows 

ASAP and Fig. 5.7 shows ALAP pipeline schedule for the dataflow 

graph example in Fig. 5.2. Operators 1, 2, 6, 9, 13 and 14 have mobility 

of 1, operator 4 has mobility of 2, operators 3, 11, 12 and 15 have mobil-

ity of 3 and operators 5, 7, 8 and 10 have mobility of 4. 

 

5.5 Time constrained optimization of pipelines 

 

5.5.1 A set of pipelines with the same stage time 

 

In previous chapter pipelines with a minimal number of stages for a 

given stage time were generated. Among them are ASAP and ALAP 

pipelines. It appears that a huge set of pipelines with the same stage 

count can be generated from the same operator conflict and non-conflict 

graphs. The number of pipelines growth exponentially depending on the 

number of operators. Pipeline parameters are different. As the time pa-

rameters are already taken into account in the stage time constraint, areas 

cost parameters have to be analyzed. First of all, variations in assignment 

of operators to pipeline stages may influence the size of pipeline regis-

ters. It appears that a large reduction in pipeline register size is feasible. 
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Figure 5.6. Asap pipeline schedule for Tstage=3.825 

 

 

 
Figure 5.7. Alap pipeline schedules for Tstage=3.825 
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5.5.2 Evaluation of overall pipeline registers size 

 

The operator and variable clustering within one pipeline stage is a 

way to achieve pipeline optimization. All variables within one stage are 

represented as wires. If a variable is produced in one stage and consumed 

in the next neighbor stage then it is replaced with a register inserted in 

between the stages. Several registers should be inserted instead of a vari-

able that transmits data over several stages.  

The number of pipeline registers that are introduced for variable v de-

pends on the lifetime of v. For one variable v this dependence is illustrat-

ed in Fig. 5.8. Variable lifetime is determined by the earliest stage of 

producers and the latest stage of consumers. Two and more producers 

v:=e1; … v:=ek; have to be under conditional instructions with orthogo-

nal test variables c1…ck: 

 

if c1 then v:=e1; endif 

…  

if ck then v:=ek; endif 
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v 
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)(max
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i
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pstage
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Figure 5.8. Pipeline stage range (lifetime) of variable v 
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An overall registers size RS takes into account registers for all varia-

bles of M. For the single assignment model of the source algorithm de-

scription the total pipeline register size is estimated as follows: 
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The size RS is a sum of register sizes that are introduced for each var-

iable v depending on the latest stage of consumers cons(v) and the earli-

est stage of producers prod(v). The variable size and its lifetime may 

dominate each other. 

 

5.5.3 Optimization task: objective function and constraints 

 

Pipelines with different number of stages can be generated by means 

of varying the operator conflict matrix. Different pipelines with the same 

number of stages can be generated by means of varying the stage time 

Tstage in the range from Tstage(l) to Tstage(l+1) where l is a stage count. Dif-

ferent pipelines are also possible due to varying the mapping stage at the 

given Tstage and conflict graph. Let Ω be a set of possible valid mappings 

of operators onto pipeline stages. The objective function as follows min-

imizes the total pipeline registers size over all mappings of Ω: 

 

)(min stageRS
stage 

. (5.2) 

 

Every valid mapping stage(p) must meet operator, time and prece-

dence constraints as follows: 

 for each pN inequality asap(p)≤stage(p)≤alap(p) must hold; 

 if for two operators p and q inequality lp,q>Tstage holds, then the op-

erators may not be included in the same stage (inequality 
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stage(p)≠stage(q) must hold), otherwise the operators may be in-

cluded in the same stage; 

 If a pair (p, q) of operators belongs to C then inequality 

stage(p)<stage(q) must hold; 

 If a pair (p, q) belongs to Cn then inequality stage(p)≤stage(q) 

must hold. 

The constraints define the structure of solution space. It should be no-

ticed that the optimization problem (5.2) is nonlinear and retiming [40] 

may not be used for solving it, as every operator employs only one vari-

able for transferring its output value to consumers in pipeline. 

 

 

5.6 Least cost search branch and bound technique for pipeline   

optimization 

 

Three strategies, i.e. breadth first search (BFS), depth search first 

(DFS) and least cost search (LCS) are available to find a minimum cost 

solution of an optimization problem. A search with bounding functions is 

branch and bound (BB) search. In [77] a DFSBB technique for optimiza-

tion of pipeline schedules was proposed. In paper [79] a LCSBB tech-

nique, which overcomes DFSBB with respect to pipeline quality and op-

timization tool throughput, is proposed. 

 

5.6.1 Pipeline schedule search tree 

 

The search tree structure is shown in Fig. 5.9. The nonterminal 

nodes of the tree are associated with assignments of operators to pipe-

line stages. 

A level p of the tree corresponds to operator p. Level’s nodes de-

scribe various assignments of operator p to pipeline stages from ear-

lyi(p) to latei(p). Index i indicates a path in the tree from root to the 

node. Various paths show various incomplete or complete assign-

ments of operators to stages.  
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Figure 5.9. Search tree for pipeline optimization. The tree size is 2100 at =2 and n=100, 

and the size is 31000 at =3 and n=1000 

 

 

All terminal nodes at level n+1 of the tree describe candidate com-

plete solutions. The search tree size can be estimated as n where  is an 

average mobility of operators in the number of pipeline stages. The size 

grows rapidly depending on operator count and stage count. The search 

tree is generated dynamically by means of expanding non-terminal 

nodes. Its size depends on the operator expanding order. Reordering of 

operators is a mechanism of increasing efficiency of the branch and 

bound optimization technique. 

LCSBB estimates a lower bound of total register size (LBRS) for each 

expanded non-terminal node. Initial lower bound LBRS0 is estimated for 

root. At step t of operator p scheduling, the lower bound LBRSt=LBRSt-

1+Sp is estimated for each stage(p) from earlyi(p) to latei(p) where Sp 

is the increase of the lower bound after assignment of p to stage(p). The 

stage with minimum of Sp is preferably selected for passing to the next 
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nonterminal node in the search tree. After n steps, LBRSn is equal to the 

actual RS(stage) . 

 

5.6.2 Incomplete mapping of operators onto pipeline stages 

 

For operator p a Boolean variable assign(p) is introduced. It takes 

value true when the operator has been already assigned to a pipeline 

stage(p). If the operator has not been assigned to a stage then the value 

of assign(p) is equal to false and the value of stage(p) is undefined. 

A procedure of mapping the operators to pipeline stages as a step by 

step process of updating the variables assign(p) and stage(p) is defined. 

Let assignt(p) and staget(p) be state variables at step t. For some operator 

p whose stage(p) is determined, assignt(p) may have value true and for 

other operator whose stage(p) is undetermined it may have value false. 

Then LBRSt can be estimated as: 
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where pos(x)=x if x>0, and pos(x)=0 otherwise; stas(p)=asap(p) if as-

sign(p)=false, and stas(p)=stage(p) if assign(p)=true.  

It is easy to see that the inequality LBRSt≤LBRSt+1 holds for all 

steps t as according to (5.3) the assignment of next operator to a pipeline 

stage can only increase the lower bound of register size. Equation (5.3) 

has high computational complexity in order to execute at expanding of 

each node of the search tree. Computing Sp between two neighbor 

nodes in the search tree seems to have significantly less computational 

complexity. 

 

5.6.3 Updating overall registers size lower bound 

 

Let p be an operator which is assigned at step t to a pipeline stage 

stage(p) implying the value of assign(p) to be changed from false to true. 
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The operator may produce more than one variable of out(p) while may 

consume more than one variable of in(p). LBRS may change for each of 

these variables.  

Now a procedure of computing Sp for all variables that are associat-

ed with operator p is considered. Each output variable uout(p) may in-

fluence the increase of register size. For all variables of out(p) the in-

crease of register size lower bound can be estimated as: 
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For all variables of in(p) the increase of register size lower bound is 

 

 

 
,

)(

)(),(max

)(

)(),(max

)(
)(

" 


































 













 


pinv p

p

p

vSTAL

vSTASpasap
pos

vSTAL

vSTASpstage
pos

vsizeS

 

(5.5) 

where 

 
)(max)(

),(
qstasvSTAS

pq
vconsq

p





 

and 

).(min)(
)(

qstalvSTAL
vprodq

  



 

148 

 

 

Taking into account (5.4) and (5.5) the increase of LBRS for operator 

p assignment can be estimated as: 

."'

ppp SSS   (5.6) 

As stage(p) may vary for most of operators depending on their mobil-

ity, it can significantly influence the value of Sp. The increase of 

stage(p) can cause decrease of S’p and increase of S”p. As a result Sp 

has a local minimum. 

 

5.6.4 Computing earliest and latest pipeline stages of operator 

 

The dynamic earliest early(p) and latest late(p) pipeline stages of op-

erator p are bounds of a range of varying stage(p). First of all, the value 

of early(p) depends essentially on the array variables assign and stage 

and scalar variable asap(p). Secondly, it depends on the set cdpred(p) of 

direct predecessors of operator p in the operator conflict graph. Thirdly, 

the value of early(p) depends on the set ncdpred(p) of direct predeces-

sors of operator p in the operator nonconflict graph. The value of ear-

ly(p) can be estimated as follows: 
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When no direct predecessor of cdpred(p) and ncdpred(p) has been as-

signed to a pipeline stage yet, the second and third operands in (5.7) are 

equal to 1 and 0 respectively. 

First of all, the value of late(p) depends essentially on the array varia-

bles assign and stage and scalar variable alap(p). Secondly, it depends 

on the set cdsucc(p) of successors of operator pin the conflict graph. 

Thirdly, it depends on the set ncdsucc(p) of direct successors of operator 

pin the nonconflict graph. The value of late(p) can be estimated as fol-
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lows: 
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When no direct successor of cdsucc(p) and ncdsucc(p) has been 

assigned to a pipeline stage yet, the second and third operands in (5.8) 

are equal to ∞. 

 

5.6.5 Operator assignment conflicts 

 

The early(p) and late(p) stages of operator p estimated with (5.7) and 

(5.8) are not fully accurate, but are fast estimations of the stage range 

bounds. The estimated range may be wider than the actual range. This 

may imply operator-to-stage assignment conflicts when the early stage is 

larger than the late stage: early(p)>late(p). A reason for such result is the 

influence of predecessors and successors that are already assigned to 

pipeline stages on the assignment of p. No stage may be assigned to the 

operator p in this case. The conflict problem is being solved by the reas-

signment of operator predecessors and/or successors to other more suita-

ble pipeline stages. This may imply additional backtrackings during the 

traversal of the search tree. 

 

 

5.6.6 Least cost search branch and bound minimization of overall 

pipeline registers size 

 

The least cost search branch and bound technique (LCSBB) is de-

scribed in Fig. 5.10. The technique is represented as a recursive func-

tion LCSBBScheduling with one input, top. It uses global variables as 

follows: 
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LCSBBScheduling(top) begin 

if top<0 then return; end if; 

if top≥n then  

pipelineCount:=pipelineCount+1; 

OptimalSchedule:=Extract(Stack); 

Best:=Stack(top-1).bound; 

return; 

end if 

p:=order-1(top); 

b:=Stack(top).lateStack(top).early+1; 

for s in Stack(top).early to Stack(top).late do 

w(s):=RegSizeIncrease(p, s); 

end for; 

To sort b stages on increase of w(s) and compute Stack(top).rank(i), i=1…b; 

for i in 1 to b do 

s:= Stack(top).rank(i); 

Stack(top).stage :=s; 

lowerBound:=Stack(top).bound+w(s); 

if lowerBound≥Best then pruneCount:=pruneCount+1; return; end if; 

if top<n-1 then 

q:=order-1(top+1); 

Stack(top+1).bound:=lowerBound; 

Stack(top+1).early:=EarlyStage(q); 

Stack(top+1).late:=LateStage(q); 

if Stack(top+1).early>Stack(top+1).late then continue; end if 

end if; 

LCSBBScheduling (top+1); 

end for; 

end. 

 

Figure 5.10. Least cost search branch and bound technique (LCSBB)  

for pipeline optimization 

 

 

 Stack is an array of records that includes such elements as a pipe-

line stage, lower bound of total register width, early and late 

stages of operator; rank of stages where, rank(i) is a stage at 

position i and rp is current position of the rank; the current 

record of the stack is indexed with top; 

 OptimalSchedule is the current best assignment of operators to 

pipeline stages; 

 Best is the current best LBRS; 
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 order-1 is the mapping of stack records onto operators; 

 pipelineCount is the number of generated complete assignments; 

 pruneCount is the number of pruned nodes of the tree. 

The slave function Extract(Stack) generates a next complete assign-

ment of operators to pipeline stages. Function RegSizeIncrease(p,s) 

computes Sp(s) using (5.4)-(5.6). Function EarlyStage(q) computes ear-

ly(q) for operator q using (5.7), and function LateStage(q) computes 

late(q) for operator q using (5.8).The optimal pipeline schedule for the 

example DFG is shown in Fig. 5.11. 

 

 
Figure 5.11. Optimal pipeline schedule for Tstage=3.825. The schedule includes  

13 pipeline registers consisting of 167 bits. ASAP schedule includes 17 registers  

consisting of 247 bits and ALAP schedule includes 16 registers consisting of 216 bits  

 

 

5.7 Heuristic technique for optimization of pipelines 

 

It was assumed in LCSBB that early(q) and late(q) of a nonscheduled 
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operator q can be estimated using asap(p), alap(p) and stage(p) of all 

other operator p. This is not a completely accurate estimation, although 

LCSBB is capable of finding a global optimum. In fact early(q) and 

late(q) of nonscheduled operator q may directly or indirectly depend on 

early(r) and late(r) of other nonscheduled operator r.  

The accurate recalculation of early(q) and late(q) is a time consuming 

procedure and it may significantly slow down LCSBB. Moreover 

LCSBB takes some assumptions concerning register size lower bound 

estimation. The main assumption is that asap(q) and alap(q) are used in 

(5.7) and (5.8) although tighter bounds early(q) and late(q) of stages 

which are available for operator q can be computed. The heuristic pipe-

line optimization technique proposed in paper [79] finds only one feasi-

ble complete assignment of operators to pipeline stages that gives possi-

bly minimal total registers size. In order to find a best path from root to a 

leaf of the search tree the technique needs efficient heuristics. 

 

5.7.1 Dynamic evaluation of earliest and latest stages of operators 

 

Assume that at step t-1 the values of assignt-1(p), earlyt-1(p) and latet-

1(p) are determined for pN. The sets cdpred(p), ncdpred(p), cdsucc(p), 

ncdsucc(p) of predecessors and successors of each operator p in the con-

flict and non-conflict graphs have been computed, they stay the same for 

all scheduling steps.  

Let at step t nonscheduled operator r has been mapped onto stage(r) 

and assignment assignt(r):=true has been already performed. Then, the 

early pipeline stage of a nonscheduled operator pN can be evaluated 

recurrently as 
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where searlyt(q)=earlyt(q) if assignt(q)=false, and searlyt(q)=staget(q) if 

assignt(q)=true. It is easy to observe that the inequality earlyt(p)≥earlyt-

1(p) holds for all t=1…n.  

At step t the late pipeline stage of a nonscheduled operator pN can 

be evaluated recurrently as 
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 (5.10) 

 

where slatet(q)=latet(q) if assignt(q)=false, and slatet(q)= stage(q) if   

assignt(q)=true. It is easy to observe that the inequality latet(p)≤latet-1(p) 

holds for all t=1…n. Equations (5.9) and (5.10) demand an appropriate 

order of nonscheduled operators to properly compute earlyt(p) and     

latet(p). For earlyt(p) this order is p=1…n. For p=1…r-1,                    

earlyt(p)=earlyt-1(p) and for p=r+1…n, earlyt(p) is estimated with (5.9). 

For latet(p) this order is p=n…1. For p=n…r+1, latet(p)=latet-1(p) and for 

p=r-1…1, latet(p) is estimated with (5.10). 

 

5.7.2 Dynamic estimation of overall registers size lower bound 

 

At step t the values of assignt(p), pN describe the current incom-

plete assignment of operators to pipeline stages. If assignt(p)=true then 

stage(p) has been already determined. If assignt(p)=false then earlyt(p) 

and latet(p) have been already computed for p. Then the total register 

size lower bound at scheduling step t can be estimated as: 
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LBRSt computed with (5.11) is a more precise estimation over those 

computed with (5.3). Obviously LBRSt can only increase with increasing 

of t. It means that the inequality lowerBoundt1≤lowerBoundt holds for 

all scheduling steps t=1…n. 

 

 

5.7.3 Dynamic ordering of operators 

 

Reordering of operators makes pipeline scheduling more efficient 

versus optimization time and pipeline quality. The dynamic heuristic 

pipeline scheduling uses a heuristic weight p of nonscheduled opera-

tor pNnon: 
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where k is the number of heuristic parameters; i, i=1…k are heuris-

tic factors satisfying the equality 1
...1

  ki i .The heuristic parameters 

i(p),i=1…k describe features of nonscheduled operator p in pipeline 

under optimization.  

The parameters are defined to satisfy two key requirements. Firstly, 

they have to vary in the range from 0 to 1. Secondly, the higher value of 

the parameter is expected to imply better pipeline parameters. Then the 

value of p varies in the range from 0 to 1. Operator pNnon with the 

maximum value of p is selected as the next scheduled operator.  

Four heuristic parameters have been used in the example shown in 

Fig. 5.12 for the DFG of Fig. 5.2 and Table 5.1. The mobility of opera-

tors 1, 2, 6, 9, 13 and 14 determined by ASAP and ALAP schedules 

(Fig. 5.6 and Fig. 5.7) is equal to 1, therefore these operators are as-

signed to stages 1, 1, 2, 3, 3 and 4 respectively. The early-late stages of 

the rest operators 3, 4, 5, 7, 8, 10, 11, 12 and 15 are 1-3, 1-2, 1-4, 1-4, 1-

4, 1-4, 2-4, 2-4 and 2-4 respectively.  
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Figure. 5.12. Selection of next operator for assignment to a stage. Operators 1, 2, 6, 9, 

13 and 14 are already assigned to stages s1-s4 implying the lower bound register size, 

LBRS=61; operators 8 and 10 will be assigned at the end of the scheduling process;  

for each other operator the heuristic weight, p is computed. Operator 12 has  

the maximal weight of 0.713 and is selected as the next scheduled operator 

 

 

The overall LBRS that is estimated with Equation (11) is equal to 61 

as only variables a, f and r have a nonzero register size lower bound of 

32, 16 and 13 respectively. Thus LBRS of variable a is 16(max(1,2,3)–

min(1)) = 162 = 32 as its consumers are operators 5, 6 and 9 and its 

producer is operator 1. Operators 6, 9 and 1 are already assigned to stag-

es 2, 3 and 1 and the early stage of operator 5 is 1. 

Operators 8 and 10 have the equal size of input and output therefore 

the movement of operators over stages does not change the overall pipe-

line register size. Those operators will be assigned at the end of schedul-
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ing process. The heuristic weight, p is computed for each other operator 

with Equation (12) at the vector of heuristic factors, =(0.210, 0.301, 

0.087, 0.401), which gives the global optimum solution. Operator 12 has 

the maximum weight of 0.713 and is selected as the next scheduled op-

erator. Its heuristic parameters, (12) = (0.5, 0.933, 0.125, 0.789) are 

evaluated according to the following procedure.  

The first parameter is a complement-on-one of the relative dynam-

ic operator mobility over pipeline stages, 1(12)=1-(4-3)/(4-2)=0.5 

where 3 is the dynamic mobility of operator 12. The maximal mobili-

ty among nonscheduled operators (operators 5 and 7 have the mobili-

ty of 4) is 4 and 2 is the minimal mobility among nonscheduled oper-

ators (operator 4 has the mobility of 2). Low values of the mobility 

imply high values of 1. 

Operator 12 can be assigned to stages 2, 3 and 4. For each possible 

assignment a new LBRS is computed. For instance, if stage 2 is chosen 

then the early-late stages of operators 4, 5 and 8 are modified with (9) 

and (10) to 1-1, 1-2 and 1-2 respectively. As a result the LBRS of varia-

bles d, e and o1 is changed with (11) from 0 to 14, 36 and 34 respective-

ly. The overall LBRS increases from 61 to 145. If stages 3 and 4 are cho-

sen for operator 12 then the overall LBRS grows form 61 to 110 and 89 

respectively. 

The second parameter is a relative LBRS difference over available 

stages of operator 12 among all nonscheduled operator, 2(12)=(145-

89)/60=0.933 where 145 is LBRS computed with (11) after assignment of 

operator 12 to stage 2; 89 is LBRS after assignment of operator 12 to 

stage 4; 60 is the maximal LBRS difference among available stages over 

all nonscheduled operator (operator 15 has the maximal difference of 

60). Parameter 2 shows the relative difference between the best and 

worst cases of operator assignment to available stages. 

The third parameter is a relative minimal LBRS increase over all 

nonscheduled operator, 3(12) = 1(8961)/(9361)= 0.125 where 89 

is the minimal LBRS increase of operator 12 over stages 2-4; 61 is the 

minimal LBRS increase of operator 15; 93 is the minimal LBRS in-

crease (maximum among the operators) of operator 5. Parameter 3 

shows the relative increase of LBRS after assignment of the operator 

to the best available stage. 
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The fourth parameter is a relative difference between inputs and 

outputs sizes of the operator, 4(12) = (18+1417)/ (16+16-13)=0.789 

where 18, 14 and 17 are the sizes of variables h, d and o1 (operator 

12) and 16, 16 and 13 are the sizes of variables a, f and p (operator 9 

whose size difference is the largest). Parameter 4 shows the im-

portance of moving the operator over stages: moving should be done 

to the earliest available stage if the outputs size is larger than the in-

puts size and vice versa. 

Stage 4 has a minimum LBRS of 89 among stages 2, 3 and 4 and is 

selected for assignment of operator 12. Applying the heuristics to 

other operators yields the operator sequence, 11, 3, 4, 15, 7, 5, 8 and 

10, the corresponding LBRS sequence, 102, 115, 129, 139, 151, 167, 

167 and 167, and the corresponding stage sequence, 3, 1, 1, 3, 1, 4, 4 

and 3. The resulting pipeline schedule is the global optimum solution 

shown in Fig. 5.11. 

 

5.7.4 Heuristic technique for pipeline optimization 

 

The heuristic technique (HT) is represented in Fig. 5.13 as recursive 

function HeuristicScheduling with one input top. It uses global variables 

as follows: 

 Stack is an array of n+1 records that include such elements as op-

erator, rank of avalable pipeline stages for the operator, current 

position rp in the rank, current stage assigned to operator, mobili-

ty of operator, current lower bound of total register size, set 

nschop of nonscheduled operators, arrays of early and late stages 

for the nonscheduled operators, array vbnd of register sizes for all 

variable in the scheduled algorithm;  

 pipelineSchedule is a mapping of operators onto pipeline stages 

generated by the heuristic algorithm; 

 registerTotalSize is the overall pipeline registers size. 

The slave function ExtractPipelineSchedule generates the resulting 

pipelineSchedule. Function ChooseOperator computes heuristic parame-

ters  for nonscheduled operators from the set nschop and chooses an 

operator with the maximal heuristic weight (5.12).  
HeuristicScheduling(top) begin 
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if top≥n then 

pipelineSchedule := ExtractPipelineSchedule(Stack); 

registerTotalSize := Stack(top-1).bound; 

return;  

end if; 

p:=ChooseOperator(Stack(top).nschop); 

Stack(top).operator:=p; 

Stack(top).rank:=GenerateRank(p); 

mobility:=|Stack(top).rank|; 

for rp in 1 to mobility do 

stage:=Stack(top).rank(rp); 

Stack(top).stage:=stage; 

Stack(top).bound:=RegisterLowerBound(p, stage, Stack(top).vbnd); 

Stack(top+1).nschop:=Stack(top).nschop\{p}; 

Stack(top+1).early := EarlyStages(Stack(top).early); 

Stack(top+1).late:=LateStages(Stack(top).late); 

if AssignmentConflict(Stack(top+1).early, Stack(top+1).late) then 

continue; 

end if; 

Stack(top+1).vbnd := VariableRegisterBounds(Stack(top).vbnd); 

HeuristicScheduling(top+1); 

end for; 

end. 

Figure 5.13. Heuristic technique HT for pipeline optimization 

 

 

Function GenerateRank computes a rank of pipeline stages which are 

available for the selected operator p. Function RegisterLowerBound es-

timates LBRS for p using (5.11). Function EarlyStages computes using 

(5.9) the early stage of each nonscheduled operator after assignment of p 

to an avalable stage. Function LateStages computes using (5.10) the late 

stage of each nonscheduled operator. Function AssignmentConflict re-

turns true if a nonscheduled operator q has been found for which ear-

ly(q)>late(q), otherwise it returns false. Function VariableRegister-

Bounds recalculates using (5.11) the lower bound register size for each 

of vbnd.  

 

5.7.5 Tuning heuristic factors 

 

The heuristic weight p is a criterion for choosing a next scheduled 

operator. The operator is assigned to a pipeline stage which gives a min-
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imum of LBRS. The result of the operator choice significantly depends 

not only on the heuristic parameters of , but also on the heuristic factors 

of . The factors determine the weight of each parameter in the criterion. 

Important parameters should have larger factor value. The optimization 

problem in the solution space described by the vector  is to determine 

the importance of each parameter during pipeline optimization. Conduct-

ed experiments show that the problem has many local optima. As the 

function HeuristicScheduling is fast enough and it is possible to generate 

many vectors  and to compute RS for each of them, a random search 

and a genetic algorithm have been used to solve this problem. The ran-

dom search is capable of finding an optimal solution for RS, but very 

often it yields a suboptimal solution. 

 

5.8. Conclusion 

 

A new pipeline synthesis and optimization methodology that starting 

from partitions of a large dataflow design increases the data throughput 

of whole design by selecting design partitions and by generating the 

pipelined implementations has been presented. The methodology is ca-

pable of determining the most appropriate pipeline stage time and the 

number of pipeline stages for each partition of the dataflow design.  

Two pipeline optimization techniques that minimizes the total pipe-

line register size for each stage time and the stage count have also been 

developed. The first methodology is called" least cost search branch and 

bound" and the second is referred to as a "heuristic pipeline optimiza-

tion". The branch and bound algorithm is capable of finding the global 

optimum pipeline schedule for low size designs, whereas the heuristic 

algorithm is capable of finding close-to-optimal solutions also in the case 

of large designs.  
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6. OPTIMIZATION OF PIPELINES FOR MEANINGFUL 

APPLICATIONS 

 

The pipeline optimization algorithms LCSBB and HT that are pro-

posed in the previous chapter and the downward and upward direction 

traversal algorithms that are proposed in [3] and represented as ASAP 

and ALAP are compared in this chapter on several meaningful test 

benches. 

 

6.1. Bayer filter based on improved linear interpolation 

 

The Bayer filter test bench (Fig. 6.1) was considered in detail in 

[77]. It contains 13 input ports, 5 output ports and 63 local variables, 

totally 81 variables. The variable size varies in the range from 8 to 

23, and the average size is 20.41. The Bayer filter also contains 68 

operators including 32 additions, 19 subtractions, 3 multiplications 

and 13 bitand operators.  

A relative time delay is assigned to each operator as follows: 1.0 for 

addition, 1.1 for subtraction, 3.0 for multiplication and 0.02 for bitand. 

The total delay of all operators is 62.2. The design critical path length is 

15.62 or 25.1% over the total operator delay.  

As reported in [79], pipelines with 2 to 7 stages were optimized by 

DFSBB and synthesized to FPGAs. The global optimum was obtained 

for 2 and 3 stage pipelines and suboptimal solutions were generated for 4 

up to 7 stage pipelines.  

Table 6.1 reports pipeline scheduling results obtained by four 

scheduling techniques: LCSBB, HT, ASAP and ALAP. One pipeline 

stage count is represented with a range of stage time. LCSBB has 

generated a global optimum for each stage time. HT has given total 

register size that is very close to global optimum, 2.0% more on aver-

age. LCSBB and HT show superior results compared to both ASAP 

and ALAP, 48.8% and 82.6% on average respectively.  

It should be noted that for 7-stage pipeline the number of pipeline 

registers, 60 is comparable with the number of operators, 68. This 

proves the importance of register minimization problem. 
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Figure 6.1. Data flow of Bayer filter  

 

 

Table 6.2 reports parameters of LCSBB that are obtained on Bayer 

filter. The CPU time is less than 1 sec for 2 pipeline stages and is equal 

to 959 sec for 7 stages. The number of pruned branches grows rapidly up 

to 1818112224 and the number of updated optimal schedules grows form 

1 to 4 with increasing the number of stages from 2 to 7. The number of 

conflicts also grows rapidly. 
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Table 6.1 

Results for Bayer filter obtained by LCSBB, HT, ASAP and ALAP 

Sta-

ges 

Stage 

time 

LCSBB HT ASAP ALAP 

Register 

size 

Register 

size 
% 

Register 

size 
% 

Register 

 size 
% 

1 15.62 0 0  0  0  

2 15.60 100 100 0.0 100 0.0 142 42.0 

11.62 100 100 0.0 100 0.0 248 148.0 

10.52 108 123 13.9 123 13.9 286 164.8 

10.12 116 116 0.0 146 25.9 263 126.7 

9.42 116 116 0.0 169 45.7 301 159.5 

8.52 124 124 0.0 192 54.8 270 117.7 

8.30 147 147 0.0 215 46.3 285 93.9 

3 7.42 232 232 0.0 315 35.8 381 64.2 

7.12 240 240 0.0 338 40.8 464 93.3 

6.32 240 240 0.0 361 50.4 479 99.6 

6.30 271 286 5.5 407 50.2 494 82.3 

6.12 294 294 0.0 430 46.3 532 81.0 

5.32 340 355 4.4 453 33.2 501 47.4 

4 5.22 387 396 2.3 599 54.8 681 76.0 

5.12 403 403 0.0 622 54.3 658 63.3 

5.10 403 403 0.0 668 65.8 673 67.0 

4.32 426 441 3.5 691 62.2 672 57.8 

4.30 472 472 0.0 760 61.0 702 48.7 

5 4.10 573 588 2.6 883 54.1 836 45.9 

4.00 596 612 2.7 929 55.9 920 54.4 

3.32 650 657 1.1 975 50.0 926 42.5 

3.22 650 665 2.3 998 53.5 926 42.5 

6 3.20 752 759 0.9 1167 55.2 1128 50.0 

3.12 759 774 2.0 1213 59.8 1235 62.7 

3.10 842 881 4.6 1259 49.5 1250 48.5 

7 3.00 960 990 3.1 1451 51.2 1383 44.1 

On average: 2.0 48.8 82.6 
 

 

Table 6.2 

Parameters of LCSBB on Bayer filter 

Stages Stage time 
LCS branch and bound 

CPU time Pruned branches Schedules Conflicts 

2 8.30 <1 22 1 2 

3 5.32 <1 3422 2 0 

4 4.30 1 62453 1 64 

5 3.22 <1 96725 2 119 

6 3.10 14 24103979 3 294947 

7 3.00 959 1818112224 4 151966 
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Table 6.3 

Comparison of DFSBB against LCSBB (times) on Bayer filter 
Stages CPU time Pruned branches Schedules Conflicts 

2 1.00 14.09 6.00 1 

3 1.00 6.86 4.50 1 

4 1.00 6.14 27.00 5.48 

5 1.00 10.76 15.50 53.47 

6 8.36 21.45 12.00 0.04 

7 1.54 3.03 11.75 216.71 

 2.32 10.39 12.79 46.28 

 

 

For DFSBB the CPU time, the number of pruned branches, the num-

ber of feasible complete schedules and the number of operator assign-

ment conflicts are by 2.32x, 10.39x, 12.79x and 46.28x larger on average 

respectively over LCSBB (Table 6.3). LCSBB has given less overall reg-

isters size of 15.4% and 14.1% over DFSBB for the stage time of 3.1 (6 

stages) and 3.0 (7 stages) respectively [79]. The CPU time for the heuris-

tic algorithm has not exceeded 1 sec for all stage time and all count of 

pipeline stages. 

The heuristic factors have been tuned for each stage time using the 

random search technique. Each factor has been varied in a wide range of 

values. The average factors over all the stage times and the stage counts 

are average=(0.292, 0.299, 0.213, 0.196). Therefore, each factor is a sig-

nificant heuristic. Due to the variations of factors, total register size vari-

ations in the range from 0% up to 36.4% have been observed, 10.4% on 

average. Therefore the tuning of the heuristic factors is an effective 

mechanism of pipeline optimization. 

It should be noted that the solution space grows very rapidly in the 

case of the Bayer filter design depending on the number of pipeline stag-

es. It means that a huge number of pipeline schedules exist which are 

very close to each other with respect to the total register size. In general, 

the capability of LCSBB depends on the number of operators, on the 

length of the critical path, on the mobility of operators and on the num-

ber of pipeline stages. LCSBB is capable of synthesizing optimal pipe-

lines with a low number of pipeline stages for large DFGs (>1000 opera-

tors) which have long critical paths and low mobility of operators. For 

large designs the fast HT algorithm becomes a preferable option. 
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Figure 6.2. The ratio “maximum/ minimum” of total register size vs. pipeline stage time 

for the Bayer filter design case. The ratio varies in the range from 1.94x to 4.68x 

 

In order to measure the distribution of the total register size variation, 

LCSBB has been modified in such a way to maximize the register size 

instead of minimizing it. The resource gain has been estimated with the 

ratio “maximum / minimum” of the total register size that is shown in 

Fig. 6.2 as a function of pipeline stage time and can reach the significant 

value of 4.68x. Each local minimum corresponds to the minimum stage 

time for each number of pipeline stages. 

 

6.2. Forward 88 discrete cosine transform 

 

The forward discrete cosine transform FDCT64 has been implement-

ed in CAL as an actor consisting of one action and then automatically 

transformed into a single basic block model by means of applying vari-

ous transformation including unrolling loops. The FDCT64 is a relative-

ly large design with 64 input ports, 64 output ports and 2304 local varia-

bles, for a total of 2432 variables. The word size varies in the range from 

1 up to 32 bit and the average size is equal to about 23. FDCT64 core 

processing module includes 2368 operators of which 336 are additions, 

496 are subtractions, 64 are multiplications, 576 are right shifts, 64 are 

left shifts and 832 are static assignments. A relative time delay has been 

assigned to each operator as follows: 1.0 for addition, 1.1 for subtraction, 

3.0 for multiplication and 0.1 for shift. The static assignment has no 

hardware implementation correspondence, therefore its relative delay has 
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been set to 0.0. The total delay for all operators is 1137.6. The design 

critical path length is 19.6 or 1.72% over total operator delay. LCSBB 

cannot yield global optimum results for a large design such as FDCT64, 

therefore HT algorithm has been used in this case. 

Table 6.4 reports the parameters of pipeline schedules generated for 

FDCT64. For each stage count in column 1 the minimal stage time is 

given in column 2. Column 3 reports the register size depending on the 

stage time for HP. The size has increased from 688 for 2 stages to 24896 

for 9 stages. The results for ASAP that are given in columns 4 and 5 are 

much worse (100.3% on average) over HT. ALAP has produced better 

results on average (columns 6 and 7) over ASAP, and worse results 

(50.0% on average) over HT. Within 2 and 3 pipeline stages the total 

register size grows slowly from 688 to 4096 and starting from 4 stages 

the size grows rapidly. 

 

Table 6.4 

Results for FDCT64 obtained by HT, ASAP and ALAP 

Sta-

ges 

Stage 

time 

HT ASAP ALAP 

Register 

size (bit) 

Register 

size (bit) 
% 

Register 

size (bit) 
% 

2 19.59 688 2088 203.5 688 0.0 

18.00 2048 2864 39.8 3072 50.0 

17.00 2048 3776 84.4 4096 100.0 

16.00 2048 3488 70.3 4608 125.0 

15.00 2048 3608 76.2 4096 100.0 

14.00 2048 4160 103.1 3072 50.0 

13.00 2304 4736 105.6 2304 0.0 

11.00 2560 7112 177.8 2560 0.0 

10.00 3584 8672 142.0 4096 14.3 

9.71 4096 7536 84.0 4608 12.5 

3 9.00 4096 10272 150.8 7168 75.0 

8.00 4096 9656 135.7 7168 75.0 

6.70 4352 8752 101.1 7168 64.7 

4 5.40 9440 17200 82.2 11264 19.3 

5 4.30 12608 22104 75.3 13568 7.6 

6 4.10 15872 27168 71.2 27392 72.6 

7 3.30 20128 33232 65.1 32256 60.3 

8 3.20 22784 37352 63.9 36528 60.3 

9 3.00 24896 43344 74.1 40704 63.5 

On average, %: 100.3 50.0 
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It is interesting to notice that the CPU time used by the HT algorithm 

has resulted to stay within 2 sec for all pipeline stages. For large design 

such as the FDCT64 only static heuristic parameters have been exploited 

by the HT algorithm for operator ordering. 

In case of FDCT64 design, HT yields much better results than 

LCSBB in case of the Bayer filter, when comparing both to results of 

ASAP and ALAP. Therefore, it can be concluded that HT is capable of 

generating large pipelines that are close to optimal solutions. 

 

6.3. Experimental results for random middle size designs 

 

A program for the random generation of data flow graphs has been 

developed to test the performances of a design with different statistical 

properties of their operators. The generic parameters are the number of 

operators, variables, input and output ports, the operator types, operator 

delays and variable sizes. For conducting the experiments, the operator 

types and associated probabilities have been chosen as follows: addition 

(0.3), subtraction (0.25), multiplication (0.1), shift (0.1) and bitand 

(0.25). The operator delays have been assigned to the same values used 

in the previous experiments. The variable lifetime in terms of operator 

interval is also a control parameter. By varying the parameter value it is 

possible to generate DFGs with different critical path length.  

In order to measure parameters of pipeline optimization techniques, 

two random design series have been generated. The first one includes 

five middle size designs constructed of 100 up to 300 operators. In Table 

6.5, the total operator delay and critical path length is indicated for each 

design. The critical path length varies in the range from 20% down to 

16% of the total operator delay. For each variable its size was randomly 

generated in the range from 4 to 28 and the average size is indicated for 

each design in Table 6.5.  
Each pipeline schedule constructed of 2, 3, 4 and 5 stages was opti-

mized with respect to the total register size for each design by LCSBB, 

HT, ASAP and ALAP. In Table 6.5 the register size is given in bits for 

LCSBB. The symbol * indicates suboptimal solutions for 5-stage pipe-

lines, therefore the comparison of HT, ASAP and ALAP over LCSBB in 

% is given for 2-, 3- and 4-stage pipelines. The average register size pro-
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duced by HT is only 2.28% larger than the minimum size produced by 

LCSBB. It means that HT can be considered as a "close-to-optimal" op-

timization technique. Again, ASAP and ALAP results end to be much 

worse (53.8% and 48.3% respectively) than LCSBB. 

 

Table 6.5 

Results for random middle size designs 
Parameters Design 

Number of operators 100 150 200 250 300 

Total operator delay 111 152 175 231 280 

Critical path 23.3 31.9 33.0 39.2 43.4 

Variable average size 16.25 15.94 15.53 15.21 15.36 

Pipeline registers size given by LCSBB (bit) 

Stages 

2 334 209 175 244 182 

3 457 413 291 348 454 

4 686 595 478 697 601 

5 901* 805* 701* 732* 826* 

Register size HT (%) 3.6 0.4 2.4 3.5 1.5 

Register size ASAP (%) 49.3 50.8 64.1 31.1 73.9 

Register size ALAP (%) 43.0 49.6 50.1 37.7 61.0 

Variables average lifetime given by LCSBB (stages) 

Stages 

2 0.189 0.086 0.057 0.073 0.057 

3 0.302 0.173 0.109 0.107 0.117 

4 0.434 0.265 0.175 0.195 0.165 

5 0.594 0.333 0.245 0.221 0.215 

Var lifetime HT (%) 4.5 0.8 0.0 -4.2 0.9 

Var lifetime ASAP (%) 35.5 30.3 27.8 11.4 30.7 

Var lifetime ALAP (%) 24.8 21.3 35.2 21.3 18.8 

Decrease in pipeline registers average size over variables average size (%) 

Register size LCSBB  % 8.4 9.3 16.2 18.2 34.1 

Register size HT (%) 9.0 9.6 14.2 11.8 33.5 

Register size ASAP (%) -2.7 -5.0 -7.4 0.3 2.5 

Register size ALAP (%) -6.5 -10.4 4.5 2.7 0.3 

Average CPU time for LCSBB (sec) 

CPU time LCSBB (sec) 444 376 276 508 678 

. 

 

Two key factors influence the minimization of the total pipeline reg-

ister size: the reduction of the variables average lifetime in terms of pipe-

line stages and the decrease in the pipeline registers average size over the 

variables average size. In Table 6.5 the variable lifetimes grow with the 
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increase of the stages number. The lifetime given by HT is very close to 

the lifetime given by LCSBB. The variables average lifetime for ASAP 

is 27.1% and for ALAP is 24.3% larger than for LCSBB. LCSBB and 

HT have decreased significantly the pipeline registers average size over 

the variables average size (17.2% and 15.6% on average respectively). It 

is interesting to notice that HT (9.0) succeed in reducing the word width 

better than the LCBB (8.4) for designs with about 100 operators. At the 

same time LCBB reduces the lifetime of the registers in comparison to 

the HT algorithm by a factor of 4.5%. As a result the LCBB algorithm 

outperforms HT with respect to the register size by a factor of 3.6%. 

ASAP and ALAP are not capable of assigning pipeline registers to small 

size variables. Due to such limitation, the registers average size results to 

increase of a factor 2.5% for ASAP and of 1.9% for ALAP over the vari-

able average size. LCSBB consumes more CPU time, from 276 to 678 

sec. 

 

6.4. Experimental results for random large size designs 

 

The second series includes five large designs constructed of 1000 up 

to 5000 operators (Table 6.6). The critical path length is about 10% of 

the total operator delay for all design. The results reported in Table 6.6 

show that HT yields superior results compared to both ASAP and ALAP, 

32.7% and 40.6% on average respectively concerning the total register 

size and 16.9% and 25.5% with respect to the variables average lifetime. 

In contrast to ASAP and ALAP, it also results into smaller size variables 

that are mapped onto the pipeline registers. It is also important to notice 

that HT requires very limited CPU time for large design, only from 4 to 

112 sec, thus, could be successfully used in commercial pipeline optimi-

zation tools. 

 

6.5. Conclusion 

 

Based on the mathematical models, design formulations and selected 

algorithms, a program that automatically transforms a non-pipelined al-

gorithm into a pipelined design within a range of 1-2 min of CPU time 
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has been developed. 

The experiments performed on the design test benches of a Bayer 

filter, 88FDCT, middle size and large random designs, have proven 

that the proposed LCSBB and HT algorithms yields much better re-

sults against ASAP and ALAP. Results characterized by a low pipe-

line registers size has been achieved by means of reducing the varia-

ble average lifetime in terms of pipeline stage interval and choosing 

small size variables that are mapped onto pipeline registers inserted in 

between stages. 

 

 

Table 6.6 

Results for random large designs 
Parameters Design 

Number of operators 1000 2000 3000 4000 5000 

Operator total delay 885 1721 2640 3573 4469 

Critical path 88 173 266 351 447 

Variable average size 15.83 15.55 15.52 15.51 15.47 

Pipeline registers size given by HT (bit) 

Stages 

2 484 568 676 976 1090 

3 940 952 1455 1748 2388 

4 1469 1712 2192 3067 3318 

5 1995 2093 2895 3773 4430 

Register size ASAP (%) 32.51 32.89 33.77 33.22 31.11 

Register size ALAP (%) 66.59 43.94 32.34 27.38 32.64 

Variables average lifetime given by HT (stages) 

Stages 

2 0.032 0.020 0.017 0.017 0.016 

3 0.069 0.036 0.036 0.033 0.033 

4 0.102 0.059 0.052 0.052 0.049 

5 0.141 0.075 0.070 0.069 0.065 

Var lifetime ASAP (%) 19.19 12.34 19.96 18.14 14.63 

Var lifetime ALAP (%) 51.73 29.42 15.43 16.92 14.20 

Decrease in pipeline registers average size over variables average size (%) 

Register size HT (%) 12.03 13.10 14.14 10.76 13.33 

Register size ASAP (%) 0.52 -4.38 2.59 -1.79 -0.84 

Register size ALAP (%) 1.79 1.97 -0.42 1.73 -2.42 

Average CPU time for HT (sec) 

CPU time for HT (sec) 4 7 26 55 112 
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7. GENETIC ALGORITHM FOR TUNING OPTIMIZATION 

HEURISTICS 

 

 

7.1. Heuristics for solving optimization problems 

 

A heuristic technique or simply a heuristic, is any approach to prob-

lem solving that employs a practical method, not guaranteed to be opti-

mal, perfect, but instead sufficient for reaching an immediate goal [55]. 

Where finding an optimal solution is impossible or impractical, heuristic 

methods can speed up the process of finding a satisfactory solution.  

Heuristics can be mental shortcuts that ease the cognitive load of 

making a decision. A rule of thumb, a guesstimate, an educated guess, an 

intuitive judgment, a common sense and profiling are examples that em-

ploy heuristics.  

Heuristic is the strategy derived from previous experiences with simi-

lar problems. This strategy relies on using readily accessible information 

to control problem solving in human beings and computers. The analysis 

of heuristic search procedures includes a classification of graph search 

strategies that put into perspective the approaches found in typical 

presentations of search procedures. 

Weight (p) represents an integrated heuristic of selecting operator p 

in the partially generated pipeline, which is estimated as: 
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where i(p) is a heuristic parameter of operator p; i is a factor at the 

heuristic parameter; k is a number of parameters. The heuristic factors   

must satisfy the equality as follows: 
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In the heuristic algorithm, the heuristic parameters are dynamically 

modified as they depend on the current optimization state, which is up-

dated on passing from one loop iteration to another. The heuristic param-

eter i(p) must meet the following two requirements. Its value has to 

vary in the range from 0 to 1. The higher value of the parameter, the bet-

ter pipeline properties are expected. The operator pQ with the maxi-

mum value of (p) is selected as the next candidate for scheduling.  

Operator p* whose weight (p*) is a maximal one among all non-

scheduled operators of set Q is the most preferable candidate for sched-

uling at the next step: 
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Let us consider in detail four heuristic parameters 14, the heuristic 

technique HT uses and dynamically recalculates (see Section 5.7.3 of 

this book) at each step of the pipeline optimization process. Fig. 7.1. 

gives a strict definition of these parameters.  

First parameter 1(p) is a complement-on-one of the relative dynamic 

mobility of operator pQ over pipeline stages that are available for p. It 

is estimated on absolute mobility(p), minimal mobilitymin and maximal 

mobilitymax over all operator of Q. Low value of mobility(p) implies high 

value of 1. This parameter will also be referred as mob. 

Second parameter 2(p) is a relative lbrs difference over available for 

p pipeline stages, among all operator of Q. It is estimated over minimal 

rslbmin(p) and maximal rslbmax(p) on available stages, and maximal 

drslbmax on all operator of Q. The higher lbrs difference for p the higher 

value of 2. This parameter will also be referred as drslb. 

Third parameter 3(p) is a complement-on-one of the relative increase 

of minimal over stages lbrs for p against minimal lbrs over nonscheduled 

operator of Q. The parameter shows the increase of minimal lbrs after 

assignment of p to the best available stage against all operator of Q. It is 

estimated over minimal rslbmin(p) of p on available stages, minimal 

oprslbmin and maximal oprslbmax on the set Q of nonscheduled operator. 

This parameter will also be referred as mrslb. 
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Figure 7.1. Heuristics 1mob, 2drslb, 3rslb and 4dios for dynamic ordering 

 of operators at each step of pipeline optimization 

 

 

Fourth parameter 4(p) is a relative difference between overall input 

variables size and overall output variables size of operator p. The param-

eter shows the importance of moving the operator over stages: moving 

should be done to the earliest stage if the output variables size is larger 

than the input variables size and vice versa. It is estimated over overall 

inputs size insize(p), outputs size outsize(p) and the maximal size differ-

ence dsizemax over all operator of Q. This parameter will also be referred 

as dios. 

 

7.2. Motivation of tuning heuristics 

 

The significance of the heuristic parameter i(p), i = 1 ... k in the inte-
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grated heuristic (p) is determined by the value of factor i. The higher 

is the value, the more important is the parameter. Best optimization re-

sults are usually correlated with the use of most important heuristics. 

Searching for the best values of the factors in vector  is a complicated 

optimization problem with many local optima.  

Thus, in the pipeline optimization heuristic algorithm HT, the choice 

of the next scheduled operator essentially depends not only on four heu-

ristic parameters 1 - 4, but also on the heuristic factors 1 - 4. Fig. 7.2 

shows that for a 3-stage pipeline TB1000 the overall pipeline registers 

size varies between 871 and 1163 bits at 1=0, 3=0,…,1, 4=0,…,1 and 

2=1134. A high value of i is associated with the high im-

portance of the corresponding parameter i in the weight (p). A low 

value of i is taken when the corresponding parameter i poorly recog-

nizes the best solutions.  
 

 
Figure 7.2. Overall pipeline registers size variations from 871 to 1163 in solution space 

projection 3-stage pipeline TB1000: heuristic factor 4 (dios) is horizontal axis,  

factor 3 (mrslb) is vertical axis, factor 1=0 (mob), and factor 2= 113 4 (drslb) 

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%bb%d0%b0%d0%b1%d0%be&translation=poorly&srcLang=ru&destLang=en
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It is easy to see that finding an optimal value of vector  is a compli-

cated problem as the registers size has many local minima in the multi-

dimensional space. This Chapter presents a genetic algorithm that is ca-

pable of efficiently solving heuristics tuning problem. 
 

7.3. Genetic algorithm of tuning heuristics 

 

7.3.1. Basics 

 

The vector of heuristic factors =(1,…,k) is an individual. The 

heuristic factor i is a gen. The population is a set of individuals which 

exist during the genetic algorithm operation. The generation is a set of 

individuals which exist during one iteration of the genetic algorithm. A 

fitness function F() of individual  represents quality of the corre-

sponding solution. In the pipeline optimization problem, it is determined 

over the objective function that is a minimum of the overall pipeline reg-

isters size RS() obtained by HA. The fitness function F() is a differ-

ence between the maximum of RS(worst) of the worst individual in the 

population and RS() of individual .  

 

7.3.2. Genetic operations 

 

The selection operation aims at choosing parents to perform a crosso-

ver or mutation operation and produce a next generation of individuals.  

The fitness proportionate selection (FPS) evaluates the fitness func-

tion F() for each individual  and normalizes each fitness value with 

dividing it by the sum of all fitness values. The sum of normalized val-

ues equals 1 and the values can be considered as probabilities. The popu-

lation is sorted on descending of fitness values. Accumulated normalized 

fitness values are computed, a random number r between 0 and 1 is cho-

sen and the selected individual is the first one whose accumulated nor-

malized value is greater than r. 

The worst parent selection (WPS) chooses a parent with the worst 

fitness value and replaces it in the next generation with the best off-

spring in case the fitness value of the offspring is larger than fitness 

value of the parent.  

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Fitness_function
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The worst individual selection (WIS) chooses the individual with the 

worst fitness value in the current population and replaces it with the best 

offspring in case the fitness value of the offspring is larger than fitness 

value of the individual.  

The half uniform crossover (HUX) chooses randomly half of gen in-

dices that are represented with a subset K1 of the set K={1,…,k}. HUX is 

a partially matched crossover. The simple recombination of parent’s gens 

is not sufficient for obtaining a correct offspring as for the new individu-

al the sum of heuristic factors may appear unequal to 1. Two following 

cases for two parents are differentiated. 

Case 1. The fitness values of 1 and 2 are approximately equal: 

F(1)(F(2). In this case HUX tries to save the genotype of parent 1 in 

the first offspring and the genotype of parent 2 in the second offspring. 

The first offspring 3 is constructed of original gens of parent 1 which 

are indexed with iK1 and of normalized gens of parent 2 which are 

indexed with iK\K1. The second offspring 4 is constructed of original 

gens of parent 2 which are indexed with iK\K1 and of normalized gens 

of parent 1 which are indexed with iK1. The gen normalization is per-

formed with the ratios as follows:  

 





1

1

Ki

ia  , (7.4) 

 





1

2

Ki

ib  , (7.5) 

 

   ba  111 , (7.6) 

 

ab2 . (7.7) 

 

Ratio 1 aims at the normalization of gens of 2 in offspring 3: 

3
i=12

i for iK\K1. Ratio 2 aims at the normalization of gens of 1 in 

offspring 4: 4
i=21

i for iK1. 

Case 2. The fitness value of 1 significantly exceeds the fitness value 

of 2: F(1)>(F(2). In this case HUX tries to save the genotype of par-
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ent 1 in both offspring. The first offspring is the same as 3. The sec-

ond offspring 5 is constructed of original gens of parent 1 which are 

indexed with iK\K1 and of the normalized gens of 2 which are indexed 

with iK1. The gen normalization is performed as 5
i=2

i/2 for iK1. 

An illustration of two cases of crossover HUX is given in Fig. 7.3. In 

case 1 the fitness values of 175 and 173 of two parents are close, and 

each offspring 3 and 4 tries to save the genotype of both parents. In 

case 2 the fitness value of 175 of first parent is significantly higher than 

the fitness value of 92 of second parent and each offspring, 3 and 5 

tries to save the genotype of the first parent.  

 

 
1=(0.31, 0.47, 0.09, 0.13),     2=(0.25, 0.14, 0.53, 0.08) 

K1={1, 3},   K\K1={2, 4} 

a=0.31+0.09=0.4,     b=0.25+0.53=0.78 

1=(10.4)/(10.78)=2.73,     2=0.78/0.4=1.95 

3=(0.31, 0.38, 0.09, 0.22) 

 

Case 1: 

 

F(1)=175,   F(2)=173 

4=(0.60, 0.14, 0.18, 0.08) 

Case 2: 

 

F(1)=175,   F(2)=92 

5=(0.13, 0.47, 0.27, 0.13) 
 

Figure 7.3. Illustration of crossover HUX 
 

 
 

The single offspring crossover (SOX) takes two parents, 1 and 2 

and produces one individual. Firstly, the heuristic factor weights  and  

are computed as: 

 

 = F(1) / (F(1)  + F(2)),  (7.8) 

 

 = 1  . (7.9) 

 

Secondly, the single offspring  is calculated as a vector of weighted 

sum of parent gens: 

 

i =   1
i +   2

i     for i=1…k. (7.10) 
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SOX: 

1=(0.31, 0.47, 0.09, 0.13) 

2=(0.25, 0.14, 0.53, 0.08) 

F(1)=175 

F(2)=92 

=175/(175+92)=0.655 

=10.655=0.345 

=(0.29, 0.36, 0.24, 0.11) 

TGM: 

=0.3 

=(0.31, 0.47, 0.09, 0.13) 

i=2, j=4 

=0.47*0.3=0.14 

2=0.470.14=0.33 

4=0.13+0.14=0.27 

=(0.31, 0.33, 0.09, 0.27) 
 

Figure 7.4. Illustration of crossover SOX and mutation TGM 
 

 

The offspring meets all the requirements to the individual. Its gens 

are closer to the first parent if F(1)>F(2), and are closer to the second 

parent otherwise. This crossover tries to scan the region of the search 

space that is closer to the point with best fitness function. An illustration 

of crossover SOX is given in Fig. 7.4, left. The fitness values of 175 and 

92 of two parents are used to calculate factors  and . Value 0.655 of  

is higher than value 0.345 of . Therefore, offspring  is closer to parent 

1 over parent 2. 

The two gene mutation (TGM) alters two heuristic factor values in 

one parent 1 from its initial state. The heuristic factors 1
i and 1

j are 

selected randomly. The corresponding factor values in the single off-

spring  are calculates with a mutation factor  whose value satisfies 

inequality 0<<1: 
 

 =   1
i,, (7.11) 

 

i = 1
i  , (7.12) 

 

j = 1
j + . (7.13) 

 

TGM is capable of correctly changing the value of any two heuristic 

factors in opposite direction. An illustration of TGM is given in Fig. 7.4, 

right. The value of randomly chosen heuristic factor 2 is decreased by 

0.14 at the mutation factor =0.3 and the value of 4 is increased by 

0.14. To determine what will be performed next, crossover or mutation, 

two probabilities are used: pcross and pmut. 
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7.3.3. Genetic algorithm 

 

Fig. 7.5 summarizes the genetic algorithm (GA). GA consists of an 

initialization stage and a loop that iteratively updates the population by 

means of genetic operators in such a way as to find a schedule with the 

minimal overall pipeline registers size. For a small design or a large de-

sign with few pipeline stages, the exit condition is defined over the max-

imum number of iterations, which give no improvement of the best indi-

vidual. For a large design and/or a large number of pipeline stages, it is 

defined over a CPU time constraint. 

GA is a random strategy at all steps of its operation. It randomly 

chooses the genetic operation, randomly chooses parents for performing 

crossover and mutation operations, randomly performs these operations, 

and randomly updates the population of individuals. 

 

 

 
1. Produce initial population by repeatedly generating k-1 random 

numbers i, i=1…k-1 between 0 and 1, ordering the numbers 

on ascending, computing next individual as =(1, 

21,…,k-1k-2, 1k-1), and adding it to the population.  

2. Perform the heuristic algorithm for each individual  that is 

interpreted as a vector of heuristic factors, find the worst indi-

vidual, compute the fitness function F() for all individuals 

and reorder the individuals on descending of F(). 

3. while (not Exit condition) do 

4. Randomly choose genetic operation, crossover or mutation 

with probabilities pcross and pmut respectively. 

5. Randomly choose parents using selection operation FPS. 

6. Perform crossover HUCX or SOCX and obtain two or one 

offspring. 

7. Perform the heuristic algorithm for each offspring to obtain 

F() for each offspring . 

8. Perform selection operation WPS or WIS to update popula-

tion. 

end while 

9. Return the best individual. 
 

Figure 7.5. Genetic algorithm for optimization of heuristic factors 
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7.4. Two modes of exploiting the genetic algorithm 

 

GA can be exploited in two modes: (1) while actually solving the op-

timization problem in real time, and (2) during accumulation of 

knowledge on the best heuristic factors. In the first mode, GA searches 

for the best heuristic factors for one set of input data of the heuristic al-

gorithm. In the second mode, GA accompanies the heuristic algorithm 

regarding heuristic factors, which executes many times on various input 

data. It results in generating cumulative distribution functions for all heu-

ristic factors. 

 

7.4.1. Solving optimization problem 

 

The first mode of actual solving the optimization task over tuning the 

heuristic factors requires GA to be capable of generating at least 50-100 

individuals in population in acceptable CPU time. In this case the 

runtime of the heuristic algorithm (in particular the runtime of HT of 

pipeline optimization) should not exceed 1-2 sec.  

For Intel i3 CPU it is feasible for 1-7 stage pipelines for the design 

size of 1000 operators. For larger designs, GA can find a high quality 

solution for only 2-3 stage pipelines. Of course GA works perfectly for 

designs of <1000 operators.  

 

7.4.2. Evaluation of cumulative distribution functions 

 

The second mode aims at preliminary extracting and accumulating 

knowledge on the heuristics and on the best heuristic factors 1k, 

which describe importance of these heuristics in the integrated optimiza-

tion criterion. In this case, the GA runtime constraint may be taken of 

tens and hundreds of minute. 

Vector best of the best heuristic factors can be treated as a random 

continuous variable. Its probability distribution can be estimated based 

on the multiple execution of GA on various design and various number 

of pipeline stages. Let U be the number of GA runs and u is the vector 

of best heuristic factor values for the uth run, u=1…U. Each projection 

i
u, i=1…k of the vector can be represented with a histogram hi(j), 
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j=1…w that divides (Fig. 7.6) the interval [0,1] of i
u values into w parts 

with step=1/w. The jth subinterval, j=1…w includes the factor values of 

the range from (j1)step to jstep. The value of hi(j) is the number of 

vector factors whose value belong to the jth subinterval in projection i
u. 

Fig. 7.6 gives an example of the histogram for factor 2 at the drslb 

heuristic. The histogram aims at estimating the probability density func-

tion fi(j)=hi(j)/U, and the cumulative probability distribution function, 

 


j

v ii vfjQ
1

)()( . Fig. 7.7 provides an example of the cumulative 

probability function of factor 2. 

 

 
 

Figure 7.6. Histogram of the best value of factor 2 (drslb) in HT 

 

 
 

Figure 7.7. Estimation of cumulative probability distribution function (CDF) for the best 

value of factor 2 (drslb) 

https://en.wikipedia.org/wiki/Probability_density_function
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7.4.3. Random algorithm of searching for heuristic factors 

 

In their turn, the cumulative function is a basis for efficient random 

search for an optimal solution using the heuristic algorithm. This search 

can produce the initial generation of individuals and initialize the popula-

tion in GA. Fig. 7.8 presents a random search algorithm (RA) for pro-

ducing promising heuristic factors. For each heuristic, it firstly generates 

a uniform random number, determines the lowest subinterval whose cu-

mulative function value is not less than the random number, and calcu-

lates a preliminary heuristic factor value. Secondly, it normalizes the 

vector of preliminary factor values by means of computing the values 

sum and dividing each factor value by this sum. And finally, it calls the 

heuristic algorithm with the randomly obtained factors, which returns the 

value of fitness function. This procedure repeats until the CPU time con-

straint is not met. 

 

51. for each i in {1…k} do 

2. Generate random number i with uniform probability distribu-

tion. 

3. Find lowest value j between 1 and w such that Qi(j) i. 

4. Assign i=jstep. 

end for 

5. Calculate sum s of i, i=1…k. 

6. For i in {1…k} assign i:=i/s (normalization) . 

7. Compute fitness function F() by call the heuristic algorithm with 

heuristic factors =(1,…,k) as actual parameters. 

 

Figure 7.8. Random search algorithm (RA) for generating heuristic factors 

 

7.5. Experimental results 

 

7.5.1. Test benches for pipeline optimization  

 

The random test benches (TB1000-TB5000) that are described in [79] 

and consist of 1000-5000 operators are exploited intensively in this book 

in order to study properties of the heuristics and algorithms that have 

been proposed. TB1000-TB5000 are constructed of such operators as 

addition, subtraction, multiplication and logical operators. The probabil-
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ity of appearing the operators is 0.3, 0.25, 0.1 and 0.35 and the operator 

relative delay is 1.0, 1.1, 3.0 and 0.1 respectively.  

The variable size varies between 4 and 28 and equals to 15.83 on av-

erage. The design critical path length is about 10% of the total operators 

delay for all test benches. All experiments were performed on the Intel® 

Core™ i3 CPU 550 @ 3.20 GHz 3.19 GHz, 4 GB. 

 

7.5.2. Optimization of heuristics  

 

We have written a computer program that measures the effectiveness 

of each of four heuristics for pipeline optimization with respect to the 

registers size minimization. The program divides each axis of the search 

space, which is associated with a heuristic factor, into intervals by means 

of 21 points from 0.0 to 1.0 with the step of 0.05. As only three of four 

heuristics are mutually independent, it represents the search space with 

1771 points corresponding to various combinations of the factor values. 

Fig. 7.9 shows that the number of combinations equals 1 if one of the 

factors has the value of 1.0 and the number equals 231 if one of the fac-

tors has the value of 0.0. The program computes the overall pipeline reg-

isters size using HT for each point of the search space. 

Two of four heuristics can be used in the static mode. These are 1 

(mob) and 4=11 (dios). In this case, the optimization space includes 

only 21 points (Fig. 7.10). The statically heuristic algorithm orders oper-

ators before optimizing the pipeline. The pipeline optimization results 

can significantly depend on what point has been chosen. The value of 

0.25 of the static heuristic factor 1 decreases the registers size RS by 

12.1% over the value of 0.60. 

Fig. 7.11 presents a minimum of RS for TB1000 3-stage pipeline 

among all factor value combinations. The average minimum RS is equal 

to 881.1 for 2, is equal to 887.19 for 4, is equal to 887.95 for 1 and is 

equal to 923.38 for 3. Fig. 7.12 also proves the effectiveness of the heu-

ristic 2. The average RS decreases with increasing the value of 2. This 

is a sign of high importance of drslb in the weighted criterion (7.1). The 

importance of other heuristics decreases in the order as follows: 4, 1 

and 3. It can be seen, the lower value of 3 implies the lower RS. 
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Figure 7.9. Number of combinations of three heuristic factors values vs. the factor value 

of selected heuristic (21 values for one factor) 

 

 
 

Figure 7.10. Overall pipeline registers size RS (bits) for 10-stage pipeline TB1000  

obtained by heuristic algorithm that uses static heuristics vs. heuristic factor 1 (mob) 

 

 
Figure 7.11. Minimum of overall registers size subtracted by 871 vs. heuristic factor 

value: 1mob (dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot) 



 

184 

 

 

 
Figure 7.12. Average overall registers size subtracted by 888 vs. heuristic factor 

value: 1mob (dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot) 

 

 
Figure 7.13. Overall registers size range (%) vs. heuristic factor value: 1mob 

(dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot) 

 

 

It is important for the optimization, what heuristic factor is capable of 

changing RS and in what direction. Fig. 7.13 reports that choosing a par-

ticular value of 1 or 3 allows large variations in RS due to varying the 

value of other factors. At the same time an appropriate selection of the 

value of 2 or 4 reduces the variations and may lead to rapidly finding a 

minimum of RS. It should be noted that there is a slight correlation be-

tween drslb and dios and between drslb and mob. 
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7.5.3. Cumulative distribution probability functions of heuristic  

factors 

 

GA is capable of obtaining the best heuristic factor values for various 

deigns and various number of pipeline stages. The cumulative distribu-

tion probability functions (CDF) that are shown in Fig. 7.14 are generat-

ed on the best values of heuristic factors that result from numerous opti-

mization runs for the designs TB1000-TB5000.  

The average values of the best factors at the mob, drslb, mrslb and  

dios heuristics are as follows: 2=0.466, 1=0.292, 4=0.186 and 

3=0.056. Each best factor takes values in a restricted interval. Thus, 2 

should be between 0.15 and 0.9, 1 should be between 0.0 and 0.6, 4 

should be between 0.0 and 0.55, and 3 should be between 0.0 and 0.25.  

CDFs that are presented in Fig. 7.14 are an effective facility for gen-

erating the initial population in GA using the random algorithm RA 

(Fig. 7.8). These functions can be also used as a fast solution search tool 

in the case when only few HT runs can be done in an acceptable runtime.  

 

 

 
Figure 7.14. Cumulative probability distribution functions (CDF) for best heuristic 

factors: 1mob (dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot) 
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7.5.4. Tuning genetic algorithm 

 

In order to properly choose in each design case the most efficient 

genetic operations among those proposed in section 7.3.2, several ex-

periments have been done on large designs. Two of three curves that 

are shown in Fig. 7.15 compare two crossovers HUX and SOX in case 

when the mutation operation is not used. The first 50 individuals are 

generated randomly with a uniform probability distribution. Starting 

conditions for SOX (884.8) have appeared to be preferable over start-

ing conditions for HUX (885.8).  

But very quickly (after generating the 80 th individual) HUX started 

to give the registers size RS much lower than SOX and this difference 

increases with evolution of the population. The conclusion is as fol-

lows: SOX is preferable on a restricted population size and HUX is 

preferable when more individuals can be generated. Both crossovers 

can be used in the same genetic algorithm. The choice of one of them 

can be performed randomly at each iteration of the genetic algorithm. 

Third curve CDF-HUX in Fig. 7.15 shows that the replacement of the 

uniform probability distribution with the cumulative probability distribu-

tion functions for the heuristics factors that are shown in Fig. 7.14 speeds 

up the reduction of RS for a low-size population but can give a worse 

result for a large-size population. The random search algorithm RA gen-

erates individuals (heuristic factors) in the initial population and can be 

used for implementing the mutation operation. 

Several experiments have been done in order to formulate the rules of 

choice between the operations of worst parent selection (WPS) and worst 

individual in population selection (WIS). Both operations give close 

results very frequently for the pipeline optimization task. At the same 

time, WPS may appear prefarable over WIS as it can preserve the diverse 

genofond of the population. On its turn, WIS can produce a population 

that includes a lot of very close individuals. For designs that can be 

optimized with a large population, probability pcross of crossover may be 

close to 1. For designs that can be represented with a small population, 

probability pmut of mutation and mutation factor  should be increased as 

in this case the search space can be scanned more thoroughly.  
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Figure 7.15. Overall registers size RS (bit) in 3-stage pipeline optimized by crossover 

HUX (solid), SOX (round dot) and CDF-HUX (dash) vs. population size  

(average on 5 runs of TB1000 for each crossover) 

 

 

7.5.5. Effectiveness of genetic algorithm 

 

Fig. 7.16 shows the dependency of the overall pipeline registers 

size RS on the design size, which is obtained for three optimization 

algorithms: ASAP, ALAP and GA. The size varies from 1000 to 5000 

operators, and the registers size varies from 1288 to 4237 bits. GA 

overcomes ASAP by 50.31%, 50.66%, 49.98%, 43.34% and 35.02% 

for the design size of 1000, 2000, 3000, 4000 and 5000 operators re-

spectively. GA has 105.43% of gain over ALAP for the design size of 

1000 operators. Then the gain reduces to 43.95%, 36.68%, 31.95% 

and 35.63% for the size of 2000, 3000, 4000 and 5000 operators re-

spectively. The gain is obtained due to the own properties of the heu-

ristic algorithm (about 70%), and due to the optimization of heuristic 

factors by the genetic algorithm GA (about 30%). 

The design size significantly influences the runtime of the heuristic 

algorithm in particular, and influences the runtime of GA in general. 

Within 100 sec of CPU, the genetic algorithm GA has generated 874, 
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294, 95, 65 and 79 individuals of the population for the design size of 

1000, 2000, 3000, 4000 and 5000 operators respectively.  

 

 

 
 

Figure 7.16. Overall registers size RS (bit) in 4-stage pipeline optimized by GA (sold), 

ASAP (dash) и ALAP (dash dot) vs. design size 

 

 

7.6. Conclusion 

 

Exact optimization techniques yield a global optimum solution for 

small-size problems. Heuristic optimization techniques are capable of 

handling large-size problems but are not able to guarantee finding an 

exact solution. They can find a close to optimum solution, which de-

pends on heuristics that are exploited.  

Usually several heuristics can be incorporated in a heuristic algo-

rithm. It is difficult to determine, which of them are more important, and 

which are less important. In this chapter, we have presented a genetic 

algorithm, which can search for an optimal heuristic factor for each heu-

ristic that is exploited. The factor determines the importance of the given 

heuristic in an integrated heuristic, which recognizes preferable solutions 

during solving the optimization problem. 
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8. NET ALGORITHMS 

 

A schedule for a sequential finite state machine defines a distribution 

of statements on control steps taking into account constraints on time and 

resources. A net schedule defines both a partial precedence and concur-

rent execution of the statements under the same constraints.  

This chapter introduces a net scheduling and allocation model, a 

method, and techniques that allow to generate net schedules which min-

imize either the execution time or resources. The net schedule is a source 

to synthesize a sequential schedule with chaining, multi-cycling, and 

pipelining. Moreover the net schedule can be directly mapped to a com-

puting architecture or a parallel program. Experimental results show that 

the net schedule execution time is more than 20% less than the sequential 

schedule execution time in the case of variable execution time of opera-

tors, statements and program code fragments. 

The theoretical models and methods of this chapter can first of all be 

applied to the design and optimization of digital systems. Thus they are 

implemented in the Ahiles VHDL-based high-level synthesis system 

which is described below. Additionally these models and methods can be 

used for the generation and optimization of parallel programs. 

 

8.1. Sequential scheduling of algorithms 

 

Scheduling is the first task in the synthesis process. Its results are 

most important for the final parameters of the design. It should be noted, 

the scheduling task is a NP-hard problem. 

The known scheduling techniques such as ASAP, ALAP, list, free-

dom-based, force-directed, path-based scheduling, and integer linear 

programming formulation use the precedence relation between opera-

tors/statements which is extracted from the data and control flow graphs 

as input data for sequential scheduling.  

Usually two optimization criteria are considered during the schedul-

ing: to minimize the execution time and to minimize the resources. In the 

first case statements are parallelized to execute on the same control step. 

In the second case, statements are distributed on different control steps to 

execute on a same functional unit. 
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Two basic scheduling techniques synthesize the sequential schedule 

with the shortest execution time and maximum resources. These are “as 

soon as possible” (ASAP) and “as late as possible” (ALAP) [53]. ASAP 

schedules statements on the control steps from the first to the last. A 

statement is scheduled immediately if its predecessors have been sched-

uled. ALAP schedules statements on the control steps from the last to the 

first. A statement is scheduled immediately if its successors have been 

scheduled.  

 
 

entity DIFFEQ is 

port(DXP,AP,XP,UP: in BIT_VECTOR(7 downto 0); 

YP : inout BIT_VECTOR(7 downto 0); 

CLOCK,START: in BIT; 

READY : out BIT); 

end DIFFEQ; 
architecture BEHAVIOR of DIFFEQ is 

begin 

process 

variable DX,A,X,Y,U : BIT_VECTOR(7 downto 0); 

variable B,C,D,E,H,G : BIT_VECTOR(7 downto 0); 

variable R:BOOLEAN; 

begin 

wait until CLOCK'EVENT and CLOCK='1' and START='1'; 

READY<='0'; DX:=DXP; A:=AP; X:=XP; Y:=YP; U:=UP; 

loop 

R:=X<A; --1 

exit when not R;  --2 

C:=X+(2*X);  --3 

B:=U*DX;  --4 

D:=B*C;  --5 

G:=U-D;  --6 

E:=Y*DX;  --7 

H:=E+(2*E);  --8 

U:=G-H;  --9 

X:=X+DX;  --10 

Y:=Y+B;  --11 

end loop; 

wait until CLOCK'EVENT and CLOCK='1'; 

READY<='1'; YP<=Y; 

end process; 

end BEHAVIOR; 

 

Figure 8.1. Differential equation integrating algorithm (DiffEq) in VHDL 
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The differential equation integrating algorithm (DiffEq) [20] shown in 

Fig. 8.1 and represented in VHDL [45] is used in this paper to illustrate 

scheduling techniques. ASAP scheduling is given in Fig. 8.2 and ALAP 

scheduling is given in Fig. 8.3. 
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Figure 8.2. How ASAP scheduling handles DiffEq 
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Figure 8.3. How ALAP scheduling handles DiffEq 

 

 

List scheduling is a resources scheduling technique [53]. It assumes a 

number of function units of each type to be given. The technique sched-

ules statements consecutively from the first to the last control steps, tak-
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ing into account the constraints on resources. List scheduling for DiffEq 

with two ALUs and one multiplier is show in Fig. 8.4. 
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Figure 8.4. How list scheduling handles DiffEq 

 

 

Freedom-based scheduling maps statements onto control steps tak-

ing into account the range of the steps which could be paired with the 

statement. The statements on the critical path can be assigned to the 

tightest range of steps and have to be scheduled at the beginning of 

the scheduling process. 

Force-directed scheduling is a time-constrained scheduling technique. 

The technique schedules statements step by step in accordance with 

"force" values. Each scheduling step follows by the re-evaluation of the 

"force" values. 

Integer linear programming formulation can be resource, time, and 

feasible constrained scheduling technique. It can find optimal solutions 

for practical problems. The described scheduling techniques can generate 

schedules with chaining, multicycling, pipelining. They assume the op-

erator execution time to be constant. 

The goal of allocation is to minimize computational resources. Ef-

fective allocation algorithms are based on interference and preference 

graph coloring. The goal of allocation is to minimize the resources. 
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The algorithm operations are mapped onto functional units, variables 

are mapped onto registers, and data dependences are mapped onto 

multiplexers, buses and partitioned buses. It should be noted, the al-

location task is a NP-hard problem. 

After the data path is synthesized, control signals (select signals for 

multi-functional units and multiplexers, load-enable signals for registers) 

are introduced and a finite state machine is generated based on the 

scheduled behavioral description. The data path and finite state machine 

are described in a hardware description language and used as input for 

logic synthesis. 

Effective high-level synthesis methodologies, algorithms and systems 

(AMICAL, Cathedral, CMUDA, DAA, ELLA, HAL, HIS, Yorktown 

Silicon Compiler, PASS, PSAL2, Sehwa, and others) for digital circuits 

have been developed [20, 53, 54]. Using a source behavioral description 

in a hardware description language (for example VHDL [62]) they de-

sign a register transfer level (RTL) structure consisting of two parts: the 

data path (DP) and the control unit (CU). To synthesize the data path, the 

following tasks are solved: compiling a behavioral description into an 

internal form, control and data flow graphs (CFG and DFG) generation, 

analyzing these graphs, scheduling, and allocation of statements. Known 

scheduling techniques synthesizing a sequential schedule introduce con-

trol steps and finite state machine (FSM) states into the behavior distrib-

uting the statements on the control steps.  

 

8.2. Net scheduling of algorithms 

 

8.2.1. Net schedule 

 

The statements, control steps, and FSM states are considered in the 

sequential schedule. The sequential schedule describes a distribution of 

the statements onto the control steps and FSM states. Net scheduling 

does not introduce control steps and states; it defines only precedence 

and concurrency between statements, which conserves both time and 

resources [60].  

Let N={1,...n} be a set of the statement numbers. Directed graph 

GH=(N,H) can describe the net schedule, where H is the statement’s di-

rect precedence relation. If statements i1,...,ik are direct predecessors of 
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statement j in the net schedule, then j may execute when all of its prede-

cessors have finished executing. 

In a binary matrix, an element of the matrix can take one of two val-

ues. Elements of a triple matrix can take one of three elements.  

Binary matrix Q describes data dependences between the statements, 

in which element qi,j equals 1 if i is a predecessor of j, and equals 0 oth-

erwise. In triple matrix W, element wi,j equals 

 0 if the statements i and j may not execute on the same func-

tional unit 

 1 if the statements may execute on the same functional unit se-

quentially 

 2 if the statements may execute on the same functional unit 

concurrently 

The last case applies when the statements are orthogonal [57]; that is 

the statements are “if c1 then P1; end if;“ and “if c2 then P2; end if;” and 

conditional signals or variables c1 and c2 are orthogonal (their conjunc-

tion equals false). We can equivalently transform any VHDL behavioral 

description, without changing mapping functions, to the form consisting 

of if-then statements and loop-statements without an iteration scheme 

[69, 70]. Note that an orthogonal statement cannot precede another or-

thogonal statement. For the DiffEq in Fig. 8.1, Ahiles gives us the matri-

ces Q and W in Fig. 8.5, assuming that "<", "+", "-" operators execute on 

the same ALU. Statements i and j are sequential if a path exists between 

i and j on the graph GH, otherwise the statements are concurrent.  
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Figure 8.5. Matrices for DiffEq 



 

195 

 

 

Two statements are mutually exclusive in the net schedule if they 

never execute simultaneously. For this to be true, the statements must 

be orthogonal or sequential. If mutually exclusive statements may 

execute on the same functional unit, they are compatible and can 

share same resources. 

The zero elements of the top part of the Q matrix define maximum set 

DM = {(i,j) | qi,j=0, i<j} of the concurrent statements pairs. Among the 

pairs of set DM are the pairs of set DO, which are orthogonal statements. 

Set D=DM defines the net schedule of maximum concurrency. The nodes 

and arcs in Fig. 8.2 represent the most concurrent schedule for DiffEq. 

Let tj and sj be functional unit j’s execution time and cost respective-

ly. Time tj can be constant or variable. If fu(i) denotes the type of func-

tional unit executing statement i, net schedule execution time is  
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where 
D

U  is the set of cliques of graph  DNG
D

,  constructed on set 

N of the nodes that represent statements and on set D  of the edges that 

represent sequential statements pairs. The graph 
D

G  clique that gives the 

maximum sum of the statements’ execution time defines the execution 

time. Schedule cost is  
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where NFU is the number of functional unit types. DV  is the set of the 

cliques of graph GD = (N, D) constructed on set N of the nodes and on set 

D of the edges that are the pairs of concurrent statements. The number of 

the functional units of type j needed to execute clique v statements con-

currently is mjv. 
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The sum of costs of the various functional unit types defines the total 

cost. Clique set DV  provides the number of functional units of any type. 

Sets 
D

U  and DV  describe the maximum paths and sections on graph GH. 

Hence, the longest path defines the execution time, and the widest sec-

tion defines the cost. 

 

8.2.2. Optimizing a net schedule 

 

To optimize a schedule, net scheduling must meet one of two goals: 

 minimizing the execution time with given constraints on the re-

sources 

 minimizing the resources with given constraints on the execu-

tion time 

While set DM determines the most concurrent (and thus fastest) net 

schedule, subset D of DM determines a net schedule of less concurrency, 

yet lower system cost. Set D also defines execution time T and cost S. 

 

Finding pairs of concurrent operators 

 

Ahiles can find up to 2r different net schedules, where r is the cardi-

nality of set DM.  

Because of the concurrent execution of any pair of set DO of orthogo-

nal statements which does not require additional execution time and re-

sources, we can always include DO into D. For instance, DiffEq can be 

potentially a source for generating 239 net schedules.  

Synthesizing a net schedule involves solving one of two optimization 

tasks, depending on the optimization criteria selected:  
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where TO  and SO are the constraints on execution time and cost. To ac-

count for execution time (Equation 8.1) and cost (Equation 8.2) esti-

mates, we reformulate Equation 8.3 and 8.4 as the tasks  
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and 
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Two techniques let us generate D while solving Equation 8.5 and 8.6 

consecutively adding pairs to D and consecutively moving pairs out of 

D. The first technique solves Equation 8.5 and starts with set D=DO. The 

second technique solves Equation 8.6, starts with set DM, and never 

moves orthogonal pairs DO. (Because of the concurrency of orthogonal 

statements, the pairs of DO do not require additional execution time and 

resources. Hence we can always include DO in D.) 

Both techniques select a pair for including or removing by analyzing 

the maximum-weight cliques of sets 
D

U  and DV ; the techniques select 

pairs that decrease the execution time and not increase the cost. The ad-

dition of pairs to set D is complete when any pair together with D pro-

duces cost S greater than bounding cost SO or produces a number of func-

tional units greater than the bounding number. Removing pairs from set 

D is complete when each pair to be removed implies time T greater than 

bounding time TO. Adding or removing pairs in different order yields 

different contents for D. 

Fig. 8.6 shows the influence D has on the net schedule execution time 

T and cost S. When D is empty, the process yields the net schedule of 

maximum execution time Tmax and minimum cost Smin. When D equals 

DM, the net schedule uses minimum execution time Tmin and maximum 

cost Smax. Including a pair in D can decrease the execution time, while 

removing a pair from D can decrease the cost. 
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Recalculating clique sets 

 

Adding or removing a pair from D changes the clique set according to 

four rules. Two rules transform 
D

U  into 
"D

U when we add pair 

d = (i, j)  DM into set D creating new set D"=D{d}. The first rule 

splits a clique containing statements i and j into two new cliques of 

less cardinality; the second rule allows the removal of cliques from 

the new set D":  
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Figure 8.6. Set D’s effect on concurrency space 

 

 

 Rule 1 (splitting)  If element u
D

U  satisfies the condition that 

{i, j}  u, then the elements u \ {i} and u \ {j} are added to set 

"D
U ; otherwise element u is; 

 Rule 2 (absorbing)  If in set 
"D

U  two elements u' and u" exist for 

which u'  u", then element u" is removed from the set. 
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Two additional rules recalculate set DV  as new set "DV . The third rule 

combines two cliques containing both statements i and j into a new 

clique that is included into set "DV . The fourth rule removes the absorbed 

cliques from the set: 

 Rule 3 (merging)  If v'  v"  {i, j} is true for v', v"  DV  then 

element v = (v'  v")  {i, j} is added to "DV . All elements of DV  

are also included in "DV . 

 Rule 4 (absorbing)  If in set "DV  two elements v' and v" exist for 

which v'  v" then element v" is removed from the set.  

If we remove pair d from set D and D' = D \ {d} is the new set, then 

rules 1 and 2 transform set DV  into the set "DV  and rules 3 and 4 trans-

form set 
D

U  into the set 
"D

U . 

Solving Equation 8.5 to minimize the execution time for DiffEq with 

one multiplier and two ALUs (tMUL = 100 ns, tALU = 40 ns, sMUL = 5 and 

sALU = 1) produces set , which contains 31 pairs, as described by the zero 

elements of the top right part of matrix 
x

DQ  (Fig. 8.7). The markings 

along the column heads indicate the exit statement, e, and VHDL opera-

tors <, +, =, and .  

No pair can be added to D without increasing the number of function-

al units and exceeding the constraints. For each clique of set 
D

U , the 

execution time is the sum of the clique statements’ execution time. Over-

all execution time is 340 ns, and the cost is 7 (Fig. 8.8). 

If we add pair (i, j) to set D statements i and j are concurrent; if 

(i, j) is not included in set DM, statement i precedes statement j. For 

pair (i, j) of set DM not included in set D, we know that statements i 

and j are not concurrent, but do not know whether i should precede j 

or j should precede i.  

Introducing Boolean variable xij into matrix 
x

DQ  for pair (i, j) and its 

negotiation ijx  for pair (j, i) solve this problem. If xij equals 1, statement 

i precedes statement j. If the value equals 0, j precedes i. Thus, while 

many net schedules possible for a given D, for some sets D no net 

schedule exists. 
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Figure 8.7. Matrix of set D for DiffEq with one multiplier and two ALUs 
 

  < e + * * - * + - + + Time 

 1 1 0 0 0 0 0 0 1 0 1 0 120 

 2 0 0 1 0 0 1 0 0 0 0 1 120 

 3 1 0 0 0 0 0 0 0 0 1 1 120 

D
U = 4 0 0 0 0 0 0 1 1 1 0 0 180 

5 0 0 0 1 1 1 0 0 1 0 0 280 

6 0 0 0 1 1 0 1 0 1 0 0 340 

 7 0 0 1 0 1 1 0 0 1 0 0 220 

 8 1 1 0 0 0 0 0 0 0 0 1 280 

 9 0 0 0 0 0 0 0 0 0 0 1 140 

             T=340 
 

  < e + * * - * + - + +  ALU Mul Exit Cost 

 1 0 1 0 0 0 0 0 0 1 1 0  2 0 1 6 
 2 0 1 0 0 0 1 0 1 0 0 0  2 0 1 6 

 3 1 0 0 0 0 0 0 0 1 0 0  2 0 0 6 

 4 0 1 1 0 0 0 1 0 0 1 0  2 1 1 7 
 5 0 1 1 1 0 0 0 0 0 1 0  2 1 1 7 

 6 0 1 1 1 0 0 0 1 0 0 0  2 1 1 7 

 7 1 0 0 0 0 1 1 0 0 0 0  2 1 0 7 
VD= 8 0 0 0 0 0 0 0 0 1 0 1  2 0 0 2 

 9 0 1 0 0 0 1 1 0 0 1 0  2 1 1 7 

 10 1 0 1 1 0 0 0 0 0 0 0  2 1 0 7 
 11 1 0 1 0 0 0 1 0 0 0 0  2 1 0 7 

 12 0 0 0 1 0 0 0 1 0 0 1  2 1 0 7 

 13 0 0 0 0 1 0 0 1 0 0 1  2 1 0 7 
 14 0 1 0 0 1 0 0 0 0 1 0  1 1 1 6 

 15 0 1 0 0 1 0 0 1 0 0 0  1 1 1 6 

 16 1 0 0 0 1 0 0 0 0 0 0  1 1 0 6 

              2 1 1 S=7 

 

Figure 8.8. Clique sets for matrix Qx
D 
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8.2.3 Tackling the existence problem 

 

Formulation of existence problem 

 

Given set D, that net schedule GH exists in which pairs of concurrent 

statements constitute D. Clique set 
D

U   must be the maximum-paths set 

of graph GH, and clique set DV  must be the maximum-sections set of the 

graph; otherwise this proposition is not true. 

For set D and the given values of variables xij, a net schedule exists if 

the matrix derived from the matrix 
x

DQ  by substituting the variable val-

ues describes a transitive relation. This transitivity condition expresses 

the requirement that the net schedule must have exactly that level of con-

currency defined by set D.  

The relation is transitive if the following combined logical equation 

has at least one solution for xij.  
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In combined Equation (8.7) variables zij are intermediate. Equation 

L1 describes the transitivity conditions for the elements of set D and 
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equation L2 describes the transitivity conditions for the elements not be-

longing to this set. 

One algorithm effectively solves the combined Equation (8.7) by 

constructing graph 
x

DG  and searching for its non-conflicting labeling 

(Fig. 8.9). The graph nodes are variables xij that correspond to non-

concurrent statements pairs. The algorithm introduces edge (xij, xik) if 

statements j and k are concurrent and pair (j, k) belongs to set D. It labels 

the graph nodes 0 and 1. The initial label 1 is assigned to the nodes be-

longing to set {xij | (i, j)DM, i, j = 1, ..., n, i < j} of the Boolean variables 

that correspond to the nonconcurrent statements pairs not introduced into 

set DM. If an edge connects two variables xij, xjk that satisfy constraint 

i<j<k, it is labeled +, otherwise it’s labeled . 

 

Labeling conflicts 

 

Labeling two variables and the edge connecting them creates one type 

of conflict if the variable labels are the same and the edge label is +, or 

the variable labels are different and the edge label is . If the graph has at 

least one of this first type of conflict, the equation for L1 has no solution.  

For variables xij, xik, and xkj where i<k<j, there is a second type 

conflict if variable xij‘s value equals 0 (1) and the values of xik and xkj 

equal 1 (0). If the graph has at least one of the second type of conflict 

the equation for L2 has no solution. To generate a net schedule, the 

algorithm must label the nodes in such a way as to avoid the conflicts 

of both types. 

Fig. 8.9 shows graph 
x

DG  for the matrix in Fig. 8.7. Node x5,6 has the 

label 1 and connects with node x6,11 via edge (x5,6, x6,11), labeled +; hence, 

node x6,11 must be labeled 0. Nodes x6,11 and x1,11 have different labels 

and are connect via the edge labeled ; this is a conflict. Equation (8.7) 

has no solution. Therefore, the number of net schedules of the different 

concurrency levels is less than the number of subsets of set DM. 

 

Solving conflicts 

 

If L1 and/or L2 have no solution, the algorithm searches for subset 

D' of set D to solve Equation (8.5) and set D" that includes set D to 
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solve Equation (8.6) (see Fig. 8.6). Sets D' and D" must satisfy Equa-

tion (8.7). Set D' gives a less expensive net schedule, while set D" 

gives a faster one. 

How do we find appropriate sets D' and D"? A program like Ahiles 

could use various procedures to solve this problem, but the main idea is 

to reduce or extend set D to avoid the conflicts. It is better to minimize 

the number of the concurrent statements pairs removed from or added to 

set D, but the algorithm should examine the influence of each pair on the 

execution time and cost as well. 
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Figure 8.9. Graph 
x

DG   of logical equation L1, showing a labeling conflict of the  

first type 
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The gradient method is the basis for one possible procedure. The pro-

cedure firstly uses a branch and bound technique to find labeling that 

avoids conflicts of the second type and minimizes the number of the con-

flicts of the first type. Then for each pair that we can remove from or add 

to D, it estimates the number of conflicts remaining and selects the pair 

producing the minimum number of remaining conflicts. The procedure 

repeats until no labeling conflicts remain. This technique’s efficiency 

depends on the estimating method. 

Now consider Equation (8.5). There are 10 conflicts for set D de-

scribed by the matrix in Fig. 8.7. Matrix Cnf in Fig. 8.10 describes for 

each pair the number of conflicts that will remain if we remove the pair. 

 
 1 2 3 4 5 6 7 8 9 10 11 

1   11 12 10 9 11  9   
2   10 14 12 10 14 12 10 10  
3    11   10 11  10  
4        10  13 9 

5        12  15 13 

6        10  15  
7          10  
8           10 

9          8 11 

10            
11            

 

Figure 8.10. Matrix Cnf records the number of conflict remaining  

for each pair if we remove it from D 

 

As the matrix shows, removing a pair can sometimes create more 

conflicts; for example, removing pair (5, 10) would result in 15 conflicts, 

five more than we started with. Pair (6, 7) has the minimum number-

seven-of remaining conflicts, and the procedure selects it for removal. 

Several steps of removing pairs and replacing 0 elements with x elements 

transforms the matrix in Fig. 8.7 into matrix 
x

DQ  (Fig. 8.11) describing 

set D of cardinality 22 that satisfies Equation (8.7).  

This procedure also transforms the clique sets (see Fig. 8.12). 

While the execution time increases from 340 ns to 380 ns because 

nine pairs of concurrent statements became non-concurrent, the cost 

remains unchanged. 
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Figure 8.11. Matrix QD
x from Fig. 8.7, with the labeling conflicts resolved 

 
  < e + * * - * + - + + Time 

 1 0 0 0 0 0 1 1 0 1 0 1 220 

 2 1 0 0 0 0 1 0 0 1 1 1 200 

 3 1 1 0 0 0 1 0 0 1 0 1 160 

D
U = 4 0 1 1 0 0 1 0 0 1 0 1 160 

5 1 0 0 0 0 0 0 1 1 1 0 160 

6 0 0 0 1 1 1 1 0 1 0 0 380 

 7 0 0 0 0 0 0 1 1 1 0 0 180 

 8 0 0 1 0 1 1 0 0 1 0 0 220 

             T=380 
 

  < e + * * - * + - + +  ALU Mul Exit Cost 

 1 0 1 0 0 0 0 0 0 1 1 0  1 1 1 6 
 2 0 1 0 0 0 1 0 1 0 0 0  1 1 1 6 

 3 1 0 0 0 0 0 0 0 1 0 0  1 1 1 6 

 4 0 1 1 0 0 0 1 0 0 1 0  2 0 0 2 
 5 0 1 1 1 0 0 0 0 0 1 0  2 1 0 7 

 6 0 1 1 1 0 0 0 1 0 0 0  2 1 0 7 

 7 1 0 0 0 0 1 1 0 0 0 0  2 1 0 7 
VD= 8 0 0 0 0 0 0 0 0 1 0 1  1 0 0 1 

 9 0 1 0 0 0 1 1 0 0 1 0  2 1 0 7 

 10 1 0 1 1 0 0 0 0 0 0 0  2 1 0 7 

 11 1 0 1 0 0 0 1 0 0 0 0  2 1 0 7 

 12 0 0 0 1 0 0 0 1 0 0 1  2 1 0 7 

 13 0 0 0 0 1 0 0 1 0 0 1  1 1 1 6 
 14 0 1 0 0 1 0 0 0 0 1 0  1 1 1 6 

 15 0 1 0 0 1 0 0 1 0 0 0  1 1 0 6 

              2 1 1 S=7 

 
Figure 8.12. New clique sets for matrix Qx

D, with the labeling conflicts resolved 
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8.3 Generating a net schedule 

 

Now graph Gx
D has no labeling conflicts. Ahiles can generate an 

appropriate net schedule after considering the labels of the graph 

nodes as Boolean variable values and substituting these values into 

the matrix Qx
D, 

Ahiles generates matrix QD. (Fig. 8.13). Since this matrix defines a 

transitive relation and no row i and column j exists for which qij=qji=1, 

Ahiles can reorder the matrix rows and columns to obtain a matrix with 

zeros below the principal diagonal (Fig. 8.14). This reordered matrix de-

fines the statements’ precedence relation in a net schedule. To determine 

the net schedule Ahiles uses the following procedure to calculate matrix 

HD that defines the statements’ direct precedence: 

 

DQH : ; 

for i{0,...,N-1} do 

for j{0,...,i} do 

if    







 


  11 ,,1

1
,1 jiNkkj

N

k
jiNj hhh then 

jiNjh  ,1 := 0; 

end j; 

end i; 

 

Starting from the right top corner of HD, the procedure replaces 1 

values with 0 values for elements hij for which the Boolean multipli-

cation of the row i and column j gives the value 1. For matrix QD, the 

procedure gives the matrix HD shown in Fig. 8.15 and the net sched-

ule shown in Fig. 8.16. 

Table 8.1 gives some experimental results for net schedules that 

Ahiles synthesized for DiffEq. I measured the time spent to generate the 

net schedules on a 486, 50-MHz PC. Theory predicts a probabilistic 

growth of the number of the graph cliques depending on the size of the 

graph. However, sets 
D

U  and DV  include few cliques for the net sched-

ules, thus avoiding labeling conflicts, the most complex problem in net 

schedule synthesis. 



 

207 

 

 

 1 2 3 4 5 6 7 8 9 10 11 

1 0 1 0 0 0 1 0 1 1 1 1 

2 0 0 0 0 0 1 0 0 1 0 1 

3 0 1 0 0 1 1 0 0 1 0 1 

4 0 0 0 0 1 1 0 0 1 0 0 

5 0 0 0 0 0 1 0 0 1 0 0 

6 0 0 0 0 0 0 0 0 1 0 0 

7 0 0 0 1 1 1 0 1 1 0 1 

8 0 0 0 0 0 0 0 0 1 0 0 

9 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 1 0 1 1 0 1 

11 0 0 0 0 0 1 0 0 1 0 0 
 

Figure 8.13. Matrix QD before reordering 

 
 1 3 2 7 4 5 10 8 11 6 9 

1 0 0 1 0 0 0 1 1 1 1 1 

3 0 0 1 0 0 1 0 0 1 1 1 

2 0 0 0 0 0 0 0 0 1 1 1 

7 0 0 0 0 1 1 0 1 1 1 1 

4 0 0 0 0 0 1 0 0 0 1 0 

5 0 0 0 0 0 0 0 0 0 1 1 

10 0 0 0 0 0 0 0 1 1 1 1 

8 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 1 1 

6 0 0 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 0 0 
 

Figure 8.14. Matrix QD after reordering to obtain a zero bottom part 

 

 

 1 3 2 7 4 5 10 8 11 6 9 

1 0 0 1 0 0 0 1 0 0 0 0 

3 0 0 1 0 0 1 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 1 0 0 

7 0 0 0 0 1 0 0 1 1 0 0 

4 0 0 0 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 1 0 

10 0 0 0 0 0 0 0 1 1 0 0 

8 0 0 0 0 0 0 0 0 0 0 1 

11 0 0 0 0 0 0 0 0 0 1 0 

6 0 0 0 0 0 0 0 0 0 0 1 

9 0 0 0 0 0 0 0 0 0 0 0 
 

Figure 8.15. Matrix HD calculated form matrix QD 
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Figure 8.16. Net schedule for HD, which uses two ALUs and one multiplier 

 

 

Table 8.1 

Ahiles net schedule synthesis results for DiffEq 
 

 
N 

Functional units Cardinality  

No of 

conflicts 

Remo-

ved 

pairs 

No of cliques  

Time 

(sec) 
No of 

ALUs 

No of 

Multipliers 

 

DM 
Initial 

D 

 

UD 
 

VD 

1 2 1 39 31 6 5 6 22 0.11 

2 1 1 39 21 7 4 5 14 0.11 

3 2 1p 61 51 15 12 11 26 0.44 

 

 

8.4 Transition from net schedule to sequential schedule 

 

Ordinary, multicycling and chaining algorithms produce sequential 

schedules from net schedules. These algorithms do not care about com-

putational resources as the resource constraints have been already taken 

into account while generating the net schedule. 

The well-known ASAP and ALAP scheduling algorithms assume the 

statements’ execution time is less or equal to the clock cycle period. To 

generate schedule these algorithms use the net schedule graph for GH as 

input data. In this case the number of statements in the longest path of 
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the net schedule graph determines the minimal number of control steps 

in the sequential ordinary schedule. In the case, multicycling is applied 

to long-delay operators and statements, ASAP and ALAP account for the 

execution time of each statement that can be larger than the clock cycle 

period. One statement can be scheduled to several consecutive control 

steps and several corresponding clock cycles.  

In case, chaining is applied to short-delay operators and statements, 

ASAP and ALAP assign chains of operators and statements to one con-

trol step and one corresponding clock cycle. 

Given constraints on resources, the list scheduling technique can gen-

erate a sequential schedule from the net schedule while minimizing the 

number of control steps. In this case, the list scheduling technique is ca-

pable of optimizing ordinary, multicycling and chaining sequential 

schedules, which follows the synthesis and optimization of a resource-

constrained net schedule. 

 

8.5 Graph language and tool for creation and simulation              

of sequential and net algorithms 

 

This section presents a graph language and a tool for visual interac-

tive development and simulation of net algorithms. The language is de-

veloped on the basis of C language, but the principles laid down in it are 

applicable to other languages as well. The graph language is based on the 

following construction principles: 

1. The graph vertices are associated with primitives of the C lan-

guage: data types, variables, constants, logical and arithmetic operators, 

statements, control structures, etc.; 

2. The graph arcs connect the vertices and describe the control flow, 

which can be either sequential or parallel; 

3. Various labels are assigned to vertices and arcs, the interpretation 

of which establishes the semantics of the language; 

4 The. graph execution is dynamically visualized; 

5. Source and termination vertices are fixed in the graph; only one ac-

tive vertex is executed in the graph that describes a sequential algorithm, 

and several vertices are active and execute in the graph that describes a 

concurrent algorithm; 
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6. The control flow of is described by tokens that mark the arcs and 

move when the algorithm execute; 

7. If tokens appear at all input arcs of a certain vertex, the vertex fires, 

and the corresponding statement or variable assignment is performed 

followed by moving the tokens from the input to the output arcs of the 

vertex; 

8. The token at exactly one output arc characterizes the sequential ex-

ecution of the graph; tokens at several output arcs characterizes its con-

current execution; 

9. Firing of a vertex can be unconditional or conditional; in the sec-

ond case a test Boolean variable is associated with the vertex; if the vari-

able value is true when the vertex fires, the corresponding statement exe-

cutes; otherwise it does  not execute; in any case, the tokens move from 

the input to the output arcs; 

10. The graph interacts in the process of operation with a storage of 

variables and with a storage of statements; 

11. In the process of interpreting and executing the visualized graph, 

variable values are updated in the storage. 

Fig. 8.17 shows the environment of visual simulation of a graph that 

describes sequential behavior. The top part of the interface includes a 

menu bar and a toolbar. The window of visualizing the graph includes 

images of vertices and arcs.  

Two upper rectangular vertices describe the cluster name and the 

graph header. Seven lower rectangular vertices represent assignment 

statements, three of which contain one operator in the right part.  

The upper oval vertex describes the while loop, and the lower oval 

vertex describes the if-then-else statement. Small round vertices with 

identifiers c0 and c1 inside describe test variables. Even smaller round 

vertices describe the operation of sequential execution.  

All arcs are labeled. The oval vertex while has a stroke indicating that 

the vertex is firing. The token moves along an arc directed into the loop 

body. The lower part of the interface describes the storage of variables. 

For each variable, the cluster to which it belongs, the kind, type, size in 

bytes, current value and comment are indicated. 

Fig. 8.18 illustrates a graph and its execution, which model and simu-

late a concurrent algorithm. The graph representation is a result of trans-
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forming a branching and looping behavioral description that is per-

formed in a high level language into the basic single-block flow model, 

which allows for a maximum of asynchronous parallelization and a min-

imum of the critical path in the graph. Such a graph can represent a par-

allel asynchronous behavior of an embedded system. 

The graph vertices are assignment statements and variables. The as-

signment statement depicted by blue rectangles reads the values of the 

input variables from the storage (bottom in this figure), perform logical, 

arithmetic, or other operations and write the values of the output varia-

bles into the storage.  

 

 
 

Figure 8.17. Interface of graph-based environment for execution of sequential algorithm 
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Figure 8.18. Illustration of executing a concurrent algorithm 

 

 

Vertices-variables are divided into two classes: conditional (control) 

variables (depicted in yellow circles) and value-assigned variables (de-

picted in orange rectangles). The value of a conditional variables affects 

the execution of statements (value true enables execution, and value 

false disables execution). 
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The vertices of the graph are connected with arcs. The arcs that are 

represented with solid lines connect vertices-statements to vertices-

variables, and vice versa. The arcs represented by dashed lines connect 

the control variables with the statements, the performance of which they 

influence. Solid arcs can be marked with markers that indicate the flow 

of control or data in the basic single-block model. When tokens appear at 

all input arcs of a certain vertex, this vertex fires, and the tokens move to 

the output arcs. The statement that is associated with the vertex executes 

if the control variable connected to the vertex by the dashed arc takes 

value true.  

The firing vertex is indicated by a bypass line. Several vertices of the 

graph can simultaneously fire, and the more such vertices, the higher the 

level of concurrency of the behavior. The correct transformation of a 

behavior into the basic single-block model ensures that the tokens do not 

crawl on each other and ensures that two or more tokens on the same arc 

cannot appear at the same time. The dynamics of the graph can be con-

trolled through a number of tools provided by our simulation system. 

The proposed transformational techniques and tools support the crea-

tion of net algorithms that are parallel in space and process one data set. 

They also support the creation of asynchronous pipelines that are parallel 

in time and process a flow of data sets [76]. The method provides for the 

creation of both regular asynchronous pipelines as well as irregular asyn-

chronous pipelines, whose stages differ from each other. When designing 

a pipeline, the original control flow is eliminated, the pure data flow is 

extracted, and the network is divided into pipeline stages.  

Each pipeline stage is represented with a subnet that implements the 

required functionality, performs certain operations and interact with 

neighbor stages-subnets by data exchange and handshaking mechanism. 

Synchronization of the subnets is localized and performed by means of a 

request / acknowledgment mechanism, which is implemented by moving 

the tokens along arcs, which connect the subnets of neighbor pipeline 

stages. The synthesis of the asynchronous pipeline is performed in a reg-

ular way by the method, which explores the basic single-block model 

and is described in Chapter 5 of this book.  

Fig. 8.19 shows a net modular algorithm graph that asynchronously 

implements the TTA true audio codec [71, 78]. The blue rectangular ver-

tices of the graph represent whole modules (functions) instead of simple 
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statements. The input of this algorithm is a data stream of audio frames. 

Our method transforms this net algorithm into a two-stage asynchronous 

pipeline that is shown in Fig. 8.20.  

 

 
Figure 8.19. Graph of asynchronous net algorithm of audio coder TTA 

 

 

Figure 8.20. Graph of asynchronous 2-stage pipeline for audio coder TTA 
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The first stage of the pipeline runs in parallel with the second stage 

that is a hybrid filter. Table 8.2 reports parameters of the pipelined asyn-

chronous audio encoder TTA, which are measured when encoding an 

excerpt from a melody by Italian baroque composer Tomaso Giovanni 

Albinoni. The two-stage net pipeline yields the acceleration factor of 

3.4 against a non-parallel implementation. It should be noted that 

non-pipelined net algorithm and graph shown in Fig. 8.19 yields a 

smaller acceleration factor of 2.2.  
 

Table 8.2 

Parameters of asynchronous pipeline implementing the TTA audio 

compressor  
 

Parameter Value 

Number of variables of all types 40 

Number of vertices in the graph of net algorithm 41 

Number of edges in the graph of net algorithm 83 

Total number firings of graph vertices 5053 

Total number of tokens at the edges of graph 7806 

Вычислительная сложность алгоритма 47615 

Critical path on data flow graph of net algorithm 13829 

Parallelization factor 3.4 

 

 

8.6 Experimental results 

 

The model, method and techniques described here are used to develop 

a VHDL-based, high-level synthesis system called Ahiles [61]. The sys-

tem inputs are a behavioral VHDL description, transition probabilities 

for branch statements of the description, an optimization task, and func-

tional unit descriptions. The outputs are a register transfer level (RTL) 

structure composed of the structure parameters and the data path and the 

finite state machine (FSM). 

Firstly, AHILES compiles the design specification and transforms the 

behavioral description to a special behavioral model. The system uses an 

internal format to speed up the design process and to allow the genera-

tion of high-quality designs. Still in the internal form, the description is 

diagnosed and analyzed, then presented in the control and data flow 

graphs. Ahiles then solves the scheduling, allocation, and binding tasks 
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and generates the data path and finite state machine in the internal form. 

Reverse translation maps the register transfer level structure into 

VHDL text.  

We can link the VHDL design to several VHDL libraries and units. 

Ahiles was written mainly in C and runs on an IBM PC platform. I ob-

tained the results described below on a PC 486/50. 

VHDL compiler parameters appear in Table 8.3. For large designs, 

the compiler throughput is more than 200 lines per second. The average 

size of the design internal form is only 1.4 times greater than the size of 

the source VHDL text. 

Table 8.4 shows DiffEq’s parameters for the net-based and list sched-

uling. In each case, the net-based scheduling technique (in this case, 

Ahiles) introduced the smaller number of control steps.  

 

Table 8.3 

Parameters for the Ahiles VHDL compiler 
 

Parameter 
Benchmark 

Bubble Gcd Gcdf Kalman Pid 

VHDL text (lines) 119 50 60 220 724 

VHDL text (bytes) 3009 2089 2844 7966 23138 

Internal form (bytes) 5570 2573 2925 12393 30280 

Compilation time (s) 0.71 0.49 0.77 1.45 2.53 

Throughput (lines/s) 168 102 78 149 286 

Throughput (lines/s) 4238 4263 3694 5382 9145 

 

Table 8.4 

Synthesis results for DiffEq using various techniques within Ahiles 
 

Parameter 
Technique 

Ordinary Chaining Multicycling Pipelining 

Clock cycle (ns) 120 120 60 60 

Number of ALUs 2 2 1 2 

Number of multipliers 1 1 1 1(p) 

Control steps (list) 5 5 9 6 

Control steps (net based) 5 4 8 6 

Number of registers 8 8 8 7 

Number of multiplexors 10 9 8 11 

Number of multiplexor inputs 25 23 23 27 
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Figure 8.19. Frequency function for the net (+) and sequential (*) schedule  

execution time 

 

 

Fig. 8.19 displays graphically the advantage net scheduling provides 

over sequential scheduling in the case of variable execution time of func-

tional unites: Its frequency function peaks earlier and at a smaller proba-

bility level.  

Table 8.5 reports the results that Ahiles obtained for five benchmarks. 

Bernard Courtois and Polen Kission of the Techniques of Informatics 

and Micro-electronics for Computer Architecture (TIMA) Laboratory 

provided the Bubble, Gcdf, and Pid benchmarks. I borrowed the Gcd and 

Kalman benchmarks from the works of Bergamaschi, and Morison and 

Newton. Due to equivalent transformation of the source behavioral de-

scriptions and new scheduling techniques, Ahiles minimized the number 

of the finite state machine states. The system either maps behavioral de-

scription operators to the data path functional units or introduces them 

into the finite state machine. 

Fig. 8.20 shows an example of a pipelined net schedule Ahiles has 

generated. Functional units are pipelined [53], therefore we split multi-

plication operators into parts, one for each stage of the pipeline. Each 

part precedes its successor. For DIFFEQ the net schedule of maximum 

concurrency with two-stage pipelined multiplication is presented in 

Fig. 8.20. A net schedule of less concurrency is synthesized by the net 
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scheduling technique with constraints on the cost and number of the 

functional units as well as on the number of pipeline stages.  

 

Table 8.5 

Synthesis results for Ahiles 
 

Parameter 
Benchmark 

Bubble Gcd Gcdf Kalman Pid 

Number of states 20 2 5 16 23 

Number of ALUs 0 1 1 1 1 

Registers/bits 7/104 2/32 2/64 18/138 13/389 

RAMs 1 0 0 3 0 

ROMs 0 0 0 3 1 

Multiplexor/input 4/13 4/8 4/8 14/36 8/33 

Collectors 0 0 0 5 9 

Structure (lines) 416 164 184 1000 723 

Structure (bytes) 12383 4647 5241 31550 22938 

Time (s) 6.03 4.79 4.84 12.04 7.15 
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Figure 8.20. Net schedule Ahiles generated for a system with two ALUs and one  

pipelined multiplier. The designators *1 and *2 indicate the first and second stage  

of the pipelined multiplier 
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8.7 Conclusion 

 

A new model of solving the scheduling and allocation tasks in high-

level synthesis systems has been proposed. The net scheduling tech-

niques that are developed in this chapter can synthesize the optimal net 

schedules on two criteria: the minimum execution time, and the mini-

mum cost. The net schedule existence problem is formulated as a com-

bined logical equation solving problem. An efficient technique for solv-

ing the logical equations of certain type has been proposed. The net 

schedule can be either directly used for digital system synthesis, or can 

be a source for generating sequential schedules with chaining, multicy-

cling, and pipelining, which use pipelined and non-pipelined functional 

units. 

As the obtained results show, net-based scheduling systems like 

Ahiles can produce synchronous designs more efficiently than the known 

sequential-scheduling techniques. At the same time, net-scheduling 

mainly targets the design and optimization of asynchronous systems, 

both hardware and software. The synchronization mechanisms may vary 

in a wide range. Net scheduling is extremely useful for modeling, syn-

thesis and optimization of software for computer networks. 
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