

А. А. Prihozhy

ANALYSIS, TRANSFORMATION
AND OPTIMIZATION FOR HIGH PERFORMANCE

PARALLEL COMPUTING

Minsk
BNTU
2019

UDС 004.272.2

Prihozhy, A. A. Analysis, transformation and optimization for high

perfomance parallel computing / A. А. Prihozhy. – Minsk: BNTU, 2019. –
229 p. – ISBN 978-985-583-366-7.

This book studies hardware and software specifications at algorithmic level from the

point of measuring and extracting the potential parallelism hidden in them. It investigates
the possibilities of using this parallelism for the synthesis and optimization of high-
performance software and hardware implementations. The basic single-block flow model is
a result of the algorithm transformation, and is a basis for developing efficient methods of
synthesis and optimization of parallel implementations. It supports the generation and op-
timization of computational pipelines and concurrent net algorithms, which lead to higher
performances of the computing systems.

This book is useful in training of scientific researchers and graduate students. It is also
useful for teaching students and undergraduates in computer science at universities.

Tables 34. Figures 117. Bibliography 91.

Recommended for publication by the Scientific
and Technical Council of Belarusian national technical university

(Record № 1, 18.01.2019)

R e v i e w e r s:
Head of the Department of information management systems,
Belarusian national university, Dr. Prof. V. V. Krasnoproshin;
Professor of the Info-communication technologies department,

Belarusian university of informatics and radio-electronics,
Dr. Prof. A. A. Boriskevich

ISBN 978-985-583-366-7 © Prihozhy A. A., 2019

© Belarusian national
technical university, 2019

3

CONTENT

PREFACE .. 9

INTRODUCTION ... 10

Chapter 1. EVALUATION OF COMPUTATIONAL

COMPLEXITY, CRITICAL PATH AND PARALLELIZATION

POTENTIAL OF ALGORITHMS .. 13

1.1. Metrics of algorithms .. 13

1.1.1. Computational complexity of algorithm. 13

1.1.2. Critical path analysis problem.. 14

1.1.3. Parallelization potential of algorithm. 17

1.2. Methodology of algorithm critical path evaluation. 17

1.2.1. Data Flow Execution Graph. .. 19

1.2.2. Computational complexity of data flow execution graph. 20

1.2.3. Critical path on data flow execution graph. 23

1.2.4. Parallelization potential and feasible acceleration. 25

1.3. Evaluation of computational complexity and critical path

on data flow execution graph. ... 26

1.3.1. Explicit evaluation of critical path. 26

1.3.2. Dynamic evaluation of critical path. 28

1.4. Tool for estimation of algorithm parallelization potential............ 28

1.4.1. Instrumenting and mapping C-code onto C++-code. 28

1.5. Reduction of critical path and increase of parallelism 34

1.5.1. Reduction by transformation of C/C++-code. 34

1.5.2. Preliminary transformation of loops. 37

1.5.3. Extraction of computations from control structures. 38

4

1.5.4. Transformation of expressions. ... 40

1.5.5. Effectiveness of transformations. .. 41

1.6. Evaluation accuracy and limitations. ... 43

1.7. Conclusion. ... 44

Chapter 2. PARALLELIZATION POTENTIAL

OF MEANINGFUL HARDWARE / SOFTWARE

APPLICATIONS ... 45

2.1. Parallelization potential of two-dimensional WAVELET

codec ... 45

2.2. Parallelization potential of RSAREF cryptographic toolkit 49

2.3. Parallelization potential of MPEG-4 video codec 51

2.3.1. MPEG-4 video codec... 51

2.3.2. Source video sequence... 55

2.3.3. Profiling computational complexity 55

2.3.4. Profiling critical path .. 57

2.3.5. Profiling parallelization potential ... 61

2.4. Conclusion ... 66

Chapter 3. TRANSFORMATION OF ALGORITHM TO BASIC

SINGLE-BLOCK MODEL ... 67

3.1. Algorithm transformation flow .. 67

3.2. Preliminary transformation of algorithm 71

3.3. Basic single-block flow model.. 74

3.4. Transformation of loops for basic single-block model 79

3.5. Transformation of nested branching code to basic single-

block model ... 85

3.6. Efficiency of basic single-block model ... 90

3.7. Conclusion ... 100

5

Chapter 4. ANALYSIS OF BASIC SINGLE-BLOCK MODEL 102

4.1. Goals of analysis .. 102

4.2. Analysis of structured basic single-block model 102

4.2.1. Evaluating conditional variables using Boolean

expressions ... 103

4.2.2. Relations among values of primary Boolean variables 105

4.2.3. Pairs of orthogonal conditional variables 106

4.2.4. Estimating metrics of basic single-block model 108

4.3. Advanced analysis of basic single-block model 111

4.3.1. Feasibility functions for pairs of primary Boolean

variables ... 112

4.3.2. Feasibility functions and pairs of orthogonal variables 115

4.4. Formal method of basic single-block model analysis 118

4.4.1. Tautology problem for a pair of conditional variables 118

4.4.2. Partial tautology problem for orthogonal variables 118

4.4.3. Contradiction procedure and SAT problem

for orthogonal variables .. 119

4.4.4. Problem solving over minimization of partial functions 120

4.4.5. Orthogonal subsets of the set of conditional variables 122

4.5. Analysis of basic single-block model with control flow

feedback... 122

4.6. Conclusion ... 127

Chapter 5. SYNTHESIS AND OPTIMIZATION

OF COMPUTATIONAL PIPELINES ... 129

5.1. Computational pipelines .. 129

5.2. Pipelining of algorithms .. 130

5.3. Pipelining data flow programs .. 134

6

5.4. Modeling pipelines with relations and graphs 134

5.4.1. Relations and graphs on sets of operators, variables

and pipeline-stages .. 134

5.4.2. Number of pipeline stages versus stage time 139

5.4.3. As soon as possible (ASAP) and as late as possible

(ALAP) pipeline schedules .. 140

5.5. Time constrained optimization of pipelines 140

5.5.1. A set of pipelines with the same stage time 140

5.5.2. Evaluation of overall pipeline registers size 142

5.5.3. Optimization task: objective function and constraints 143

5.6. Least cost search branch and bound technique for pipeline

optimization ... 144

5.6.1. Pipeline schedule search tree .. 144

5.6.2. Incomplete mapping of operators onto pipeline stages 146

5.6.3. Updating overall registers size lower bound....................... 146

5.6.4. Computing earliest and latest pipeline stages of operator .. 148

5.6.5. Operators assignment conflict ... 149

5.6.6. Least cost search branch and bound minimization

of overall pipeline registers size .. 149

5.7. Heuristic technique for optimization of pipelines 151

5.7.1. Dynamic evaluation of earliest and latest stages

of operator .. 152

5.7.2. Dynamic estimation of overall registers size lower

bound .. 153

5.7.3. Dynamic ordering of operators ... 154

5.7.4. Heuristic technique for pipeline optimization 157

5.7.5. Tuning heuristic factors... 158

7

5.8. Conclusion ... 159

Chapter 6. OPTIMIZATION OF PIPELINES

FOR REMARCABLE APPLICATIONS .. 160

6.1. Bayer filter based on improved linear interpolation 160

6.2. Forward 88 discrete cosine transform 164

6.3. Experimental results for random middle size designs................ 166

6.4. Experimental results for random large size designs 168

6.5. Conclusion ... 168

Chapter 7. GENETIC ALGORITHM FOR TUNING

OPTIMIZATION HEURISTICS .. 170

7.1. Heuristics for solving optimization problems 170

7.2. Motivation of tuning heuristics .. 172

7.3. Genetic algorithm of tuning heuristics 174

7.3.1. Basics .. 174

7.3.2. Genetic operations .. 174

7.3.3. Genetic algorithm .. 178

7.4. Two modes of exploiting the genetic algorithm 179

7.4.1. Solving optimization problem .. 179

7.4.2. Evaluation of cumulative distribution functions 179

7.4.3. Evaluation of cumulative distribution functions 181

7.5. Experimental results .. 181

7.5.1. Test benches for pipeline optimization 181

7.5.2. Optimization of heuristics ... 182

7.5.3. Cumulative distribution probability functions of heuristic

factors ... 185

8

7.5.4. Tuning genetic algorithm .. 186

7.5.5. Effectiveness of genetic algorithm 187

7.6. Conclusion ... 188

Chapter 8. NET ALGORITHMS ... 189

8.1. Sequential scheduling of algorithms .. 189

8.2. Net scheduling of algorithms ... 193

8.2.1. Net schedule .. 193

8.2.2. Optimizing a net schedule ... 196

8.2.3. Tackling the existence problem ... 201

8.3. Generating a net schedule.. 206

8.4. Transition from net schedule to sequential schedule 208

8.5. Graph language and tool for creation and simulation

of sequential and net algorithms ... 209

8.6. Experimental results .. 215

8.7. Conclusion ... 219

REFERENCES .. 220

9

PREFACE

An algorithmic description of a solution of an applied, scientific or

technical problem is given, for which it is necessary to obtain a high-

performance software implementation on a multiprocessor or multi-core

system, or a hardware implementation on an FPGA or ASIC. How to

perform the mapping of the source algorithm onto an efficient parallel

implementation? How to discover, measure, extract and optimally im-

plement the hidden parallelism is the main objective of this book. This

book develops a technology for analyzing, transforming, optimizing and

mapping hard-to-parallel algorithms and programs to pipeline and net-

work implementations. The algorithm analysis is based on the profiling

of the program in order to measure the computational complexity, the

critical path and the potential parallelism on realistic input data. The

transformation performs parallelism extraction from the program, pre-

serving the original functionality. The synthesis and optimization im-

proves the structure and parameters of computational pipelines and net-

work computing schedules.

This book will be useful for scientific researchers, engineers, PhD

students and undergraduates. It is mostly based on author’s publications

written during more than 25 years period and presents state of the art in

scientific direction under consideration. The author’s works have been

published by such well known publishers as IEEE, Kluwer Academic

Publishers, Springer and many others.

My gratitude is large to my partners and friends Dr. Jean Mermet and

Dr. Bernard Courtois (France), as well as to Dr. Marco Mattavelli, Dr.

Daniel Mlynek, Dr. Alain Vachoux, Dr. Masimo Ravasi, Dr. Ab Al Hadi

Bin Ab Rahman, Dr. Simone Casale-Brunet and Dr. Endri Bezati (Swit-

zerland) for collaboration, joint work and joint publications.

The author acknowledges the colleagues of computer and system

software department, the colleagues of the faculty of information tech-

nologies and robotics, and the scientific research sector of the Belarusian

National Technical University, who have helped in preparing the manu-

script and in getting approval to publish this book.

Anatoly Prihozhy

Minsk, December, 2018

prihozhy@yahoo.com

mailto:prihozhy@yahoo.com

10

INTRODUCTION

This book has a coherent logical thread, revealing the topic stated in

the title. It outlines the models and methods of analysis, transformation

and optimization of algorithms and programs for effective high-

performance parallel execution on multiprocessor systems.

Firstly, we explore the metrics of algorithms and programs, providing

the estimation of the hidden, but potentially retrievable and implementa-

ble dataflow parallelism. We consider three metrics, namely, computa-

tional complexity, critical path and the parallelization factor on the graph

of program execution. This graph is formed dynamically during the exe-

cution of the program code on specific source data. These data reflect the

most realistic conditions for the application of the algorithm, and not the

conditions of the “worst case”, which is crucial for an objective and reli-

able assessment. In order to measure the values of metrics, we develop a

model and method for instrumenting and extending the program code of

an algorithm, create appropriate tools, and perform measurements on a

number of important algorithms for processing video and audio infor-

mation, as well as on cryptographic algorithms.

After the potential parallelism has been measured, and the expediency

of paralleling the algorithm is justified, the program code transformation

stage begins in order to extract the data flow. This book describes a set

of rules for the transformation of various kinds of statements, control

structures of the programming language and super positions of them, to

the basic single-block flow model that is built on a single loop. One part

of the control instructions is deleted, the other part is split. As a result,

the data flow becomes extremely dominant in the presentation of algo-

rithm. The proposed method provides the extraction of a dataflow from

difficultly parallelizable algorithms.

The basic single-block flow model makes operators less dependent on

one another and freer with respect to the permutation. However, it makes

it difficult to analyze the transformed code with respect to identifying

mutually exclusive branches, compared to the source code. The analysis

method proposed in the book uses the theory of Boolean functions and

formal logic. The search for mutually exclusive operators that are under

conditional if-then instructions is equivalent to checking the orthogonal-

ity of Boolean conditional variables, which in turn is equivalent to

11

checking the tautology of Boolean expressions. Analysis of algorithms

with feedback in the control flow due to presence of loop statements is

performed by the method of mathematical induction.

The basic single-block flow model of an algorithm is an efficient

source of synthesis and optimization of computational pipelines. It is a

source of generating a series of relations and graphs on sets of operators

and variables. The graph of operator conflicts that arise when operators

are assigned to pipeline stages, allows us to solve the problem of mini-

mizing the number of stages for a given constraint on the operation time

of one pipeline stage. Another important parameter is the size of the

buffers used to push data through the pipeline. The total size of the buff-

ers should be minimized. Two algorithms optimize the pipeline: accurate

and heuristic. The exact algorithm is capable of finding the global opti-

mum for a small-size pipeline. The heuristic algorithm is capable of find-

ing a near-optimal solution for a large-size pipeline. The developed

software has allowed to synthesize and optimize pipelines used in practi-

cally significant applied areas. Experiments performed on large algo-

rithmic descriptions taken from real practice and generated by random

number generators showed that the proposed heuristic pipeline optimiza-

tion algorithm yields significantly better results than such algorithms like

ASAP and ALAP.

The quality of the optimization results obtained by the heuristic algo-

rithm substantially depends on the composition of the heuristics and the

weight of each of them in the integrated heuristic, which is used to select

the preferred solution when searching for the optimal parallel implemen-

tation of the algorithm. The problem of setting up heuristics for a specif-

ic paralleling problem and a specific paralleling algorithm is solved in

this book by using a genetic algorithm. We construct chromosomes, a

fitness function, a generation and population of chromosomes, selection,

and crossover and mutation genetic operations over chromosomes to de-

termine the significance of each heuristic in the paralleling algorithm.

The use of the genetic algorithm is illustrated by the example of a heuris-

tic algorithm for optimizing computational pipelines. Experiments have

shown that the genetic algorithm can significantly improve the quality of

synthesized pipelines.

The basic single-block flow model of the algorithm is a source of

synthesis and optimization of network computing schedules and network

12

algorithms. We give a definition of a network schedule, describes a

method of estimating the execution time and implementation cost of the

schedule over the cliques of the graph of sequential execution of opera-

tors and over the cliques of the graph of parallel execution of operators.

Further, we formulates and solve the problem of the existence of a net-

work schedule for a given level of parallelism. The schedule is optimized

on the minimum of execution time, or on the minimum of consumed

computing resources. The book describes an instrumental system that

supports a graphs-description language, allows to interactively create

network algorithm graph-descriptions, performs the simulation of the

graph-descriptions, and optimizes the network schedules.

All models and methods of analysis, transformation and optimization

of algorithms for parallel efficient execution are illustrated with a num-

ber of examples. The developed software tools are applied to several

practically significant hardware and software applications. In particular,

they are applied to two-dimensional WAVELET codec, RSAREF cryp-

tographic toolkit, MPEG-4 video codec, Bayer filter, 88FDCT, and

middle-size and large-size random designs.

13

1. EVALUATION OF COMPUTATIONAL COMPLEXITY,

CRITICAL PATH AND PARALLELIZATION POTENTIAL

OF ALGORITHMS

1.1. Metrics of algorithms

This chapter presents metrics for evaluating the computational com-

plexity, critical path and parallelization potential of algorithms that are

represented and executed as a computer program. The model metrics aim

at the estimation and increase of the upper bound of the algorithm execu-

tion speed on a parallel computing platform. They are particularly tai-

lored for application to network, multimedia, cryptographic, scientific

and other complex algorithms.

1.1.1. Computational complexity of algorithm

The computational complexity theory [31] classifies computational

problems according to their difficulty, and relating the complexity clas-

ses to each other. A computational problem is understood to be a task

that is in principle amenable to being solved by an algorithm, and there-

fore may be solved by a computer. The theory introduces mathematical

models of computation to study the computational problems and quanti-

fying their computational complexity, i.e., the amount of resources need-

ed to solve them, such as time and storage.

The analysis of computational complexity of an algorithm aims at an-

alyzing the amount of resources needed by a particular algorithm. Usual-

ly, this involves determining a function that relates the length of an algo-

rithm's input to the number of steps the algorithm takes, or the number of

storage locations it uses. An algorithm is said to be efficient when this

function's values grow slowly compared to a growth in the size of the

input. Different inputs of the same length may cause the algorithm to

have different behavior. Best, worst and average case trends are often of

practical interest. The function describing the performance of an algo-

rithm is usually an upper bound, which is determined from the worst

case inputs to the algorithm.

The term analysis of algorithms was introduced by Donald Knuth

[32-34]. Algorithm analysis provides theoretical estimates for the re-

https://en.wikipedia.org/wiki/Models_of_computation
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Donald_Knuth

14

sources needed by any algorithm which solves a given computational

problem. These estimates provide an insight into reasonable directions of

search for efficient algorithms.

The theoretical analysis of algorithms determines the complexity

function for arbitrarily large input, and uses big O notation (big-omega

notation) and Big-theta notation. Asymptotic estimates are preferable

because different implementations of the same algorithm may differ in

efficiency. Exact (not asymptotic) measures of efficiency can sometimes

be computed but they usually require certain assumptions concerning the

particular implementation of the algorithm, called model of computation.

Nowadays, processing and compression algorithms, communication

protocols and multimedia systems have reached an extremely high level

of sophistication. Architectural implementation choices based on design-

er feeling or intuition without objective measures and verifications be-

come extremely difficult or impossible tasks.

The increasing complexity of the algorithms has lead to the need of

specifications and more intensive validations of such system descriptions

by means of C/C++ software implementations. These implementations

are often huge and virtually impossible to be analyzed and manipulated

without the aid of automated tools and appropriate methodologies. In

many cases the understanding of the algorithms and the evaluation of

their complexity and parallelization potential, are fundamental steps for

correct architectural implementation choices.

Another important issue is that the interest in the network, multime-

dia, cryptographic and other fields is restricted to evaluations and

measures under real input conditions, and not through strict worst case

analysis that would lead to consider pathological cases far from the in-

terest of real efficient implementation solutions.

It is also desirable to understand and measure the algorithm com-

plexity and the parallelization potential at the highest possible algorith-

mic level. Such understanding at the very early stage is fundamental in

order to be able to take meaningful and efficient partitioning decisions

and bring them to actual efficient parallel implementations.

1.1.2. Critical path analysis problem

The problem of identifying one of the longest paths in a circuit or in a

https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big-theta_notation
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Model_of_computation

15

program is called a critical path problem [41]. The critical path analysis

is an efficient mechanism used at several levels of system design, includ-

ing circuit-, logic-, architecture-, algorithmic-, and system-levels. At sys-

tem level, the process of hardware/software partitioning is a complex

optimization problem [21]. The final solution depends on a variety of

design constraints/goals like performance, power consumption, imple-

mentation cost. The critical path analysis can be used for the detection of

more efficient hardware/software partitions and their implementation

parameters.

At circuit level, the length of critical path plays a key role in setting

the clock cycle time and improving the architecture performance [41].

The critical path length is computed as the longest signal propagation

delay in the circuit. In [41] the speed up of the critical path computation

is achieved by means of parallel processing.

In designing VLSI or systems on chips architectures a complex com-

putational task is represented as a directed task graph. The concept of

critical path on the graph is used in [8] for solving the optimal buffer

assignment problem by means of formulation of integer linear program-

ming problem and decomposing the graph into a number of sub-graphs.

In high-level synthesis [43], the static data flow graph model is wide-

ly used for solving such tasks as scheduling, allocation and binding. Dur-

ing scheduling, the achievable iteration period is limited by the critical

path time on the graphs. Some transformations are proposed in [43] on

the static graphs in order to reduce the critical path time.

The idea described in [91] is to insert parallelism analysis code into

the sequential simulation program. The execution of a discrete event

simulation follows causality constraints, and the relationships between

the events can be described by an event precedence graph. When the

modified sequential program is executed, the time complexity of the par-

allel simulation is computed.

In [5] the critical path analysis is presented as a method for detailed

understanding of when and how delays are introduced in data transfers in

the Internet. By constructing and profiling the critical path, it is possible

to determine what fraction of the total transfer latency is due to packet

propagation, delays at the server and at the client, network variation etc.

In message passing and shared-memory parallel programs [22],

communication and synchronization events result in multiple paths

16

through a program’s execution. The critical path of the program is simp-

ly defined as the longest time-weighted sequence of events from the start

of the program to its termination. The parallel computations are de-

scribed by the program activity graph. The critical path of a parallel pro-

gram is the longest path through the graph.

The critical path profiling is a metrics explicitly developed for paral-

lel programs [22] and proved to be useful for several optimization goals.

The critical path profile is a list of procedures and the time each proce-

dure contributed to the length of the critical path. Critical path profiling

is a way to identify the component in a parallel program that limits its

performance. It is an effective metric for tuning parallel programs and is

especially useful during the early stages of tuning a parallel program

when load imbalance is a significant bottleneck. It also helps to find out,

which components should be prioritized to terminate the program in

time. Where an operation has to be completed on time, critical path anal-

ysis helps us to focus on the essential activities to which attention and

resources should be devoted. Work [22] describes a runtime non-trace-

based algorithm to compute the critical path profile of the execution of

message passing and shared-memory parallel programs. This work also

presents an online algorithm to compute a variant of critical path, called

critical path zeroing, which measures the reduction in application’s exe-

cution time after the elimination of a selected procedure.

The critical path analysis also gives an effective basis for the schedul-

ing of computations. On multiprocessor system, task scheduling is im-

portant to achieve good performance. The work presented in [36] pro-

poses a task scheduling algorithm that allocates tasks followed by cor-

recting the critical path. The technique described in [38] schedules non-

cyclic non-branching task graphs, analyzing dynamically the critical

paths in current schedule. Papers [61, 71] define the net schedule concur-

rency level with a set of pairs of operations to be executed in parallel.

The techniques based on the minimization of critical path length that is

estimated as the maximum clique weight of the sequential and parallel

operator graphs constitute the most efficient approach to the generation

of concurrent schedules.

17

1.1.3. Parallelization potential of algorithm

The algorithmic complexity and parallelization potential that is hid-

den in an algorithm does not depend on the type of underlying hardware

architecture and compiler technology which are used for the complexity

evaluation. It depends on the algorithm itself and on input data that has

to be processed to output data. This book focuses on the methodology for

the measure of the critical path as evaluation of the parallelization poten-

tial of algorithms / architectures that are described /modeled using a high

level programming or hardware description language. Despite the ap-

proach could in principle be applied to any programming language, the

implementation using an automatic instrumentation stage presented here

has been studied and developed for C language.

1.2. Methodology of evaluating algorithm critical path

This chapter presents a methodology for evaluating the critical path

on the Data Flow Execution Graph (DFEG) of algorithms specified as C

programs. It proposes an efficient dynamic critical path evaluation ap-

proach that generates dynamically a data flow execution graph. Such an

approach includes two key stages: (1) the instrumentation of the C code

and mapping it into a C++ code version, (2) the execution of the C++

code under real input data and dynamically evaluating the actual critical

path. The methodology and tools of analyzing algorithms / programs aim

at the estimation and increase of the upper bound of the execution speed

and parallelization potential of algorithms. The methodology is particu-

larly tailored for application to multimedia, cryptographic and other

complex algorithms. Critical path analysis and the subsequent algorith-

mic development stage is a fundamental methodological preliminary step

for the efficient definition of architectures when the objective is the im-

plementation of the multimedia algorithms on parallel homogeneous and

heterogeneous platforms.

Summarizing the previous results, we can conclude that the majority

of already developed methodologies and tools aim at the critical path

profiling for tuning existing parallel programs executed on basic ma-

chines (Fig. 1a). In this paper, the objective is to propose a critical path

model metrics that can be obtained using automatic evaluation tools such

18

as the one described in [75, 83] in order to be able to find out in which

degree a given algorithm described in the C language satisfies the paral-

lel implementation conditions (Fig. 1b). Analyzing the measures of the

critical path obtained from simulation results using an automatic instru-

mentation tool, the most promising algorithms, from the parallelization

point of view, can be selected among many alternatives. Moreover, the

equivalent transformation of algorithms reducing the critical path and

increasing the possible acceleration of the future parallel architecture can

be performed.

The following principles constitute a basis for the methodology of the

critical path evaluation:

1. The critical path is defined on the C-code’s data flow execution

without taking into account the true control flow;

2. The critical path length and the system parallelization potential are

defined in terms of the complexity of C language basic operations

(including read and write operations). The parameters of the ma-

chine executing the instrumented C-code during evaluating the

critical path are not taken into account

3. In the definition of the critical path, the Data Flow Execution

Graph results from the partial computation of the C-code using

true input data. Therefore, such Data Flow Execution Graph is

used for the critical path definition instead of the traditional static

Data Flow Graph.

b) a)
Parallel code

Critical path

profiling

Critical path
length and crit ical
path profile (basic

machine)

Sequent ial code

Critical path

evaluation

Critical path
length and

parallelization
potential (future

architecture)

Figure 1.1. Critical path profiling (a) of parallel code on event graphs versus critical path

evaluation (b) of sequential code on data dependences graphs

19

1.2.1. Data Flow Execution Graph

The DFEG is represented as a finite non-cyclic directed weighted

graph constructed on the two types of node. The first type includes

name-, address-, and scalar value-nodes. The second type includes oper-

ator-nodes. The name- and address-nodes are represented as and the

value-nodes are represented as . The operator-nodes are denoted

using the usual C-language notation: =, [], ++, --, +, *, %, ==, /=,<, >,

+=, /=, read (r), write (w) and others. The graph nodes may be connected

by two types of arc: the data dependence arc denoted and the condi-

tional dependence arc denoted . The data dependence arc connects

input names, addresses and values with an operator and connects an op-

erator with its output value or address. The conditional dependence arc

connects a test value with an operator or value covered by a conditional

instruction. A graph node without incoming arcs is called an initial node

and a graph node without outgoing arcs is called a final node. A DFEG

fragment for if (c) d*=2; C-code is shown in Fig. 1.2. It contains four

value-nodes, one operator-node, three data and one conditional depend-

ence arcs.

An example C-code for recurrent computations is presented in Fig.

1.3. The static DFG for the code is shown in Fig. 1.4. The corresponding

dynamic DFEG for the first iteration of the loop is shown in Fig. 1.5.

The array components are treated as separate scalar elements. The DFEG

includes all types of name-, address-, and value-nodes as well as the var-

ious operator-nodes (deref is an implicit dereference operator).

c d 2

*=

d

Figure 1.2. Example DFEG fragment for if (c) d*=2; C-code

i

i

20

#define L 10

void main () {

 float X[L] = {0.6F,0.1F,0.9F,0.3F,0.8F,0.5F,0.7F,0.2F,0.4F,0.7F};
 float Y[L] = {0.3F,0.8F,0.4F,0.2F,0.1F,0.9F,0.5F,0.7F,0.1F,0.6F};

 float Z[L]; Z[0] = 0.5F;

 for (int i=1; i < L; i++) { int i1 = i - 1;
 float& Z0=Z[i1]; float& X0=X[i1]; float& Y0=Y[i1];

 float& Z1=Z[i]; float& X1=X[i]; float& Y1=Y[i];

 if ((Z0+X0*0.7F+Y0*0.3F+0.5F) < ((X1/X0)*0.1F+(Y1/Y0)*0.9F))
 Z1=X0*0.4F-Y0*0.3F+X1*0.2F-Y1*0.1F+Z0; else

 Z1=X0*0.1F-Y0*0.2F+X1*0.3F-Y1*0.4F+Z0;

 }
}

Figure 1.3. An example C-code for recurrent computations

1.2.2 Computational complexity of data flow execution graph

The complexity of static DFG is traditionally evaluated as a sum of

node (in particular operator-node) weights. If we assume that the weight

of each operator-node equals 1, then the static complexity of the DFG

presented in Fig. 1.4 equals 81. It is obvious this is the complexity of the

algorithm description rather than the computational complexity of the

algorithm.

The computational complexity of the algorithm can be evaluated on

DFEG. The DFEG is weighted with the node complexities. All the com-

plexities are accumulated at the operator-nodes and represent each C-

operator by a fragment in the DFEG as shown in Fig. 1.6. A read opera-

tor is associated with each incoming arc of the operator-node and a write

operator is associated with its outgoing arc. The complexity of the frag-

ment in Fig. 1.6 is equal to 4 basic operators.

Similarly, assume that each basic operator complexity be equal to 1.

Table 1.1 represents the C-language operator complexities. When the

basic operator complexities are different, the table can be easily modified

to map the critical path length on any target architecture.

The results of the complexity evaluation of the algorithm DFEG

fragment shown in Fig. 1.5 are reported in Table 1.2. The overall com-

plexity is of 97 basic operators. The implicit dereference operator com-

plexity is assumed here to be equal to 0.

21

+

++

=

Z

[]

Z 0

=

0.5 Z[0]

[]

X 0

=

0.6 X[0]

[]

X 10

0.7 X[10]

…

=

[]

Y 0

=

0.3 Y[0]

[]

Y 10

0.6 Y[10]

…

X Y

 =

i <

L



t1

1

i1

i 1

[]

Z

Z1

+
+

* *

* *

0.7 0.3

/ /

t2 t3 t4 t5

+

0.1
0.9

t6 t7 t8

t12

<

t11

+

t25



t23

+

t21



0.4 0.3 0.2

t17

*

t15

*

t13

*

0.1

t19

*

t27

+

t10
t9 0.5

deref

[]

Y

Y1

Y[i]

deref

[]

X

X1

X[i]

deref

[]

Z

Z

0

Z[i1

]

deref

[]

Y

Y0

Y[i1]

deref

[]

X

X0

X[i1]

t26



t24

+

t22



0.1 0.2 0.3

t18

*

t16

*

t14

*

0.4

t20

*

t28

= =

Figure 1.4. The static DFG for the C-code shown in Fig. 1.3. The algorithm description

complexity equals 81 operator-nodes. The static critical path is shown in bold.

The critical path length equals 14 operator-nodes

22

28

27

23

25

21

19

17

15

13

11

9

7

7

5

3

+ +

* *

* *

= = = = deref deref deref deref deref =

[] [] [] [] [] [] [] [] [] []

 =

i
<

L



Z

true

1

i1

Z 0 X X 0 Y Y 0 X X 1 Y Y 1

Z0 Z[0] 0.5 X

0

X[0] 0.6 Y0 Y[0] 0.3 X1 X[1] 0.1 Y1 Y[1] 0.8

Z[0] X[0] Y[0] X[1] Y[1] 0.7 0.3

/ /

t1 t2 t3 t4

+

0.1 0.9

t5 t6 t7

[]

Z

Z1

++

i

true

<

t10

+

t17



t16

+

t15



0.4 0.3 0.2

t13

*

t12

*

t11

*

0.1

t14

*

Z[1]

=

t18

+

1

i 1

t8 0.5 t9

Figure 1.5. The DFEG fragment for C-code shown in Fig. 1.3. The nodes generated

during first iteration of the loop are presented. The critical path is in bold.

The computational complexity of C-code is estimated through the number of nodes

in DFEG. These are name-, value-, and operator-nodes. The data dependences

are represented by lines and the conditional dependences are represented by dashed lines

23

1.2.3 Critical path on data flow execution graph

In literature [43, 52], the concept of static critical path is defined on

DFG as a simple critical path and a loop critical path. The objective is to

minimize the iteration period during scheduling and resource allocation

in high-level VLSI synthesis by means of unfolding, retiming, and pipe-

lining transformations.

The essential drawback of this concept is that the minimum execution

time and computational complexity of the overall algorithm cannot be

estimated and exploited.

a b

read read

write

%=

a

Figure 1.6. Evaluation of the complexity of a%=b; C-code

Table 1.1

Complexity and critical path length of C language operators
Operation Operator Complexity Critical path

Assignment = 1 1

Reference & 2 2

Dereference * 2 2

Arithmetic +, -, *, /, % 3 2

Arithmetic-

assignment

+=, -=, *=, /=, %= 4 3

Subscript [] 3 2

Increment (dec-

rement)

++, -- 3 3

Unary minus - 2 2

and others

24

Table 1.2

Evaluation of the complexity of graph shown in Fig. 1.5
Operator Operator complexity Number of operators Total complexity

= 1 7 7

[] 3 8 24

< 3 2 6

++ 3 1 3

* 3 8 24

/ 3 2 6

 3 3 9

+ 3 6 18

  = 97

The critical path on the DFEG is defined as a sequence of the graph

nodes with the maximal sum of weights connecting an initial node with a

final node. The internal critical path length on the graph fragment shown

in Fig. 1.7 equals 3 because two read operations are executed in parallel.

Similarly, Table 1.1 represents internal critical path lengths of the C-

language operators.

Critical

path

a b

read read

write

%=

a

Figure 1.7. Evaluation of the critical path on a%=b; C-code

In Fig. 1.5, address- and value-nodes are weighted with external criti-

cal path lengths. The critical path on the DFEG for the first iteration of

the loop is shown in bold.

The critical path length equals 28. The maximum path length between

Z[0] and Z[1] value-nodes equals 19. The nodes describe data depend-

25

ences between neighbor iterations of the loop and influence of the over-

all critical path length on the C-code that allows several iterations of the

loop. It should be mentioned that the portion of the overall critical path

in the DFEG fragment is not the same as shown in bold.

1.2.4 Parallelization potential and feasible acceleration

The C-code computational complexity together with the critical path

length in DFEG defines the parallelization potential of the algorithm:

Parallelization_Potential = Complexity / Critical_Path_Length.

The algorithm parallelization potential aims at searching for an effi-

cient parallel implementation of the C-code. It describes the possible ac-

celeration that can be achieved due to a parallel implementation of the

algorithm instead of the sequential implementation, but it does not de-

scribe the way of construction of such a parallel architecture. Various

parallel implementations are possible for the same C-code. The accelera-

tion due to parallelization depends on input data. Different input data

imply different possible acceleration of the C-code. The parallelization

potential is an upper bound for a non-pipelined architecture. Intermediate

parallelization can be considered depending on the constraints on com-

puting resources.

The estimated acceleration can be used in two ways:

 For creating a parallel version of the algorithm

 For reducing the C-code complexity and its critical path or devel-

oping a better C-code (algorithm)

The parallelization potential estimates the degree of possible reduc-

tion of the execution time due to parallelization of the overall computa-

tions associated with the given C-code and input data. Note that the defi-

nition of parallelization potential becomes illegal in case the description

of complexity and critical path on static DFG such as defined in [43, 52]

is used:

 The static DFG in [43, 52] is a very specific model not capable of

representing most of algorithm descriptions in C-codes, assuming

in particular there are no mutually exclusive branches on DFG

 The description complexity of DFG can be a basis for the estima-

26

tion of the algorithm computational complexity in specific non

numerous applications

 The static critical path time represents the iteration period and is

not capable of evaluating and reducing the overall execution time

of algorithms in the general case.

For the C-code shown in Fig. 1.3 and for the DFEG’s fragment pre-

sented in Fig. 1.5, the algorithm complexity for the first iteration is equal

to 97 and the critical path length is equal to 28. Therefore, the parallel-

ization potential of the C-code portion is equal to 3.5.

1.3 Evaluation of computational complexity and critical path

on data flow execution graph

1.3.1 Explicit evaluation of critical path

One approach to evaluating the critical path length consists in the pre-

liminary generation of the DFEG by means of performing partial compu-

tations on the C-code’s DFG (Fig. 1.8) under certain meaningful input

data. The partially computed flow graph finally contains the operators

associated with the scalar operands (values, addresses and variables) and

does not contain elements associated with the true control structures. All

scalar operands and operators remain in the DFEG.

Given the complexity and internal critical path length of each opera-

tor-node in the DFEG, we can evaluate the external critical path for each

address-, value- and operator-node in DFEG using the following simple

recursive technique:

1. If val is an initial name-, address- or value-node then its external

critical path length cpl(val)=0.

2. If val is a value- or address-node and op_1,…,op_r are operator-

predecessors of val (Fig. 1.9b), then its critical path length cpl(val)

= max(cpl(op_1),…, cpl(op_r)).

3. If op is an operator-node and val_1,…,val_k are value-address-

predecessors of op (Fig. 1.9a), then the operator critical path

length is cpl(op) = cplint(op)+ max(cpl(val_1),…,cpl(val_k)),

where cplint(op) is the op operator’s internal critical path length.

27

C-code Input data

Partial execution

Data Flow
Execution Graph

(DFEG)

Critical path
evaluation

Critical path &
parallelization

potential

Figure 1.8. Critical path evaluation by means of explicit generation of DFEG

a) b)

op

val_1

cpl(op)

cplint(op)

val_k

cpl(val_1) cpl(val_k)

val

op_1 op_r

cpl(val)

cpl(op_1)
…

…

cpl(op_r)

Figure 1.9. The graph fragment (a) for evaluating the critical path for an operator

and the graph fragment (b) for evaluating the critical path for a value (address)

The technique itself is very efficient, although it cannot be practically

used. Its drawback is that the DFEG can result to a large graph that is

28

difficult to handle. Fig. 1.5 illustrates the evaluation of critical path on

the explicitly generated DFEG. The evaluation procedure starts at the

initial nodes and step by step using the above listed rules computes the

external critical path length for each address- and value-node. The criti-

cal path for the Z[1] value-node is the overall critical path on this DFEG.

1.3.2 Dynamic evaluation of critical path

Since the number of nodes in the DFEG is equal to the number of op-

eration calls during the program’s execution, explicitly building the

graph is not practical for long running programs. One way to overcome

this limitation is to develop a technique that does not require building the

graph. Such a technique is based on the flow shown in Fig. 1.10. Firstly,

the C-code is instrumented by overloading all explicit and implicit opera-

tors [83] and is transformed into an equivalent C++-code, in terms of the

operators applied to the input data. Secondly, the C++-code is executed

under the given input data, computing output data and evaluating the

complexity, critical path and parallelization potential of the algorithm.

In the C++-code, an additional cpl variable is associated with each ac-

tual scalar var variable (a separate variable, a scalar element of an array,

a scalar element of a structure and so on) of the C-code (Fig. 1.11).

The execution of a C-code operation also results in computing a new

value of the associated variable. The cpl variable describes the external

critical path length for the main var variable. The computation of cpl is

coupled with the computation of var. The performance of op operator

results in computing the value of var, re-computing the algorithm com-

plexity, and computing the cpl for var.

1.4 Tool for estimation of algorithm parallelization potential

1.4.1 Instrumenting and mapping the C-code onto a C++-code

The dynamic evaluation of the critical path as described in the previ-

ous section is useful if the program can be appropriately instrumented

and mapped using automatic tools into an equivalent version of the code,

thus avoiding annoying and resource consuming code rewriting.

29

C-code Input data

Instrumentation

Equivalent
instrumented

C++-code

C++-code
execution

Output

data

Critical path &
parallelization

potential

Figure 1.10. Dynamic evaluation of the critical path by means of instrumenting

and executing the C-code

op

var_1

cpl(var) = cplint(op) + max(cpl(var_1), … ,cpl(var_k)))

cplint(op)

var_k cpl(var_1) cpl(var_k)

var

…

Figure 1.11. General scheme for the dynamic evaluation of the critical path

30

This section provides an example of how such mapping can be im-

plemented. More details of one possible implementation of such non

trivial mapping can be also found in [83]. During the mapping of the

source C-code into a C++-code version, the following parts of the C-

code have to be instrumented to evaluate the parallelization potential of

the algorithm:

 Data types and data objects

 Operators

 Control structures

 Functions.

So as to correctly accomplish the evaluation, global and local addi-

tional variables and objects can be used in the instrumented C++-code.

Global variable declarations can be as follows:

static unsigned long Algorithm_Complexity = 0;

static unsigned long Critical_Path_Length = 0;

static Critical_Path_Stack _CPS_;

where Critical_Path_Stack is a class implementing the mechanism of

processing of conditional dependences associated with the nested control

structures. An additional class object and its internal data elements can

be associated with each scalar variable of the C-program. The C++-code

in Fig. 1.12 will be used in this Section to illustrate and explain the key

solutions taken during mapping the C-code into an equivalent C++-code.

The basic types of the C language such as char, int, float, double,

signed char, unsigned char, short int, long int, unsigned short int, and

others can be mapped into the classes with similar names CHAR, INT,

FLOAT, DOUBLE, SIGNEDCHAR, UNSIGNEDCHAR, SHORTINT,

LONGINT, UNSIGNED SHORTINT and others in the C++ language.

The structure of the INT class in C++ for the int basic type of C is shown

in Fig. 1.13. The val data element of the int type represents a variable in

the source C-code. The cpath data element of the unsigned long (double)

type describes the external critical path length for the val variable.

The class functions overload the operators on the data elements.

Fig. 1.12 illustrates the way in which variables i and i1 of type int (Fig.

1.3) can be replaced with the same name objects of class INT.

31

#define L 10

void main() {

 CRITICAL_PATH_TURN_ON
 FLOAT X[L]={0.6F, 0.1F, 0.9F, 0.3F, 0.8F, 0.5F, 0.7F, 0.2F, 0.4F, 0.7F};

 FLOAT Y[L]={0.3F, 0.8F, 0.4F, 0.2F, 0.1F, 0.9F, 0.5F, 0.7F, 0.1F, 0.6F};

 PointerPrih<FLOAT> Xp=X; PointerPrih<FLOAT> Yp=Y;
 FLOAT Z[L]; PointerPrih<FLOAT> Zp=Z; Zp[0]=0.5F;

 for(INT i=1; PUSH_LOOP(i<L); i++, POP1) { INT i1=i-1;

 FLOAT& Z0=Zp[i1]; FLOAT& X0=Xp[i1]; FLOAT& Y0=Yp[i1];
 FLOAT& Z1=Zp[i]; FLOAT& X1=Xp[i]; FLOAT& Y1=Yp[i];

 if(PUSH_IF((Z0 + X0*0.7F + Y0*0.3F + 0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F)))

 Z1=Z0 + X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F; else
 Z1=Z0 + X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F; POP1;

 }

 CRITICAL_PATH_TURN_OFF

}

Figure 1.12. Example of a possible C++ instrumentation of the C-code shown in Fig. 1.3

class INT {
 int val;
 unsigned long cpath;
 public:
 constructor & destructor functions
 functions for overloading operators
 critical path stack functions
 other functions
};

Figure 1.13. Example of possible mapping of the C’s int basic data type to the INT

 class in C++

template <class IT> class PointerPrih {
 IT * val;
 unsigned long cpath;
 public:
 constructor & destructor functions
 functions for overloading operators on pointers
 critical path stack functions
 other functions
};

Figure 1.14. Example of a possible instrumentation of the C’s pointers in C++

32

Declarations of pointers to basic types char, int, float, double, etc. in

C-code can be replaced by the PointerPrih classes defined for CHAR,

INT, FLOAT, DOUBLE, and other instrumented types. The single tem-

plate presented in Fig. 1.14 can generate all the classes, where IT denotes

an instrumented type.

An array of elements of a basic type in the C-code can be mapped to

an array of objects of the corresponding instrumented class in the C++-

code. In order to be able to count operations on the arrays including the

[] subscript operation, a mechanism of instrumented pointers can be

used. An appropriate instrumented pointer can be introduced for each

array in the C++-code. All the operations to be executed on the array in

the C-code are associated with the pointer in the C++-code. For example,

the X, Y, and Z arrays of float type in Fig. 1.3 can be replaced with the

X, Y, and Z arrays of objects of the FLOAT class in Fig. 1.12. Moreo-

ver, the Xp, Yp, and Zp instrumented pointers of the Pointer-

Prih<FLOAT> class are introduced in the C++-code. After that, all array

operations are executed on the pointers. Other composite types of C lan-

guage can be instrumented in the similar way in C++ language.

All the operations on addresses and values that will be performed dur-

ing the C-code execution stage are instrumented during transition from

the C-code to the C++-code. Each operator in the C-code is overloaded

by an appropriate class function in the C++-code (Fig. 1.15). The opera-

tors on the C-types are replaced with operators on the C++-classes. The

overloading functions are defined for groups of close operators.

The true control structures are not taken into account during evaluat-

ing the critical path. The only influence of the structures on the DFEG is

through the conditional dependences. A critical path stack is introduced

in the instrumented C++-code in order to find out the dependences. The

external critical path length of the declared or temporary T test variable

is an element of the stack record.

A new record is added to the stack by the functions PUSH_LOOP

(T), PUSH_IF(T), and PUSH_SWITCH(T) presented in Table 1.3 and

overloaded for each instrumented basic type by means of the member

function push(cpath) of the _CPS_ object of the Critical_Path_Stack

class. Functions PUSH_LOOP and PUSH_IF return a value of the bool

type. The difference between the functions is that PUSH_IF adds a rec-

ord to the stack in any case not depending on its return value.

33

Overloading function:

 Main computations taken from the C-code

 Additional computations evaluating the

complexity and critical path

Result object

 val

 cpath

Object_2

 val

 cpath

Object_1

 val

 cpath

Critical path stack

 cpath

Figure 1.15. Overloading a binary operator by a class function

Table 1.3

PUSH and POP macros/functions on the critical path stack
N Function/Macro Return type Description

1 PUSH_IF(Test) bool push in _CPS_

2 PUSH_SWITCH(Se) type of Se push in _CPS_

3 PUSH_LOOP(Test) bool push in _CPS_ when true

4 PUSH(CPlen) void push CPlen in _CPS_

5 POP(N) void pop N records of _CPS_

6 POP1 void pop 1 record POP(1)

7 POP_(Expr) type of Expr POP(1) and transmit Expr

8 POP_(N, Expr) type of Expr POP(N) and transmit Expr

The PUSH_LOOP function updates the stack when the return value

equals true and does not update the stack when the value equals false.

The return value type of PUSH_SWITCH function is the same as the

basic type of T argument. The function always adds a record to the stack.

The top records are removed from the stack by the macros/functions

presented in Table 1.3. The macros/function POP(N) belongs to the criti-

cal path stack object _CPS_, where N is the number of records to be re-

moved. The value of N equals 1 for loop- if- and switch-statements. It

34

can be greater than 1 for break- continue- and return-statements. A con-

ditional ternary (T ? TE : FE) operator is instrumented as

POP_(PUSH_IF(T) ? TE : FE) where TE and FE are expressions exe-

cuted when test expression T is evaluated to true and false respectively,

and POP_ removes exactly one record from the stack and transmits the

operator value. In general case, a goto statement makes the use of PUSH

and POP functions illegal. The goto statements can be eliminated from

the C/C++-code by equivalently transforming the unstructured program

to a structured one. The mapping rules between C and C++ code versions

for control structures are shown in Table 1.4, where Stat is a statement.

Fig. 1.16 presents an example of the mechanism of interaction of the

instrumented control structures (Fig. 1.12) and the overloaded operators

by means of the critical path stack. It is easy to see that the top cpath

value is always larger than the previous ones in the stack.

The C-function bodies do not constitute a boarder for the data and

conditional dependences among external and internal variables. The de-

pendences are transmitted from the external environment to the function

body and from the function body to the external environment by means

of function’s arguments and the return value of instrumented types.

The critical path can be evaluated for any part (parts) of the C-code.

They should be described as a separated region by two macros:

CRITICAL_PATH_TURN_ON and CRITICAL_PATH_TURN_OFF.

The C++-code that is out of the region simply transmits the variable

critical path lengths. Thus, the critical path on the key functions of C

code can be evaluated.

1.5 Reduction of critical path and increase of parallelism

1.5.1 Reduction by transformation of C/C++-code

The true control structures of the C-code are an obstacle in the direct

implementation of parallelization potential and possible acceleration [69,

70]. The transformation methodology is a mechanism of searching for an

appropriate architectural implementation [7, 16, 19]. It allows the reduc-

tion of execution time (iteration period, control steps and clock cycles) at

the same constraints on resources and approaches the actual acceleration

to the upper bound.

35

Table 1.4

Mapping of C control structures to C++ instrumented structures

Control structure in C Instrumented structure in C++

if, ?:, switch, while, do, for

if (TestExpr) ThenStat if (PUSH_IF(TestExpr)) ThenStat

POP1;

if (TestExpr) ThenStat else ElseStat if (PUSH_IF(TestExpr)) ThenStat else

ElseStat POP1;

Var = (TestExpr) ? TrueExpr :

FalseExpr;

Var = POP_((PUSH_IF(TestExpr)) ?

TrueExpr : FalseExpr);

switch (Select) {

 case IntVal1: Stat1 break;

 case IntVal2: Stat2 break;

 …

 default: Statn

}

switch (PUSH_SWITCH(Select)) {

 case IntVal1: Stat1 break;

 case IntVal2: Stat2 break;

 …

 default: Statn

} POP1;

while (TestExpr) Stat while (PUSH_LOOP(TestExpr)) {Stat

POP1;}

do Stat while (TestExpr) PUSH(0) do Stat POP1; while

(PUSH_LOOP(TestExpr))

for (Init; Cond; Step) Stat for (Init; PUSH_LOOP(Cond); Step

POP1) Stat

break, continue, return, goto

for (Init; Cond; Step) {Stat1 if (Test-

Expr) {Stat2 break;} Stat3}

for (Init; PUSH_LOOP(Cond); Step

POP1) {Stat1 if (PUSH_IF(TestExpr))

{Stat2 POP(2); break;} POP1; Stat3}

for (Init; Cond; Step) {Stat1 if (Test-

Expr) {Stat2 continue;} Stat3}

for (Init; PUSH_LOOP(Cond); Step

POP1) {Stat1 if (PUSH_IF(TestExpr))

{Stat2 POP(2); continue;} POP1;

Stat3}

TypeFun NameFun (Arg1,…, Argk)

{Stat1 if (TestExpr) {Stat2 return

Expr;} Stat3}

TypeFun NameFun(Arg1,…,Argk)

{Stat1 if (PUSH_IF(TestExpr)) {Stat2

return POP_(1,Expr);} POP1; Stat3}

goto Label; The unstructured program is trans-

formed to an equivalent structured one

36

Overloaded operators *,

+, -, /, … in the current

most enclosed control

structure

…

for (…; PUSH_LOOP(…);

…,POP1) {

…

 if (PUSH_IF(…))

 { … } else

 { … } POP1;

…

}

…

Test variable 1

critical path

Test variable 2

critical path

Top

Critical path stack Overloading functions Instrumented C++-code

Figure 1.16. Generation of the conditional dependences using the critical path stack

Two types of transformation are investigated in the context of archi-

tectural synthesis. The transformations of the first type aim at the reduc-

tion of the critical path. The critical path evaluation tool helps to localize

the transformations. The transformations of second type aim at breaking

the true control structures in order to increase the effectiveness of behav-

ioral synthesis and scheduling techniques. The transformation methodol-

ogy allows the architectural implementation of parallelization potential

by means of C-code transformation. The transformations promote the

approach of DFG to DFEG.

The equivalent transformation of the source program is also a way of

achieving the reduction of the critical path length and the increase of the

parallelization potential of the C-code. No specific coding style is needed

during creation of the source C-code, although the transformation itself

may require specific code forms. The control and data flow transfor-

mation rules which are useful in the context of DFEG-based critical path

reduction are as follows:

 Restructure, split, and transformation of statements

 Extraction of computations from control structures

 Algebraic transformation of arithmetic, logic and other type of ex-

pressions

 Merge of expressions and statements

 Unfolding loops and others.

37

Although most of the transformation rules have been previously con-

sidered in literature, these should be analyzed again in the context of dy-

namic global critical path definition and reduction on DFEG. For in-

stance, the unfolding, retiming, and pipelining transformations aim at the

reduction of iteration period on static DFG which cannot be less than the

iteration bound [52]. Moreover the global critical path analysis helps to

find places for the efficient application of the transformation rules.

It can be noted that the procedure of increase of the parallelization

potential of a C/C++-code is an iterative process. Firstly, the source C-

code is transformed and rebuild. Then it is instrumented and mapped to a

C++-code version using an automatic tool. After the execution of the

C++-code using real input data as stimuli, evaluation of the critical path,

estimation of the possible acceleration, and localization of further trans-

formations, the intermediate C-code can then be transformed again in

order to perform the next iteration.

1.5.2 Preliminary transformation of loops

In order to be able to apply other transformation rules to the C/C++-

code, the loop statements should be preliminary transformed by means of

moving the iteration scheme into the loop body. The for-loop

for (T; D; S) { B }

can be transformed to

for (T; ;) { _C_=D; if (_C_) { B S } else break; }

The while-loop

while (D) { B }

can be mapped to

while (true) { _C_=D; if (_C_) { B } else break; }

The while-loop

38

do B while (D);

can be transformed to

do B _C_=! D; if (_C_) break; while (true);

After these transformations, the extraction of computations from con-

trol structures, and other types of transformation are possible.

1.5.3 Extraction of computations from control structures

An efficient way of accelerating the computations is the extraction of

operators from control structures and performing them in advance and in

parallel. The extraction can follow the preliminary transformation of

loops. Fig. 1.17 illustrates the extraction mechanism and transformation

rules on the C-code presented in Fig. 1.3. The extraction implies the in-

troduction of additional variables and computations. The critical path

length for the first iteration of the loop is reduced from 28 to 16 while

the complexity increases from 97 to 143 basic operations (Fig. 1.18).

The maximum path length between the Z[i-1] and Z[i] value-nodes is

equal to 9. The parallelization potential of the first iteration loop increas-

es from 3.5 to 8.9.

#define L 10
void main () {

 float X[L] = {0.6F,0.1F,0.9F,0.3F,0.8F,0.5F,0.7F,0.2F,0.4F,0.7F};

 float Y[L] ={0.3F,0.8F,0.4F,0.2F,0.1F,0.9F,0.5F,0.7F,0.1F,0.6F};
 float Z[L]; Z[0]=0.5F;

 for (int i = 1; ;) { int _C1_= i < L; int i1 = i - 1;

 float& Z0=Z[i1]; float& X0=X[i1]; float& Y0=Y[i1];
 float& Z1=Z[i]; float& X1=X[i]; float& Y1=Y[i];

 if (_C1_) {

 int _C2_= (Z0+X0*0.7F+Y0*0.3F+0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F);
 float _Zi1_= X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F + Z0;

 float _Zi0_= X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F + Z0;

 if (_C2_) Z1 =_Zi1_; else Z1 =_Zi0_; i++;

 } else break;

 }
}

Figure 1.17. Transformation of the C/C++-code shown in Fig. 1.3 (transformation

of the for-loop and extracting computations from the if-then-else-statement)

39

16

15

13

11 9

7

5

5

1

3

+

*



*

+

+ * *

* *

= = = = deref deref deref deref deref =

[] [] [] [] [] [] [] [] [] []

 =

i
<

L



Z

C1

1

i1

Z 0 X X 0 Y Y 0 X X 1 Y Y 1

Z0 Z[0] 0.5 X
0

X[0] 0.6 Y0 Y[0] 0.3 X1 X[1] 0.1 Y1 Y[1] 0.8

Z[0] X[0] Y[0] X[1] Y[1] 0.7 0.3

/ /

t1 t2 t3 t4

+

0.1 0.9

t5

t6 t7

[]

Z

Z1

++

i

_C2
_

<

t10

+

t17



t16

+

t15



0.4

0.3

0.2

t13

*

t12

* t11

*

0.1

t14

*

Z[1]

=

Zi1

+

t9

t8

0.5
0.1

t18



t19

+

t20

t21

t22

0.2

t23

* 0.3

t24

* 0.1

Zi0

i 1

Figure 1.18. The DFEG fragment (first iteration of the loop) for the transformed C/C++-

code shown in Fig. 1.17. The transformation is done by means of reconstruction

of the loop-statement and extraction of computations from if-statements. The graph

complexity implies the introduction of additional variables and computations.

The critical path length is in bold.

Fig. 1.19 presents the instrumented C++-code that performs the same

basic computations as the source C-code and additionally providing its

parallelization potential as result of the program execution grown com-

pared to the non-transformed graph. The critical path shown in bold is

reduced. The longest path between Z[i-1] and Z[i] nodes is also in bold.

40

#define L 10

void main() {

 CRITICAL_PATH_TURN_ON
 FLOAT X[L]={0.6F, 0.1F, 0.9F, 0.3F, 0.8F, 0.5F, 0.7F, 0.2F, 0.4F, 0.7F};

 FLOAT Y[L]={0.3F, 0.8F, 0.4F, 0.2F, 0.1F, 0.9F, 0.5F, 0.7F, 0.1F, 0.6F};

 PointerPrih<FLOAT> Xp=X; PointerPrih<FLOAT> Yp=Y;
 FLOAT Z[L]; PointerPrih<FLOAT> Zp=Z; Zp[0]=0.5F;

 for(INT i=1 ; ;) { INT _C1_=i<L; INT i1=i-1;

 FLOAT& Z0=Zp[i1]; FLOAT& X0=Xp[i1]; FLOAT& Y0=Yp[i1];
 FLOAT& Z1=Zp[i]; FLOAT& X1=Xp[i]; FLOAT& Y1=Yp[i];

 if(PUSH_LOOP(_C1_)) {

 INT _C2_ = (Z0 + X0*0.7F + Y0*0.3F + 0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F);
 FLOAT _Zi1_ = Z0 + X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F;

 FLOAT _Zi0_ = Z0 + X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F;

 if(PUSH_IF(_C2_)) Z1=_Zi1_; else Z1=_Zi0_; POP1;

 i++; POP1;

 } else break;

 }
 CRITICAL_PATH_TURN_OFF

}

Figure 1.19. Equivalent instrumented C++-code for the source code reported in Fig. 1.17

(Transf_1)

1.5.4 Transformation of expressions

The transformation of expressions is an efficient way of rebuilding

the DFG and the DFEG of the C/C++-code. The objective of expression

transformation is to rebuild the DFG in such a way as to reduce the

number of operations on the critical path.

Fig. 1.20 presents a very simple transformation of expressions in the

C/C++-code shown in Fig. 1.19. The transformation consists in changing

the order of operation executions by means of using parenthesis. The

transformed DFEG for the first iteration of the loop is presented in

Fig. 1.21. The critical path length and the complexity of the loop’s first

iteration is the same as for the DFEG presented in Fig. 1.18. In the mean-

time, the maximum path length between the Z[i-1] and Z[i] value-nodes

decreases from 9 to 5 basic operations. This implies the reduction in the

total critical path length for many iterations of the loop.

41

…

INT _C2_ = (Z0 + (X0*0.7F + Y0*0.3F + 0.5F)) < ((X1/X0) *0.1F + (Y1/Y0) *0.9F);

FLOAT _Zi1_ = Z0 + (X0*0.4F - Y0*0.3F + (X1*0.2F - Y1*0.1F));
FLOAT _Zi0_ = Z0 + (X0*0.1F - Y0*0.2F + (X1*0.3F - Y1*0.4F));

…

Figure 1.20. Transformation and instrumentation of expressions (Fig. 1.18)

in the C/C++-code (Transf_2)

1.5.5 Effectiveness of transformations

Table 1.5 provides a comparison of the parallelization potential of

three different C-codes (and instrumented C++-codes) with the same

functionality. The number of executed iterations of the loop is the same

and equals 10.

It is easy to see that the extraction of computations from control

structures and the transformation of expressions imply significant in-

crease in the algorithm execution acceleration and in the parallelization

potential. The Transf_1 performed by means of extraction of computa-

tions reduces the critical path length by 2.16 compared to the source

code. The Transf_2 performed by means of reordering of operator execu-

tions in expressions additionally reduces the critical path length by 1.44.

The overall reduction constitutes 3.11.

In the meantime, some transformations can imply the increase in the

C-code complexity. Thus, the extraction of computations in Transf_1

implies the increase in C-code complexity by 1.3. The reasons are as

follows:

 The reorganization of the C-code introduces additional variables

and operators (operator executions)

 The extraction of computations from the if-statements implies the

execution of operators in any case not depending on the value of

test expressions; if the operators were under the control structures

it would not be necessary to execute some of them.

42

15

16

13

11

9
7

5

5

3

1

+

+

*



*

+

+ * *

* *

= = = = deref deref deref deref deref =

[] [] [] [] [] [] [] [] [] []

 =

i
<

L



Z

C1

1

i1

Z 0 X X 0 Y Y 0 X X 1 Y Y 1

Z0 Z[0] 0.5 X

0

X[0] 0.6 Y0 Y[0] 0.3 X1 X[1] 0.1 Y1 Y[1] 0.8

Z[0] X[0] Y[0] X[1] Y[1] 0.7 0.3

/ /

t1

t2 t3 t4 0.1 0.9

t5

t6 t7

[]

Z

Z1

++

i

_C2

_

<

t10

+

t17



t16

+

t15



0.4

0.3

0.2

t13

*

t12

* t11

*

0.1

t14

*

Z[1]

=

Zi1

+

t9

t8

0.5
0.1

t18



t19

+

t20

t21

t22

0.2

t23

* 0.3

t24

* 0.1

Zi0

i 1

Figure 1.21. The DFEG illustrates reduction of the overall critical path length by means

of transforming expressions. The reduction is obtained by reordering operators.

The critical path is in bold. The distance between Z[i-1] and Z[i] nodes constitutes

5 operator-nodes instead of 9 operator-nodes in the previous DFEG

Table 1.5

Parameters of the source and transformed C/C++-code

Algorithm Complexity
Critical

path

Parallelization

potential

Feasible

acceleration

Source 802 171 4.7 1.00

Transf_1 1039 79 13.2 2.16

Transf_2 1039 55 18.9 3.11

43

1.6 Evaluation accuracy and limitations

There are some assumptions implemented in the current dynamic crit-

ical path evaluation tool version. One of them is that a value-node in the

explicitly generated DFEG can have more than one incoming arcs with

weights (intermediate critical path lengths) to which the max-operation is

applied. All the weights could be computed simultaneously in a parallel

implementation version of the tool. But the implemented tool version

runs on a single-processor machine and executes the instrumented C++-

code sequentially. Since only one additional critical path variable is as-

sociated with each main scalar variable, all the weights at the incoming

arcs cannot be stored and processed simultaneously. The weights are

processed sequentially, as the instrumented C++-code is being executed.

As a result the execution of the max-operation is broken into several

steps which can imply some slight inaccuracy in the critical path

measure.

The second assumption is that the C-code should not contain a varia-

ble representing several other different variables whose lifetimes are not

intersected. The critical path length for this single variable would differ

from the critical path length for the several separate variables due to the

use of the max-operation. This is a source of inaccuracy in the critical

path evaluation.

There are few limitations on the evaluation technique. One of the

most significant takes place for data that are interpreted in different way

by means of different types. For instance, the following two declarations

long lvar [] = {1, 3, 5, 7, 9, 15};

char* cvar = (char*) lvar;

cannot be legally instrumented and processed as

LONG lvar [] = {1, 3, 5, 7, 9, 15};

PointerPrih<CHAR> cvar = (CHAR*) lvar;

However, the mentioned inaccuracies and limitations do not consti-

tute a significant burden for most of the evaluations performed on com-

plex multimedia algorithms. Some alternative implementation of the op-

erators overloading capable of removing such limitations are under

44

study. The critical path evaluation tool has been successfully used for

large programs such as Wavelet algorithm implementations, the MPEG-

4 Optimized Reference Software, and the Cryptographic toolkit [72, 84]

and others, without requiring any code rewriting.

1.7 Conclusion

This chapter has presented a methodology for the measure of the par-

allelization potential of complex algorithms. The measure is based on the

dynamic evaluation of the data flow execution graph and is performed by

mapping a C-program into an instrumented C++ version, and then exe-

cuting the equivalent C++ program under real input data. By combining

critical path evaluations with code transformation techniques, an efficient

methodology can be built for exploring parallel implementations of the

algorithm, thus detecting efficient architectures the algorithm can be

mapped to. The mapping from the C description to a C++ instrumented

description that provides critical path measures can be done by an auto-

matic software tool, avoiding resource consuming code rewriting.

Analyzing the obtained measures, for each methodological iteration,

the most promising algorithms in terms of parallelization potential can be

selected among many possible alternatives. Applying transformations to

the algorithm and reducing the critical path length, thus further increas-

ing the degree of parallelization, result very effective for the definition of

efficient implementation architectures. The critical path length signifi-

cantly influences the results of scheduling the implementations at several

kinds of constraints on computational resources. The schedule cannot be

faster than the critical path length. A systematic methodology for reduc-

tion of the critical path length guarantees more powerful scheduling re-

sults and implicitly provides improvements in the trade off “complexity–

delay” that is common for software development, high-level synthesis

and architecture design in various application fields.

45

2. PARALLELIZATION POTENTIAL OF MEANINGFUL

HARDWARE / SOFTWARE APPLICATIONS

2.1. Parallelization potential of two-dimensional
WAVELET codec

Impressive results on the parallelization potential have been obtained

for the two-dimensional Wavelet codec implementations proposed in

[83]. Tables 2.1, 2.2 and 2.3 report experimental results obtained on

three versions of DFEG that are dynamically generated on different C-

codes with the same functionality:

 DFEG of the original C-code as it was created (Case I)

 DFEG of Case I without nodes that describe control computations

on the two dimensional array representing an image (Case II)

 The transformed C-code of Case II and its DFEG (Case III).

In Case I a portion of the C-code is responsible for global iterative

traversal of the two dimensional array representing an image. In Case II

the array is considered as a set of directly addressed and accessed sepa-

rate scalar variables. The control computations associated with the itera-

tive global traversal can be eliminated. An architecture which imple-

ments distributed on pixels computations can be generated. In Case III a

C-code is obtained by means of transforming several expressions consti-

tuting the wavelet core.

The algorithm computational complexity increases as the image size

grows. It constitutes from 79 to 493 million operations for Case I and

from 30 to 187 million operations for Cases II and III. The average num-

ber of operations executed per pixel equals 257 in Case I, and equals 97

operations in Cases II and III. The data flow computations to be incorpo-

rated in the C-code implementation constitute 37.9%, and the control

flow computations constitute 62.1%.

The increase in the image size implies the increase in the critical path

length. The length varies in the range from 2.55 up to 6.17 thousand op-

erations in Case I, in the range from 168 up to 196 operations for case II

and in the range from 144 to 168 operations in Case III. After the equiva-

lent transformation of WAVELET C-code and modifying its DFG (Case

III), the critical path length has been reduced by 16.7% compared to

Case II.

46

The parallelization potential depends on the image size and varies in

the range from 30932 up to 79896 in Case I, varies in the range from

177938 up to 953426 in Case II and varies in the range from 207594 up

to 1112331 in Case III.

Table 2.1

Experimental results for WAVELET (Case I)

N
Image Algorithm parameters

Width Height
Algorithm

complexity

Critical

path

Parallelization

potential

1 640 480 78,876,895 2,550 30,932

2 800 600 123,272,013 3,146 39,184

3 1024 576 151,470,377 3,416 44,341

4 1152 864 255,635,992 4,470 57,189

5 1280 1024 336,716,669 5,172 65,104

6 1600 1200 493,277,958 6,174 79,896

Table 2.2

WAVELET without control computations (Case II)

N

Image Algorithm parameters

Width Height
Algorithm com-

plexity

Critical

path

Parallelization

potential

1 640 480 29,893,590 168 177,938

2 800 600 46,711,523 168 278,045

3 1024 576 57,395,520 168 341,640

4 1152 864 96,855,102 168 576,519

5 1280 1024 127,568,960 196 650,862

6 1600 1200 186,871,523 196 953,426

Table 2.3

Transformed C-code of WAVELET (Case III)

N

Image Algorithm parameters

Width Height
Algorithm com-

plexity
Critical path

Parallelization

potential

1 640 480 29,893,590 144 207,594

2 800 600 46,711,523 144 324,386

3 1024 576 57,395,520 144 398,580

4 1152 864 96,855,102 144 672,605

5 1280 1024 127,568,960 168 759,339

6 1600 1200 186,871,523 168 1,112,331

47

Figures 2.1, 2.2 and 2.3 visualize the data reported in Tables 2.1, 2.2,

and 2.3 and represent the trends in the Wavelet’s complexity, critical

path, and possible acceleration due to parallelization.

0

1

2

3

4

5

6

7

8

9

10
6

4
0

x
4

8
0

8
0

0
x

6
0

0

1
0

2
4

x
5

7
6

1
1

5
2

x
8

6
4

1
2

8
0

x
1

0
2

4

1
6

0
0

x
1

2
0

0

Complexity * 5E7 Critical path * 1E3 Acceleration * 1E4

Figure 2.1. Algorithm complexity, critical path length, and acceleration due

to parallelization versus image size for WAVELET with control computations (Case I)

0

1

2

3

4

5

6

7

8

9

10

6
4
0
x
4
8
0

8
0
0
x
6
0
0

1
0
2
4
x
5
7
6

1
1
5
2
x
8
6
4

1
2
8
0
x
1
0
2
4

1
6
0
0
x
1
2
0
0

Complexity * 2E7 Critical path * 5E1 Acceleration * 1E5

Figure 2.2. Algorithm complexity, critical path length, and possible acceleration versus

image size for WAVELET without control computations (Case II)

48

As an image consists of a lot of pixels, the parallelization per pixel is

a very important metrics characterizing the WAVELET algorithm. It is

easy to see that the parallelization per pixel is equal to the complexity

per pixel divided by the critical path length:

ParallelizationPerPixel = Parallelization_Potential / Image_Size =

= Complexity / (Critical_Path_Length * Image_Size) =

= (Complexity / Image_Size) / Critical_Path_Length.

If the WAVELET’s parallel computations are assumed to be the two

dimensional computations distributed on the pixels, we may ask the

question, how many computations are common for neighbor pixels? If

the critical path length were the same for each pixel and were equal to

the complexity per pixel, we could conclude there are no common com-

putations for neighbor pixels. Fig. 2.4 shows parallelization per pixel

versus image size and proves that the common computations constitute

more than 90% in Case I, constitute from 42% to 50% in Case II, and

constitute from 33% to 42% in Case III. In Case III, the parallel compu-

tations are the most distributed.

0

2

4

6

8

10

12

6
4
0
x
4
8
0

8
0
0
x
6
0
0

1
0
2
4
x
5
7
6

1
1
5
2
x
8
6
4

1
2
8
0
x
1
0
2
4

1
6
0
0
x
1
2
0
0

Complexity * 2E7 Critical path * 5E1 Acceleration * 1E5

Figure 2.3. Algorithm complexity, critical path length, and possible acceleration versus

image size for transformed code of WAVELET (Case III)

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6
4

0
x

4
8

0

8
0

0
x

6
0

0

1
0

2
4

x
5

7
6

1
1

5
2

x
8

6
4

1
2

8
0

x
1

0
2

4

1
6

0
0

x
1

2
0

0

I II III

Figure 2.4. Parallelization per pixel versus image size (Cases I, II, and III)

2.2. Parallelization potential of RSAREF cryptographic toolkit

The RSAREF is a cryptographic toolkit [72, 84] designed to facilitate

rapid development of Internet Privacy-Enhanced Mail (PEM) implemen-

tations. RSAREF supports the following PEM-specified algorithms: (1)

RSA encryption and key generation, as defined by RSA Data Security's

Public-Key Cryptography Standards (PKCS), (2) MD2 and MD5 mes-

sage digests and (3) DES (Data Encryption Standard) in cipher-block

chaining mode. The RSAREF is entirely written in C.

With RDEMO the cryptographic operations of signing, sealing, veri-

fying, and opening files, as well as generating key pairs can be per-

formed. Three series of experiments have been made: (1) Sign a file with

private key, (2) Generate random DES key, encrypt content, and encrypt

signature with DES key (seal a file) and (3) Generate RSA public/private

key pair. Experimental results are presented in Tables 2.4 - 2.7. The pos-

sible acceleration due to parallelization potential of the C-code varies

from 42.21 up to 136.93. Fig. 2.5 and Fig. 2.6 describe the algorithm

complexity, critical path length and degree of parallelization versus the

file and key sizes.

50

Table 2.4

Experimental results for RSAREF (sign a file)

Content size
(Bytes)

Algorithm complexity Critical path
Parallelization

potential

281 21,804,816 502,000 43.44

621 21,826,260 509,660 42.83

971 21,846,076 517,582 42.21

Table 2.5

Experimental results for RSAREF (seal with sign)

Content size
(Bytes)

Algorithm
complexity

Critical
path

Parallelization

potential

281 26,781,944 502,685 53.28

621 29,553,488 510,345 57.91

971 32,455,414 518,267 62.62

Table 2.6

Experimental results for RSAREF (seal without sign)

Content size
(Bytes)

Algorithm
complexity

Critical
path

Parallelization

potential

281 4,978,890 77,491 64.25

621 7,728,936 77,491 99.74

971 10,611,022 77,491 136.93

Table 2.7

Experimental results for RSAREF (key-pair generation)

Key size
(bits)

Algorithm
complexity

Critical
path

Parallelization

potential

508 0.6E9 13.8E6 43.89

767 3.0E9 90.0E6 33.41

1024 21.9E9 806.4E6 27.12

51

0

5

10

15

281 621 971

Complexity * 1E6 Critical path * 1E4 Acceleration * 1E1

Figure 2.5. Algorithm complexity, critical path length, and possible acceleration versus

file size for seal

0

2

4

6

8

10

12

508 767 1024

Complexity * 2E9 Critical path * 1E7 Acceleration *1E1

Figure 2.6. Algorithm complexity, critical path length, and possible acceleration versus

key size for key pair generation

2.3. Parallelization potential of MPEG-4 video codec

2.3.1. MPEG-4 video codec

The computational complexity, critical path, and parallelization po-

tential profiles measured on the algorithm partition tree or any other par-

52

titioning constitute an effective basis for timing and performance analy-

sis of feasible parallel algorithm implementations. The results of metrics

measuring enable to correctly select partitions that need accurate optimi-

zations or that can produce considerable implementation speed-ups by

means of parallel implementations. An example of results that enable

correctly analyzing the critical functions of a complex video coding algo-

rithm is reported. The results obtained on the measurement of the critical

path and parallelization potential profiles of the MPEG-4 video codec

and subsequent timing and performance analysis of the C/C++-code

functions tree discover the ways of efficient code reconstruction and im-

plementation definition.

The complex algorithm that is under analyses in this chapter is a

software implementation of a part of MPEG-4 Video tools [38] as speci-

fied by the MPEG-4 Video standard (ISO/IEC 14496-2) reference soft-

ware. This is an optimized enhanced compression codec (document

M9632 in 65th meeting, July, 2003, Trondheim, Norway) based on the

simple profile for representing visual data: video, still textures, synthetic

images, etc. In this version, there are enhanced features: advanced error

detection and correction services on top of H.263. H.263 is a standard

video-conferencing codec optimized for low data rates and relatively

low motion.

One new part that has been developed is a new video codec. This is

joint work with the ITU who were defining an H.26L codec (follow on

beyond H.261 and H.263). The work has been done by Joint Video Task-

force (JVT) working group and has become a new MPEG-4 video stand-

ard as part 10, i.e. ISO/IEC 14496-10 and is called Advanced Video

Coding or AVC and is technically identical to the ITU-T H.264 standard.

Fig. 2.7 shows the typical structure of the Moving Picture Experts

Group (MPEG) encoder. Motion estimation and compensation are key

parts of video compression. They help remove temporal redundancies in

images. The MPEG standard depends on two basic algorithms. Motion-

compensated coding uses block-based motion vector estimation and

compensation to remove temporal redundancies. Block discrete cosine

transforms reduce spatial redundancy.

The MPEG standard uses three types of pictures that depend on the

mode of motion prediction. The intra (I) picture serves as the reference

picture for prediction. Block discrete cosine transforms code the intra

http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/H.264

53

pictures, and no motion estimation prevents long range error propaga-

tion. Coding the predicted (P) pictures uses forward prediction of mo-

tion. Each image is divided into macro blocks of size pixels and search

blocks of the same size in the prior reference I frame or P frame. A sec-

ond type of picture is the bidirectional interpolated (B) picture. Both

forward and backward motion predictions are performed with respect to

the prior or future reference I or P frames.

The two main types of motion estimation use pel-recursive algorithms

or block matching algorithms. Pel-recursive algorithms predict the mo-

tion field at the decoder based on how neighboring pixels decoded in the

current frame relate to pixels in the prior frame. Exhaustive search within

a maximum displacement range leads to the absolute minimum for the

energy of the prediction error and is optimal in this sense. Motion-

compensated video coding relates the intensity of each pixel in the cur-

rent frame to the intensity of some pixel in a prior frame. It links these

pixels by predicting the motion of objects in the scene.

Image +

Prediction
Error

Rate control

Embedded

decoder

Prediction

Motion information

DCT ZZ Q  VLC

Buffer

IQ

IZZ

IDCT


Reconstructed

Picture
Memory

Motion
Compen-

sation

Motion
Estimation

Original
Picture

Memory



Figure 2.7. Block diagram of the MPEG encoder: DCT is discrete cosine transform, ZZ

is zigzag scanning, Q is quantizer, VLC is variable length coding, IQ is inverse quantizer,

IZZ is inverse zigzag scanning, and IDCT is inverse discrete cosine transform

54

The experimental results have been obtained for the following con-

figuration of the EMPEG-4 video encoder software: the Microsoft Visual

Studio 6.0 platform, the VM5+ rate control, the MVFAST in N4554 fast

motion search, no error resilient, and the disabled post-filter.

The profiling is performed for the C/C++-code functions tree of the

MPEG-4 video encoder shown in Fig. 2.8. The intra encoding is applied

to the first frame and inter encoding is applied to the subsequent frames.

main

CodeBaseVol

VopProcess

ReadVopGeneric

GetVopBounded WriteVopGeneric

VopCode VopShapeMotText

VopMotionCompensate

SubVOP MotionEstimation

RCQ2_MB_init

VopPadding

InterpolateImage MotionEstimatePicture

FullPelMotionEstMB

FindMB

FindSubPel

MBMotionEstimation
ChooseMode

SAD_Block

SAD_Macroblock FindMB

ObtainRange8

Figure 2.8. The tree of key functions of MPEG-4 encoder reference software

(inter encoding)

55

2.3.2. Source video sequence

The video coder is performed on the following input sequence of

frames: the Foreman source video sequences, 100 input/output frames,

the CIF (352x288) and QCIF (176x144) picture sizes, the YUV (4:2:0)

format, the I-PPP coding type, and 8 bits per pixel.

2.3.3. Profiling computational complexity

The video encoder computational complexity profile that is measured

in the number of C/C++ operations is reported in Table 2.8 and Fig. 2.9.

The number of calls is additionally reported for each function.

Table 2.8

Computational complexity and critical path of MPEG-4 encoder

Function

Own

computational

complexity

Number

of func-

tion calls

Share (%)

 in overall

complexity

main 9930795562 1 100.00

CodeBaseVol 9930773442 99 100.00

ReadVopGeneric 75274848 99 0.76

GetVopBounded 153268929 99 1.54

WriteVopGeneric 135777114 99 1.37

VopProcess 9566444136 99 96.33

VopCode 9491144637 99 95.57

VopShapeMotText 1873222888 99 18.86

VopMotionCompensate 195466324 99 2.37

SubVOP 125453097 99 1.97

RCQ2_MB_init 234913737 99 1.26

VopPadding 110013453 99 1.11

MotionEstimation 6940357262 99 69.89

InterpolateImage 692083854 99 6.97

MotionEstimatePicture 6243294170 99 62.87

FindSubPel 2897497781 182720 29.18

FindMB 69872128 36544 0.70

FullPelMotionEstMB 3273115389 39204 32.96

ChooseMode 259256052 39204 2.61

MBMotionEstimation 3013192869 39204 30.34

SAD_Block 1839728800 3728588 18.53

SAD_Macroblock 981290638 470111 9.88

FindMB 74958048 39204 0.75

ObtainRange8 9205936 156816 0.09

56

Figure 2.9. Own computational complexity of MPEG-4 encoder functions

Figure 2.10. Computational complexity profiling of MPEG-4 video codec

57

Figure 2.11. Computational complexity profiling of MotionEstimation

The encoder overall computational complexity equals 9’930’773’442

operations for 99 frames. MotionEstimation (69.89%) and

VopShapeMotText (18.86%) are the most computational complexity con-

suming composite functions (Fig. 2.10).

The results of computational complexity profiling of MotionEstima-

tion are shown in Fig. 2.11 The basic functions of MotionEstimation

which mostly contribute to the computational complexity are:

FindSubPel (29.18%), SAD_Block (18.53%), SAD_Macroblock (9.88%)

and InterpolateImage (6.97%).

2.3.4. Profiling critical path

The video encoder critical path profile that is measured in the number

of C/C++ operations is described by Table 2.9 and Fig. 2.12. We distin-

guish the own critical path of each function and the share of a function in

the overall critical path of the encoder. The overall critical path of en-

coder is equal to 6’054’211 operations. MotionEstimation is the most

contributing (83.42%) composite function in the overall path (Fig. 2.13).

The basic functions which have significant share in the overall critical

path are (Fig. 2.14): FindSubPel (37.21%), SAD_Macroblock (18.57%),

VopShapeMotText (11.81%) and SAD_Block (4.60%).

58

Table 2.9

Own critical path and share in overall critical path of MPEG-4 en-

coder functions

Function

Own

critical

path

Share in

overall criti-

cal path

Share in

%

main 6054211 6054211 100.00

CodeBaseVol 6054211 6054211 100.00

ReadVopGeneric 101378 0 0.00

GetVopBounded 101732 101444 1.68

WriteVopGeneric 152065 0 0.00

VopProcess 6050363 5952722 98.32

VopCode 6050357 5952722 98.32

VopShapeMotText 2209971 714819 11.81

VopMotionCompensate 7417 8145 0.13

SubVOP 101577 442 0.01

RCQ2_MB_init 57979 30 0.00

VopPadding 15563 18 0.00

MotionEstimation 5819926 5050491 83.42

InterpolateImage 2233 95 0.00

MotionEstimatePicture 5819849 5050287 83.42

FindSubPel 2533334 2252627 37.21

FindMB 557468 0 0.00

FullPelMotionEstMB 3292285 2712966 44.81

ChooseMode 76274 68397 1.13

MBMotionEstimation 3188680 2617335 43.23

SAD_Block 313592 278560 4.60

SAD_Macroblock 1434231 1123982 18.57

FindMB 68 0 0.00

ObtainRange8 109719 97496 1.61

The comparison of the two profiles on the computational complexi-

ty and critical path proves that there are functions like SAD_Block

whose share in the overall complexity (18.53%) is larger than their

share (4.60%) in the overall critical path. It also proves that there are

functions like MotionEstimation and FindSubPel whose share in the

overall critical path (83.42% and 37.21% respectively) is larger than

their share (69.89% and 29.18% respectively) in the overall complexi-

ty. If the goal is to reduce the critical path such functions should be

considered and transformed, first of all, in order to increase their paral-

lelization potential.

59

Figure 2.12. Own critical path of MPEG- encoder functions

Figure 2.13. Critical path profiling of MPEG-4 video codec

60

Figure 2.14. Critical path profiling of MotionEstimation

Some results of more detailed analyses of the critical path are report-

ed in Table 2.10 and are shown in Fig. 2.15. A comparison of the own

critical path, critical path profile, and critical path zeroing is given for

video encoder functions. For some functions like FindSubPel the critical

path share of 88.92% is almost the same as the own critical path (100%).

For other functions like VopShapeMotText the critical path contribution

of 32.35% is significantly less than the own critical path. It means the

own path and the overall path are not significantly intersected.

Table 2.10

Own critical path share in overall critical path and critical path

zeroing

Function
Own critical

path, %

Share in overall

critical path, %

Critical path

zeroing, %

GetVopBounded 100 99.72 0.35

VopShapeMotText 100 32.35 7.56

MotionEstimation 100 86.78 49.47

FindSubPel 100 88.92 64.64

FullPelMotionEstMB 100 82.40 68.05

ChooseMode 100 89.67 89.61

SAD_Block 100 88.83 88.19

SAD_Macroblock 100 78.37 71.02

ObtainRange8 100 88.86 62.09

61

Figure 2.15. Own critical path, share in overall critical path, and critical path zeroing

in MPEG-4 video codec functions

The critical path zeroing characterizes a possible reduction in the

overall critical path due to reduction in the own critical path of a func-

tion. The amount of reduction varies in a wide range. For example, the

critical path zeroing of function SAD_Macroblock is 71.02% at the share

in the overall critical path of 78.37%. It means the most part of share can

be potentially reduced due to the reconstruction of function

SAD_Macroblock. Contrary, the critical path zeroing of function

VopShapeMotText is 7.56% at the critical path share of 32.35%. Alt-

hough the share is not too high against the own critical path, it is difficult

to reduce it significantly.

2.3.5. Profiling parallelization potential

Table 2.11 presents the own parallelization potential of each function

(column 2) and the parallelization potential of a function in the functions

62

tree (column 3). They are estimated over the computational complexity

(Table 2.8), critical path length and the share in the overall critical path

(Table 2.9) of each function of the functions tree. The overall paralleliza-

tion potential of the whole algorithm is 1640. The video encoder own

parallelization potential profile with respect to the key functions of

MPEG-4 video codec (Fig. 2.16), which consume the highest amount of

computational complexity estimates the feasible acceleration of the fu-

ture distributed architecture. The own parallelization potential defined as

the computational complexity divided by the own critical path varies

from 684 (SAD_Macroblock) to 309934 (InterpolateImage) and to

1102324 (FindMB).

Table 2.11

Parallelization potential of MPEG-4 video encoder functions

Function

Own

parallelization

potential

Parallelization

potential in

functions tree

main 1640.31 1640.31

CodeBaseVol 1640.31 1640.31

ReadVopGeneric 742.52 infinity

GetVopBounded 1506.60 1510.9

WriteVopGeneric 892.89 infinity

VopProcess 1581.14 1607.07

VopCode 1568.69 1594.42

VopShapeMotText 847.62 2620.6

VopMotionCompensate 26353.83 442231.5

SubVOP 1235.05 4181769.9

RCQ2_MB_init 4051.70 7830457.9

VopPadding 7068.91 6111858.5

MotionEstimation 1192.52 1374.2

InterpolateImage 309934.55 7285093.2

MotionEstimatePicture 1072.76 1236.22

FindSubPel 1143.75 1286.3

FindMB 125.34 infinity

FullPelMotionEstMB 994.18 1206.47

ChooseMode 3399.01 3790.5

MBMotionEstimation 944.97 1151.24

SAD_Block 5866.63 6604.4

SAD_Macroblock 684.19 873.0

FindMB 1102324.24 infinity

ObtainRange8 83.90 94.42

63

Figure 2.16. Parallelization potential of MPEG-4 video codec key functions

Another important characteristic of a function is the parallelization

potential in the functions tree that is defined as the computational com-

plexity divided by the share of the function in the overall critical path. As

the critical path share is less than the own critical path, the parallelization

potential in the functions tree is always not less than the own paralleliza-

tion potential. Its value varies from 873 (SAD_Macroblock) till infinity

(ReadVopGeneric, WriteVopGeneric, FindMB). The infinity value is

obtained due to the zero share of the function in the overall critical path.

Growth of parallelization potential versus number of frames. Table

2.12 describes the growth of computational complexity, critical path and

parallelization potential depending on the number of encoded video

frames. Increasing the number of frames twice implies the growth of the

complexity about twice (Fig. 2.17). The critical path length grows signif-

icantly slowly. The critical path length has grown by 38.4 times for 99

64

frames against 1 frame. It means, the parallelization among computations

of consecutive frames of the same video sequence is possible.

Fig. 2.18 shows the degree of parallelization versus number of

frames. The algorithm of encoding 10 frames can be 2.297 time parallel-

ized against the algorithm of encoding 1 frame. On 20 frames the encod-

ing algorithm can be 2.449 times parallelized over encoding 1 frame. For

99 frame the parallelization potential grows to 2.618 time. It is interest-

ing that the parallelization potential of 2.626 for 50 frames is larger than

that for 99 frames. It depends on the video sequence.

Table 2.12

Computational complexity, critical path and parallelization potential

of MPEG-4 video encoder versus number of frames

Number of

frames

Computational

complexity
Critical path

Parallelization po-

tential

1 98678728 157492 626.56

2 196200376 175382 1118.70

3 297762503 239334 1244.13

4 399369531 311858 1280.61

5 499918543 374486 1334.95

6 600758570 433265 1386.58

7 700916076 481945 1454.35

8 802059492 567969 1412.15

9 901871124 627270 1437.77

10 999191080 694366 1439.00

12 1200758747 819560 1465.13

14 1401196194 969017 1446.00

16 1601740755 1089697 1469.90

18 1799544062 1183045 1521.11

20 2001069072 1303941 1534.63

30 3006092583 1927676 1559.44

40 3993971189 2544380 1569.72

50 4981470788 3027194 1645.57

60 5974901481 3735201 1599.62

70 6917099291 4343810 1592.40

80 7947724259 5164862 1538.81

90 8996846808 5717979 1573.43

99 9930773442 6054211 1640.31

65

20

40

60

80

100

Figure 2.17. Growth of overall computational complexity and critical path length

 of MPEG-4 video encoder versus number of frames

0.5

1

1.5

2

2.5

3

Figure 2.18. Growth of overall parallelization potential of MPEG-4 video encoder versus

number of frames

66

2.4. Conclusion

The methodology of measuring the parallelization potential of com-

plex algorithms that is presented in chapter 1, is applied to the reference

software of several meaningful applications: two-dimensional

WAVELET codec, RSAREF cryptographic toolkit, MPEG-4 video co-

dec and others. This chapter has presented the results of measuring the

computational complexity, critical path and level of parallelism which

are hidden in the C-code of the applications.

67

3. TRANSFORMATION OF ALGORITHM TO BASIC

SINGLE-BLOCK MODEL

3.1. Algorithm transformation flow

The idea of a step-by-step transformation of an algorithm [58, 63, 64,

66, 69, 70, 74, 76], which improves key parameters of complex sequen-

tial program code that is associated with an algorithm subsequent parallel

implementation (Fig. 3.1) lies in the basis of the parallelism extraction

method we develop in this chapter. Parallelism that is extracted from the

sequential code is implemented further in a functionally equivalent paral-

lel code or in a parallel hardware architecture. Extracting parallelism

which improves parameters of subsequent implementation is a complex

process that requires knowledge of key concepts about the static and dy-

namic properties of a program. The proposed method is based on the fol-

lowing key principles:

1. measurement of parameters of sequential code that predict param-

eters of subsequent parallel implementations;

2. step-by-step transformation of a serial code in order to improve

parameters of an equivalent parallel code;

3. mapping sequential code into an efficient parallel implementation

using a basic single-block flow model.

The measurement of parallelism hidden in sequential code is based on

metrics and object-oriented instrumentation technology proposed in [61].

The main metrics characterizing parallelism, laid out in a sequential pro-

gram, include the computational complexity of the program code, the

critical path on the data flow graph of the program execution (DFEG -

Data Flow Execution Graph), and the factor of maximum parallelization

potential. We give brief definitions of these concepts, following this

work. The computational complexity of a program code on a typical in-

put data set is measured in the number of basic operations (operators or

instructions) of the programming language, in which the code is written

and performed during the execution of the program. Operations of access

to data elements, including write operations to memory and read from

68

memory, can be taken into account together with logical and arithmetic

operations, comparison operations, etc.

Source code of

algorithm

Estimation of computational complexity,

critical path and maximal parallelization

factor

Transformed
 code

Input data

Code parameters

Application of rule and transformation

of code

Evaluating a profile of computational

complexity and critical path on

functions tree

Choose a code transformation rule and

application location, which reduce the

computational complexity and critical

path, and increase the parallelization

factor and speed up the implementation

architecture

Profile on
functions tree

List of
transformation rules

and application
points

Making decision оn

continuation of

transformation

Figure 3.1. Algorithm parallelization flow by means of code transformation

Accounting for data exchange operations between parallel parts of the

code is not possible at an early design stage, since the decomposition of

the entire code into parallel parts will be carried out later.

69

Graph DFEG is an acyclic directed finite graph constructed on a set

of vertices that are variables or operators, taken part in program execu-

tion. A set of arcs represents data dependencies between input variables

and operators, and between operators and output variables, realized dur-

ing execution of the code. The graph is generated for one set of input

data. Changes in the input data entail, in general, changes in the size and

structure of the graph. In fact one program code can produce tremendous

number of different DFEGs. Implementation costs are associated with

vertices-operators and vertices-variables of the graph. The number of

vertices and their costs characterize the computational complexity of the

code on the given input data. The longest weighted path on the graph is

called the critical path. It characterizes the maximum execution time of

the code in case of its parallel implementation. The ratio of the computa-

tional complexity to the critical path of the code is the parallelization

potential factor. It characterizes the feasible maximum acceleration of

the parallel implementation against the sequential implementation.

The serial code transformation method, which improves the pa-

rameters of the subsequent parallel implementation, is built on two

components:

 transformation rules that can increase the parallelization factor of

the code;

 the method of localization of code fragments, the transformation

of which is most effective in reducing the computational complex-

ity and reducing the critical path.

The following transformation rules are most promising, since they

lead to the restructuring of control flow and data flow graphs that are

beneficial for resolving parallelism and increasing the code paral-

lelizability:

 splitting of control structures

 speculative computing of operators which are extracted from con-

trol structures;

 merging assignment operators and transforming expressions to re-

duce the maximum depth of expression trees

 unrolling of loops with static and dynamic iteration schemes and

others

Localization of the points of rules application in the program code is

carried out by building a computational complexity profile, a critical

70

path profile, and parallelization potential profile. The computational

complexity profile describes the contribution of each function in the total

computational complexity of the entire code, expressed ultimately as a

percentage. The critical path profile is a list of functions lying on the crit-

ical path and the contribution of each function to the total length of the

overall critical path of the program code. The potential parallelization

profile characterizes the level of feasible parallelization of each function

in the functions tree. In order to improve the parameters of the entire

code, functions and their components are revealed, which make the

greatest contribution to the computational complexity and critical

path, and these functions are purposefully transformed, increasing the

parallelization factor while maintaining the algorithm optimization

flow described in Fig. 3.1.

The method of mapping a sequential code to a parallel implementa-

tion provides a transition from the original sequential control flow to a

parallel control flow while maintaining the original data flow. In this

case, the system is divided into parts, taking into account the measured

and detected parallelism in the sequential code, by decomposing both the

operation part of the code and the data structures processed by the code.

The original sequential control flow often prevents the system from be-

ing divided into parallel subsystems. Our method transforms the initial

sequential control flow of the code and its parts to a basic single-block

flow model [69-71, 76]. The equivalent parallel code is represented by

means of basic primitives of the operating system, primitives of the MPI

library, and by other facilities.

The advantages of the developed method are manifested in the fol-

lowing fundamental possibilities.

 The same behavioral description can be reduced to a form ade-

quate to one or another parallel architecture;

 Limits of parallelization and limits of the system implementation

can be extended;

 The transformed behavioral description may be more effective in

terms of the applicability of the methods, strategies, and algo-

rithms for solving optimization problems of automatic paralleliza-

tion and scheduling.

 At the same constraints on a system parameter, it is possible to ob-

tain more favorable values of other parameters.

71

 The method extends capabilities for design space exploration re-

garding software implementations and regarding hardware imple-

mentations.

3.2. Preliminary transformation of algorithm

One of the key concepts of a sequential program that has a decisive

influence on the operation, properties and capabilities of models and

methods for the extraction of parallelism is the concept of a linear block

(basic block). A linear segment is a chain of operators sequentially exe-

cuted one after another, which does not include transitions over branch-

ing instructions.

It is difficult to extract parallelism from looping / branching pro-

grams that are built using a combination or superposition of while,

do-while, if, switch and other similar instructions, and perform pro-

cessing of data of arbitrary types, in particular, pointers. Methods for

the extraction of parallelism from programs in this category are little

developed or not studied at all.

The most important step in transformation process is the elimination

of multiple use of one variable by means of the introduction of new addi-

tional variables. Bellow we assume that single assignment requirement is

met by all variables in the program code.

The rules for transforming the source code to a basic single-block

model, that is introduced in this chapter, are constructed in such a way as

to make the transition to using a limited subset of constructs, which are

typical for an algorithm description language like C/C++. After that, they

eliminate all complex control structures from the code, and separate the

data flow from the control flow. As a result, the transformation of the

source code is carried out in two stages, each of which uses its own set of

transformation rules:

 Rules for transformation of sequential control flow for using a re-

stricted subset of control instruction of the programming language;

 Rules for data flow extraction by means of stepwise elimination of

original control structures and control flow.

The transition from a source code written in C language to a basic

single-block model is performed by applying the transformation rules

of the form

72

Left_part => Right part. (3.1)

In rule (3.1), Left_part and Right part represent program code

fragments that are semantically (functionally) equivalent in sense of

describing in different ways the same mapping of input data into

output data.

The rules use the notation as follows: V, V1,… are Boolean variables,

C, C1,… are Boolean expressions, Q, ,Q1,… are instructions, S, S1,…,R,

R1,… are sequences of instruction, and L, L1,… are labels of loops.

The rules for preliminary transformation of the control flow of the

original algorithm are shown in Fig. 3.2. They allow to transform such

control structures as if, switch, while, do-while, for, break, continue and

others. As a result it is possible to proceed to the use of a restricted sub-

set of the C/C++ language.

Rule Left part Right part

R1 while (C) { S } while (1) { if (C) { S } else break;

}

R2 do { S } while (C); while (1) { S if (!C) break; }

R3 for(S1; C; S2) { S3 } S1; for (;;) { if (C) { S3 S2 } else

break; }

R4 S1 if (C) { while (1) { S2 } } V=1; while (1) {if (V) { S1 V=0; } if

(C) { S2 } else break; }

R5 S1 if (C) { while (1) { S2 } } V=1; while (1) {if (V) { S1 } if

(!V||C) { S2 V=0; } else break; }

R6 if (C1) { break; } if (C2) {

break; }

if (C1||C2) { break; }

R7 if (C) { break; } S V=C; if (!V) { S } if (V) { break; }

R8 for(S1 ; C1; S2) { S3 if (C2)

continue; S4 }

S1 for(;;) { { if (!C1) break; S3 if

(!C2) { S4 }; S2 }

R9 while (1) { S1 if (C) continue;

S2 }

while (1) { S1 if (!C) {S2} }

R10 if (C) { S1 } else { S0 } V1=C; V2=!C; if (V1) { S1 } if V2) {

S0 }

R11 if (V) { Q1;…Qk; } if (V) {Q1 } … if (V) { Qk }

R12 if (V1) { if (V2) { S } } V:=V1 && V2; if (V) { S }

R13 if (V1) { V2=E; } V2 = (V1 && E) || (!V1 && V2);

R14 switch (E) { case H1: S1 …

case Hn : Sn default: Sn+1 }

V=E; if (V==H1) { S1 } else … if

(V==Hn) { Sn } else { Sn+1 }

Figure 3.2. Rules for preliminary transformation of C code

73

Rule R1 converts a while loop to a loop with an infinite iteration

scheme and a conditional break statement, which provides an exit

from the loop when it is executed sequentially with the sequence S of

operators. Rule R2 converts a loop do-while to a loop while with the

infite iteration scheme and operator break under a conditional

instruction, after executing the statements of the sequence S. Rule R3

converts the loop with an iteration scheme for to a loop with an infi-

nite iteration scheme and a body, that includes an additional operator

break under a conditional statement, body S3 of the original loop, and

part S2 of the original iteration scheme.

Rule R4 allows to put an if-instruction covering a loop with an infi-

nite iteration scheme and statements S1 located before the if-instruction,

inside the loop body in case the loop body statements S2 do not change

the value of the expression C, introducing one additional Boolean varia-

ble V. Rule R5 is a generalization of the previous rule for the general

case; it allows to insert an if-instruction covering a loop with an infinite

iteration scheme and statements S2 that are located before the if-

instruction, inside the loop body.

Rule R6 merges two operators break, covered by conditional state-

ments, into one statement. Rule R7 allows the permutation of operator

break that is under an if-instruction with condition C, with sequence S of

statements located after break.

Rule R8 transforms operator continue covered by a conditional opera-

tor, which is a part of a loop body with iteration scheme for, to condi-

tional execution of a part of the loop body. Rule R9 transforms operator

continue covered by a conditional operator, to conditional execution of a

part of the loop body.

Rule R10 splits one conditional if-instruction into two short condi-

tional instructions; the passing condition of each of them is calculated by

an additional assignment instruction. Rule R11 splits one short if-

instruction with a sequence of statements, into an equivalent sequence of

simpler short if-instructions with one nested statement; such a transfor-

mation is admissible if the value of variable V is not changed by opera-

tors Q1,...,Qk-1. Rule R12 reduces the system of two nested if-instructions

to one conditional resultant instruction. Rule R13 allows to get rid of a

short if-instruction, if it includes an assignment operator that works with

74

Boolean variables and expressions. Rule R14 transforms instruction

switch to a system of nested conditional statements.

We demonstrate the application of control flow conversion rules us-

ing the RSA cryptographic standard [84], namely, using the C-code of

function NN_DigitDiv that is shown in Fig. 3.3. The code can be classi-

fied as difficult to parallelize because its control flow is built from the

superposition of if and while instructions. Applying the rules from

Fig. 3.2 to the source code shown in Fig. 3.3, we obtain the preliminary

transformed code shown in Fig. 3.4. All control structures are split and

unified, the loops have an infinite iteration scheme in this code. Complex

expressions are split, assignment instructions are associated with one

logical, arithmetic, or other operator of the C language. Despite simplifi-

cations, the code contains 11 larger and 4 smaller linear basic blocks. It

is difficult to extract parallelism from so many nested basic blocks.

3.3. Basic single-block flow model

This chapter presents a basic single-block flow model (BSBM) of a

sequential algorithm in which the data flow is separated from the control

flow [69, 70]. The goal of building BSBM is to efficiently extract data

flow parallelism from difficult-to-parallel sequential looping-branching

algorithms of general form by means of reducing the original control

flow. The number of paths on the control flow graph of the algorithm,

which determines the complexity of analyzing the source sequential code

and synthesizing the parallel result code, grows exponentially depending

on the size of the graph and is determined mainly by the number of basic

blocks in the algorithm code. Reducing the number of basic blocks sim-

plifies the control flow graph from the point of view of parallelization

efficiency. The OBBM model includes only one basic block and pro-

vides real extraction of all types of parallelism from the original basic

blocks. In fact, the model provides for merging the data flows of indi-

vidual basic blocks into a single data flow of a single basic block while

preserving potential parallelism and possible acceleration for execution

on a multiprocessor system.

75

typedef unsigned long nnd;

typedef unsigned short nnfd;

#define nnhdb 16

#define mnnfd 0xffff

#define mnnd 0xffffffff

#define lhf(x) (nnfd)((x)&mnnfd)

#define hhf(x) (nnfd)(((x)>>nnhdb)&mnnfd)

#define tohf(x) (((nnd)(x))<<nnhdb)

void NN_DigitDiv (nnd *a, nnd b[2], nnd c) {

 nnd t[2], u, v;

 nnfd aHigh, aLow, cHigh, cLow;

 cHigh = hhf(c); cLow = lhf(c);

 t[0] = b[0]; t[1] = b[1];

// Underestimate high half of quotient and subtract.

 if(cHigh == mnnfd) aHigh = hhf(t[1]); else

 aHigh = (nnfd)(t[1] / (cHigh + 1));

 u = (nnd)aHigh * (nnd)cLow;

 v = (nnd)aHigh * (nnd)cHigh;

 if((t[0] -= tohf(u)) > (mnnd - tohf(u))) t[1]--;

 t[1] -= hhf(u); t[1] -= v;

// Correct estimate.

 while((t[1]>cHigh)||((t[1]==cHigh)&&(t[0]>=tohf(cLow)))) {

 if((t[0]-=tohf(cLow))>mnnd-tohf(cLow)) t[1]--;

 t[1] -= cHigh;

 aHigh++;

 }

// Underestimate low half of quotient and subtract.

 if(cHigh==mnnfd)

 aLow = lhf(t[1]);

 else

 aLow = (nnfd)((nnd)(tohf(t[1])+hhf(t[0]))/(cHigh+1));

 u = (nnd)aLow * (nnd)cLow;

 v = (nnd)aLow * (nnd)cHigh;

 if((t[0]-=u) > (mnnd - u)) t[1]--;

 if((t[0]-=tohf(v))>(mnnd-tohf(v))) t[1]--;

 t[1] -= hhf(v);

// Correct estimate.

 while((t[1]>0)||((t[1]==0)&&t[0]>=c)) {

 if ((t[0]-=c)>(mnnd-c)) t[1]--;

 aLow++;

 }

 *a = tohf(aHigh) + aLow;

}

Figure 3.3. A fragment of C code for RSA

76

typedef unsigned long nnd;

typedef unsigned short nnfd;

#define nnhdb 16

#define mnnfd 0xffff

#define mnnd 0xffffffff

#define lhf(x) (nnfd)((x)&mnnfd)

#define hhf(x) \

 (nnfd)(((x)>>nnhdb)&mnnfd)

#define tohf(x) (((nnd)(x))<<nnhdb)

void NN_DigitDiv1(nnd *a,

 nnd b[2], nnd c) {

 nnd t[2],u,v;

 nnfd aHigh,aLow,cHigh,cLow;

 int c1,c2,c3,c4,c5,c6,c7,c8,c9;

 nnfd x1;

 nnd x2,x7,x8,x9,x10,x11,x16,x17;

 int x3,x4,x5,x6,x12,x13,x14,x15;

 cHigh = hhf(c); // 1

 cLow = lhf(c);

 t[0] = b[0]; t[1] = b[1];

 c1 = cHigh==mnnfd;

 if(c1) {

aHigh = hhf(t[1]); // 2

 } else {

x1 = cHigh+1; // 3

aHigh = (nnfd)(t[1]/x1);

 }

 u = (nnd)aHigh*(nnd)cLow;

 v = (nnd)aHigh*(nnd)cHigh;

 t[0]-= tohf(u);

 x2 = mnnd-tohf(u);

 c2 = t[0]>x2;

 if(c2) t[1]--;

 t[1]-=hhf(u);

 t[1]-=v;

 while(1) {

x3=t[1]>cHigh; // 4

x4=t[1]==cHigh;

x5=t[0]>=tohf(cLow);

x6= x4&&x5;

c3= x3||x6;

if(c3) {

t[0]-=tohf(cLow); // 5

x7=mnnd-tohf(cLow);

c4=t[0]>x7;

if(c4) t[1]--;

t[1]-=cHigh;

aHigh++;

} else { break; }; // 6

 }

 c5 = cHigh==mnnfd

 if(c5) {

aLow=lhf(t[1]); // 7

 } else {

x8=tohf(t[1])+hhf(t[0]); // 8

x9=cHigh+1;

aLow=(nnfd)((nnd)x8/x9);

 }

 u = (nnd)aLow*(nnd)cLow;

 v = (nnd)aLow*(nnd)cHigh;

 t[0] -= u; x10 = mnnd-u;

 c6 = t[0]>x10;

 if(c6) t[1]--;

 t[0]-=tohf(v);

 x11=mnnd-tohf(v);

 c7=t[0]>x11;

 if(c7) t[1]--;

 t[1]-=hhf(v);

 while(1) {

x12=t[1]>0; // 9

x13=t[1]==0;

x14=t[0]>=c;

x15=x13&&x14;

c8=x12||x15;

if(c8) {

x16=t[0]-=c; // 10

x17=mnnd-c;

c9=x16>x17;

if(c9) t[1]--;

aLow++;

} else {

break; // 11

}

 }

 *a=tohf(aHigh)+aLow;

}

Figure 3.4. Preliminary transformed fragment of C code for RSA

77

A schematic representation of OBBM in the C language is given in

Fig. 3.5. Fig. 3.5a depicts the framework of the model at the level of a

single function. Here RType is a type of the function’s return value;

FName is a name of the function; FArgs are descriptions of the formal

arguments (parameters) of the function.

FDeclarations are local declarations within a function, including

declarations of data flow variables and control variables, whose values

are initialized. The entire operation part of the function is represented by

a single while loop with an infinite iteration scheme. In case of simple

algorithms, the loop may be absent altogether.

The body of the loop is unified. It is a sequence of single-type

constructions which are truncated conditional instructions if-then,

describing conditions C1, C2, ..., Ck of executing statements

Q1, Q2, ..., Qk. The expressions C1, C2, ..., Ck are represented by scalar

Boolean variables, the values of which can be calculated by the

preceding operators Qi.

If a constant representing the truth value is used instead of Ci, the

execution of Qi is unconditional, and it can be released from the

condition by removing the if-instruction. Possible variants of statement

Qi are presented in Fig. 3.5b - 3.5g. It can be an assignment statement

with a unary or binary operator , a function call with actual

parameters e1, ..., en, break, return and others. The exit from the loop

is performed using break statement, the exit from the function is

performed using return statement, which returns the value of the

function, defined by expression expr.

What is new in BSBM to extract concurrency? Since several basic

blocks of the source code are executed within one iteration of the

equivalent BSBM, while only one basic block is executed in the

structured model, the total number of iterations in the BSBM loop is

always less against the structured model.

Since all operators of the source code are incorporated in BSBM, it

provides a complete analysis of data dependencies between the

operators, followed by identifying pairs of parallelizable operators, pairs

of orthogonal mutually exclusive operators, parallel branches in the

algorithm, and a critical path that allows determining the performance of

the parallelized code.

78

a) <RType> <FName>(<FArgs>) {

<FDeclarations>

while (1) {

 if(C1) { Q1 }

 if(C2) { Q2 }

 if(C3) { Q3 }

 …

 if(Ck) { Qk }

}

}

b) v =  u;

 c) v = u  w;

 d) v = u;

 e) v = f(e1,…,en);

 f) break;

 g) return expr;

Figure 3.5. Basic single-block model of a function in C

When analyzing dependencies, variable Ci that represents the

exacution condition is added to the input operands of Qi. Due to the

extraction of external parallelism among basic blocks, the potential

parallelization factor of BSBM increases, the execution of the parallel

code implementation is accelerated, and the algorithm can be

effectively pipelined.

We illustrate BSBM with an example algorithm that finds the greatest

common divisor (GCD). The representation of the model in C language

is given in Fig. 3.6. It uses five variables C0, ... C4, which control the

execution of single loop with an infinite iteration scheme. The body of

the loop includes eight serialy executed statements. Half of them is

executed unconditionally, implicitly using value true instead of

conditional variables.

The variables and operators which calculate the values of these

variables determine the conditions for terminating GCD with return,

conditions for continuing calculations, and methods for recalculating

the values of integer variables X and Y. Due to the absence of

branching in the loop body and alignment of operators in one ruler,

the procedure of analyzing dependencies among operators and

parallelizing operators is an effective one. It is easy to see that the

following pairs of statements can be executed in parallel: (2,3), (2,4),

(2,5), (2,6), (2,7), (5,6), (5, 8), (6.7), (7.8).

79

3.4. Transformation of loops for basic single-block model

This chapter proposes a method [70, 71, 76] of the step-by-step trans-

formation of an arbitrary sequential algorithm presented in C or in other

algorithmic language to one loop of a basic single-block model. The

method guarantees the generation of a model code in a finite number of

steps for any source algorithm. The method is based on the application of

the following key transformations of the algorithm:

int GCD (int X, int Y) {
 int C0=1, C1, C2, C3, C4;
 while (1) {
 C0 = X == Y; // 1
 if (C0) return X; // 2
 C2 = ! C0; // 3
 if (C2) C1 = X < Y; // 4
 C3 = C2 && C1; // 5
 C4 = C2 && !C1; // 6
 if (C3) Y = Y - X; // 7
 if (C4) X = X - Y; // 8
 }
}

Figure 3.6. Basic single-block model of GCD algorithm

1. insertion into the loop of operators that are located behind the

loop;

2. insertion into the loop of operators that are located before the loop;

3. merging two adjacent nested loops into one;

4. merging breaking statements while merging loops.

A nontrivial program code typically contains an arbitrary structure of

loops with various iteration schemes. In this loops structure, there are

usually pairs of loops that are executed sequentially and pairs of loops

nested one in other. We show that for any source system of loops, one

can obtain an equivalent system of nested loops with infinite iteration

schemes and break statements. Such a nested loops system can be further

transformed into BSBM.

80

The basic rules of transforming an algorithm code to BSBM make ex-

tensive use of while (1) {S} and for (;;) {S} loops with infinite iteration

schemes and a sequence S of statements. The transformation rules that

are proposed in previous section allow the loops of an arbitrary structure

to be converted into these iteration schemes.

The basic rules M1-M5 of transforming an algorithm to BSBM that is

presented in C/C++ are given in Fig. 3.7. Rule M1 ensures that state-

ments of sequence S4 which is located behind the loop, are inserted into

the loop body that is constructed of sequences S1, S2 and S3 of statements

and two break statements executed under conditions V1 and V2. Two

break statements are merged into one, and sequence S4 before the single

break. Additional conditional variable V3 is introduced.

Sequence S1 of statements that are located in front of the loop with

the iteration scheme while (1) and body S2, is inserted into the loop by

Rule M2. Sequence S1 is put at the beginning of the loop body under the

if-instruction using a conditional variable V that is assigned value 1 be-

fore the loop and is assigned value 0 inside the loop. Due to such control

structure, sequence S1 executes exactly once at the beginning of the first

iteration of the loop.

Rule M3 is an extension of rule M2. It inserts into the loop not only

the sequence S1 of statements that located in front of the loop, but also

inserts the conditional if-instruction, which covers this loop. In this rule,

an additional conditional variable V and an additional break statement

are introduced.

Rule M4 is a further extension of rules M2 and M3. It inserts into the

loop which is located in else-part of the conditional instruction, every-

thing that is in front of and inside the conditional statement. The rule

shows that all statements that are located before and behind the loop can

be inserted into the body of the loop.

Rule M5 merges two adjacent nested loops into one. Due to the elim-

ination of one loop, the depth of the nested system of loops is reduced by

one. We assume that in the left part of the rule, variable V appears at the

moment when statements S1 that are located before the inner loop are

inserted in the body of this inner loop. The initialization operator V = 1

that is put at the previous location of statements S1 is the only obstacle

for merging two loops into one loop.

81

№ Фрагмент до преобразования Фрагмент после преобразования

M1 while(1) { S1 if(V1) break; S2

if(V2) break; S3} S4

while(1) { S1 if(!V1) { S2 } V3=V1||V2;

if(V3) { S4 break; } S3 }

M2 S1 while(1) { S2 } V=1; while(1) { if(V) { S1 V=0; } S2 }

M3 S1 if(C) { while(1) { S2 } } V=1; while(1) { if(V) { S1 V=0; } if(C) {

S2 } else break; }

M4 S1 if(C1) { S2 } else { S3

while(1) { S4 if(C2) break; S5 }

S6 }

V2=1; while(1) { if(V2) { S1 V1=C1;

if(V1) { S2 } else { S3 } V2=0; } if(V1) {

S4 if(C2) { S6 break; } S5 } else break; }

M5 while(1) { V=1; while(1) { if(V)

{ S1 V=0; } S2 if(C) break; S3 }

}

V=1; while(1) { if(V) { S1 V=0; } S2

if(C) V=1; S3 }

Figure 3.7. Transformation rules for loops to obtain BSBM

Since the initialization statement executes after exit from the inner

loop due to the execution of break statement, we can replace break with

the initialization statement, eliminate the inner loop and the initialization

statement standing in front of the inner loop, and move forward the ex-

ternal loop. As a result, we obtain the right part of Rule M5.

Any algorithm in C language, that is preliminary transformed by

means of rules R1-R14 to an intermediate form, can then be transformed

by means of rules M1-M5 to BSBM with one loop. To explain our tech-

nique of such a transformation, let us transform a system of nested loops

to one functionally equivalent loop, and transform a sequence of loops to

one equivalent loop.

Fig. 3.8 shows a technique of transforming two nested loops L1 and

L2 to one loop. Inner loop L2 consists of iteration scheme while(1), a

head sequence S2 of statements, a berak statement under condition if(C2),

and a tail sequence R2 of statements (Fig. 3.8a). The outer loop L1

consists of iteration scheme while(1), a head sequence S1 of statements, a

berak statement under condition if(C1), a sequence R1 of statements, the

inner loop L2, and a tail sequence T1 of statements. At the first step of

transformation the technique inserts all statements of the body of loop

L1, which are located before and behind L2, into loop L2 (Fig. 3.8b).

Comments /*L1*/ and /*L2*/ indicate the loops associated with break

statements.

82

L1: while(1) { S1 if(C1) break; R1

L2: while(1) { S2 if(C2) break; R2 } T1

}

a)

L1: while(1) { V2=1;

 L2: while(1) { if(V2) { S1 if(C1) break;/*L1*/ R1 V2=0;}

 S2 if(C2) { T1 break;/*L2*/ } R2

}}

b)

V2=1; L1: while(1) {

 if(V2) { S1 if(C1) break; R1 V2=0;} S2 if(C2) { T1 V2=1;} else R2

}

c)

Figure 3.8. Transformation of two nested loops to one loop

At the second step of transformation the technique splits the

initialization assignment “V2=1;” into two copies, which are located be-

fore L1 and within L2. Then it merges loops L1 and L2 into one result-

ing loop (Fig. 3.8c).

The proposed technique of transforming two nested loops is

generalized for arbitriraly number of nested loops using a method of

mathematical induction. The induction step assumes that n-1 nested

loops are merged in one loop, and proves that this resulting loop can be

converted to a general form and then can be merged with the nth nested

source loop.

Fig. 3.9 presents a technique of transforming two sequential loops L1

and L2 to one loop. Loop L1 consists of iteration scheme while(1) and a

block, which includes a sequence S1 of statements, a berak statement in

then-part of conditional statement with condition C1, and a tail sequence

R1 of statements in else-part (Fig. 3.9a).

The second loop L2 has the same structure. At the first step of

transformation the technique inserts loop L2 into the body of loop L1.

Now loop L2 is located in then-part of if-statement before break

(Fig. 3.9b). At the second step (Fig. 3.9c), the technique separates loop

L2 from the statements following it.

83

L1: while(1) { S1 if(C1) break; else {R1} }

L2: while(1) { S2 if(C2) break; else {R2} }

a)

L1: while(1) { S1 if(C1) {

 L2: while(1) { S2 if(C2) {break; /*L2*/} else {R2} }

 break; /*L1*/ } else {R1}

}

b)

L1: while(1) { S1 if(C1) {

 L2: while(1) { S2 if(C2) {break; /*L2*/} else {R2} }

 } if(C1) {break; /*L1*/} else {R1}

}

c)

L1: while(1) { V2=1;

 L2: while(1) { if(V2) { S1 V2=0; }

 if(C1) { S2 if(C2) {break; /*L2*/} else {R2}} else break; /*L2*/

 }

 if(C1) {break; /*L1*/} else {R1}

}

d)

L1: while(1) { V2=1;

 L2: while(1) { if(V2) { S1 V2=0; }

 if(C1) { S2 if(C2) {

 if(C1) {break; /*L1*/} else {R1} break; /*L2*/ } else {R2}

 } else { if(C1) {break; /*L1*/} else {R1} break; /*L2*/}

}}

e)

L1: while(1) { V2=1;

 L2: while(1) { if(V2) { S1 V2=0; }

 if(C1) { S2 if(C2) {break; /*L1*/} else {R2}} else {R1 break; /*L2*/}

}}

f)

V2=1;

while(1) {

 if(V2) { S1 V2=0; }

 if(C1) { S2 if(C2) break; else {R2}} else {R1 V2=1;}

}

g)

Figure 3.9. Transformation of two sequential loops to one loop

84

At the third step (Fig. 3.9d), the technique insertes sequence S1 of

statements and conditional statement if(C1) into the body of loop L2,

using an additional variable V2. It is assumed, statements S2 and R2 do

not change the value of C1.

At the fourth step (Fig. 3.9e), the if-statement located behind loop

L2 is inserted into then- and else parts of if-statement that is in loop

L2. At the fifth step (Fig. 3.9f), transformations are performed, which

simplify the body of loop L2. Condition if(C1) occors three times in

loop L2, due to this two branches may be eliminated, and two

subsequent break statements may be merged. At the sixth step

(Fig. 3.9g), two nested loops can be directly merged.

The proposed technique of transforming two sequential loops is

generalized for many sequential loops using a method of mathematical

induction. The induction step assumes that n-1 sequential loops are

merged in one loop, and proves that this resulting loop can be

transformed to a general form and then can be merged with the nth

sequentoal source loop.

We illustrate the proposed transformation techniques by performing

the C-code transformation into BSBM of function NN_DigitDiv of the

cryptographic RSA standard, with a preliminary converted control flow

(Fig. 3.4). The partitioning of the body of function NN_DigitDiv into

seven large basic blocks B1, ..., B7 gives the skeleton, shown in

Fig. 3.10a. Fig. 3.10 presents eight steps of transformation of this

skeleton fragment. The following transformation rules are implemented

at these steps.

a) inserting basic block B7 into the body of loop L2;

b) inserting basic block B4 and loop L2 into the body of loop L1,

comments that represent loop labels are associated with break

statements;

c) split of statement if(c1) and separate of loop L2 from basic blocks

B3, B4;

d) split and insert of statement if(!c1) inside of loop L2;

e) insert of statements B3 and if(c1) break; inside of loop L2;

f) insert of basic blocks B2, B3, B4 inside of loop L2;

g) elimination of loop L2;

h) insert of basic block B1 inside of loop L1.

85

It is easy to see that the body of the resulting loop does not satisfy all

the requirements of BSBM (Fig. 3.5), as the transformation process is

not complete. Long conditional statements should be split into several

short conditional statements. For instance, conditional statement

“if (u1) {B1 u1 = 0;}” can be split into two simpler conditional state-

ment: “if (u1) {B1}” and “if (u1) {u1 = 0;}”. The nested statements

“if (u2) {B2 if (c1) {B3} else {B4} u2 = 0;}” can be split into the state-

ments chain “if (u2) {B2} u3 = u2 && c1; u4 = u2 &&! c1; if (u3) {B3}

if (u4) {B4} if (u2) {u2 = 0;}”. As a result, all basic blocks of the source

code are finally located in the body of a single loop which contains one

basic block. For its construction, only two additional Boolean variables

u1 and u2 are used, which do not affect the internal and external parallel-

ism of the basic blocks. The implicit dependences of basic blocks B2,

B3, B4, B5, B6 and B7 on conditional variables c1 and c2 in the source

code become explicit in BSBM, without reducing the amount of poten-

tial parallelism that is hidden in the original algorithm.

Fig. 3.11 shows the C-code which is obtained from the transformed

skeleton fragment presented in Fig. 3.10h by means of substituting actual

basic blocks in C instead of blocks symbols.

3.5. Transformation of nested branching code to basic single-block

model

In BSBM the control flow is represented in a different way against

the initial source code in C. Instead of nested general control structures it

is a single loop with a set of assignments and break statements in the

body, which are covered or uncovered with the short if-then statements.

Fig. 3.12 shows an algorithm that is represented with recursive function

Split, which is capable of splitting nested conditional instructions and

generating a purely linear basic block. The split of control structures and

the generation of BSBM preserve the original data flow in C-code, and

convert the original control flow to additional data flow.

Recursive function Split has two formal parameters: block p and ex-

pression c describing the condition of executing the block. It assumes

that the source C-code is a structured program which uses the objects as

follows. The source code is represented as a block of statements.

86

a) B1

L1: while (1) {

 B2

 if(c1) {B3} else break;

} B4

L2: while (1) { B5

 if(c2) {B6} else { B7 break;}

}

b) B1

L1: while (1) {

 B2

 if(c1) {B3} else { B4

 L2: while (1) { B5

 if(c2) {B6} else {B7 break; /*L2*/ }

 } break; /*L1*/

}}

c) B1

L1: while (1) { B2

 if(c1) {B3} else {B4}

 if(!c1) {

 L2: while (1) { B5

 if(c2) {B6} else {B7 break; /*L2*/ }

 }

 break; /*L1*/

 }

}

d) B1

L1: while (1) { B2

 if(c1) {B3} else {B4}

 L2: while (1) {

 if(!c1) { B5

 if(c2) {B6} else {B7 break; /*L2*/ }

 } else break; /*L2*/

 }

 if(!c1) break; /*L1*/

}

e) B1

L1: while (1) {

 B2

 if(c1) {B3} else {B4}

 L2: while (1) {

 if(!c1) {

 B5

 if(c2) {B6} else {B7 break; /*L1*/ }

 } else break; /*L2*/

 }

}

f) B1

L1: while (1) { u2=1;

 L2: while (1) {

 if(u2) { B2

 if(c1) {B3} else {B4} u2=0;

 }

 if(!c1) { B5

 if(c2) {B6} else {B7 break; /*L1*/ }

 } else break; /*L2*/

 }

}

g) B1 u2=1;

L1: while (1) {

 if(u2) {

 B2

 if(c1) {B3} else {B4}

 u2=0;

 }

 if(!c1) {

 B5

 if(c2) {B6} else {B7 break; }

 } else u2=1;

}

h) u1=1; u2=1;

L1: while (1) {

 if(u1) {B1 u1=0;}

 if(u2) { B2

 if(c1) {B3} else {B4}

 u2=0;

 }

 if(!c1) {

 B5

 if(c2) {B6} else {B7 break; }

 } else u2=1;

}

 Figure 3.10. Transformation of C code fragment for RSA to Basic single-block model

87

void NN_DigitDiv3(

 nnd *a, nnd b[2], nnd c) {

 nndt[2],u,v;

 nnfd aHigh,aLow,cHigh,cLow;

 int c1,c2,c3,c4,c5,c6,c7,c8,c9;

 int c10=1,c11=1;

 nnfd x1;

 nnd x2,x7,x8,x9,x10,x11,x16,x17;

 int x3,x4,x5,x6,x12,x13,x14,x15;

 while(1) {

 if(c11) {

 cHigh=hhf(c); // 1

 cLow=lhf(c); // 2

 t[0]=b[0]; // 3

 t[1]=b[1]; // 4

 c1=cHigh==mnnfd; // 5

 if(c1) {

 aHigh=hhf(t[1]); // 6

 } else {

 x1=cHigh+1; // 7

 aHigh=(nnfd)(t[1]/x1); // 8

 }

 u=(nnd)aHigh*(nnd)cLow; // 9

 v=(nnd)aHigh*(nnd)cHigh; // 10

 t[0]-=tohf(u); // 11

 x2=mnnd-tohf(u); // 12

 c2=t[0]>x2; // 13

 if(c2) t[1]--; // 14

 t[1]-=hhf(u); // 15

 t[1]-=v; // 16

 c11=0; // 17

 }

 if(c10) {

 x3=t[1]>cHigh; // 18

 x4=t[1]==cHigh; // 19

 x5=t[0]>=tohf(cLow); // 20

 x6=x4&&x5; // 21

 c3=x3||x6; // 22

 if(c3) {

 t[0]-=tohf(cLow); // 23

 x7=mnnd-tohf(cLow); // 24

 c4=t[0]>x7; // 25

 if(c4) t[1]--; // 26

 t[1]-=cHigh; // 27

 aHigh++; // 28

 } else {

 c5=cHigh==mnnfd; // 29

 if(c5) {

 aLow=lhf(t[1]); // 30

 } else {

 x8=tohf(t[1])+hhf(t[0]); // 31

 x9=cHigh+1; // 32

 aLow=(nnfd)((nnd)x8/x9); // 33

 }

 u=(nnd)aLow*(nnd)cLow; // 34

 v=(nnd)aLow*(nnd)cHigh; // 35

 t[0]-=u; // 36

 x10=mnnd-u; // 37

 c6=t[0]>x10; // 38

 if(c6) t[1]--; // 39

 t[0]-=tohf(v); // 40

 x11=mnnd-tohf(v); // 41

 c7=t[0]>x11; // 42

 if(c7) t[1]--; // 43

 t[1]-=hhf(v); // 44

 }

 c10 = 0; // 45

 }

 if(!c3) {

 x12=t[1]>0; // 46

 x13=t[1]==0; // 47

 x14=t[0]>=c; // 48

 x15=x13&&x14; // 49

 c8=x12||x15; // 50

 if(c8) {

 x16=t[0]-=c; // 51

 x17=mnnd-c; // 52

 c9=x16>x17; // 53

 if(c9) t[1]--; // 54

 aLow++; // 55

 } else {

 *a=tohf(aHigh)+aLow; // 56

 break;

 }

 } else

 c10 = 1; // 57

 }

}

Figure 3.11. C-code of basic single-block model for RSA

88

The block can be an empty block or a block of instructions. The in-

struction can be if-instruction, assignment, break or other instruction.

The if-instruction consists of a condition, a then-part that is a block, and

optionally an else-part that is also a block. It is assumed that the right

part of assignment is an expression that is constructed of only one logi-

cal, arithmetic or other operator.

Function Split splits the nested and sequential conditional instructions

into a single branched purely linear basic block that is constructed of the

short if-then instructions with one operator in then-part and with the con-

dition that is represented with a simple Boolean variable. It uses predi-

cates as follows for analysis of the code:

 is_if(s) returns true if statement s is a conditional instruction, and

returns false otherwise;

 is_block(s) returns true if statement s is a block (list of instruc-

tions), and returns false otherwise;

function Split(block p, condition c) {

if (is_block(p)) {

while (p != empty) {

Split(head(p),c); p := tail(p);

Split(p,c);

}

} else if (is_if(p)) {

ci := cond(p); ct := generate(); s := build_and(c,ci,ct);

add(Result, s); split(then(p),ct);

if (has_else(p)) {

cn := generate(); sn := build_not(ci,cn); add(Result, sn);

ce := generate(); se := build_and(c,cn,ce);

add(Result, se); split(else(p),ce);

}

} else {

othif := build_if(c,p); add(Result, othif);

}

}

Figure 3.12. Recursive algorithm of split of nested conditional instructions

 and generating the purely linear basic block

89

 has_else(s) returns true if conditional instruction s has an else-

part, and returns false otherwise.

Function Split explores the following functions for analysis of blocks

and if-statements:

 head(p) returns the first instruction of block p;

 tail(p) returns the rest instructions of block p or returns empty;

 cond(s) returns the conditional expression of if-instruction s.

 then(s) returns then-part of if-instruction s.

 else(s) returns else-part of if-instruction s.

The functions as follows are used in Split for synthesis of BSBM:

 build_and(in1,in2,out) returns assign-instruction that is built of

Boolean operator and, Boolean input variables in1 and in2 and

output variable out;

 build_not(in,out) returns assign-instruction that is built of operator

not, input variable in and output variable out;

 build_if(c,s) returns statement s if condition c is null, otherwise it

returns instruction if-then that is built of condition c and instruc-

tion s in then-part;

 Result is a global variable that represents a block of new instruc-

tions represented a a list that is generated by algorithm Split (ini-

tially the list is empty);

 add(Result, s) concatenates instruction s at the end of list Result;

 generate() returns a new Boolean variable.

A remarkable feature of BSBM is that the parallel-sequential entry of

the statements of the original basic blocks into the body of the single

loop of BSBM is a source of further parallelism extraction when using

other methods, rules and facilities of transformation. Since the majority

of statements of the BSBM’s loop are under the short if-then instruction,

rules for extracting operators from if-then are very attractive. The es-

sence of the rules is as follows. Let the operators of basic block B1 be in

then-part of the conditional if-then statement, whose test variable c1 gets

the value in basic block B0, as shown in Fig. 3.13a. Obviously, in such a

90

code, operators from B1 can be executed no earlier than operators from

B0. Pairwise paralleling of operators from B0 and B1 is difficult.

Speculative execution is an optimization technique where a comput-

er system performs some task that may not be needed. In order to apply

such an execution to B1, we extract B1 from the if-then instruction,

introducing some additional variables v’1, …, v’n, which are duplicates

of resulting variables of B1, and add some reassignment statements in

then-part (Fig. 3.13b). After such a step, more operators of B1 can exe-

cute in parallel with operators of B0. The critical path of the loop body

becomes shorter.

a) B0

if(c1) { B1 }
b) B0

B1'’

if(c1) { v1=v1’;…vn=vn’; }

Figure 3.13. Extraction of basic block B1 from if-then for speculative execution

The application of the speculative execution rule (Fig. 3.13) to the

RSA skeleton shown in Fig. 3.10h and to the corresponding C-code

shown in Fig. 3.11 yields the BSBM code shown in Fig. 3.14. We move

basic block B3 ahead of instruction if (c1) and move the basic block B6

ahead of instruction if (c2) according to this rule. The new code hereinaf-

ter referred to as TRANSF is faster than the original code of the RSA

fragment, shown in Fig. 3.11.

3.6. Efficiency of basic single-block model

Let us perform a more thorough analysis of the static and dynamic

parameters of the basic blocks of all versions of the parallelism extrac-

tion model, such as the original (SOURCE), structured (STRUCT), basic

single-block (BSBM) and transformed basic single-block (TRANSF).

To estimate the static parameters of the bodies of all loops, as well as

then and else parts of all conditional operators of the source code, we

will consider them as independent basic blocks. To estimate the dynamic

parameters, we will execute all the code models on the same input data.

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Computer_system

91

void NN_DigitDiv3(

 nnd *a, nnd b[2], nnd c) {

 nndt[2],u,v,t0,t1;

 nnfd aHigh,aLow,cHigh,cLow;

 nnfd aL,aH,x1;

 int c1,c2,c3,c4,c5,c6,c7,c8,c9;

 int c10=1,c11=1;

 nnd x2,x7,x8,x9,x10,x11,x16,x17;

 int x3,x4,x5,x6,x12,x13,x14,x15;

 while(1) {

 if(c11) {

 cHigh=hhf(c); // 1

 cLow=lhf(c); // 2

 t[0]=b[0]; t[1]=b[1]; // 3,4

 c1=cHigh==mnnfd; // 5

 if(c1) {

 aHigh=hhf(t[1]); // 6

 } else {

 x1=cHigh+1; // 7

 aHigh=(nnfd)(t[1]/x1); // 8

 }

 u=(nnd)aHigh*(nnd)cLow; // 9

 v=(nnd)aHigh*(nnd)cHigh; // 10

 t[0]-=tohf(u); // 11

 x2=mnnd-tohf(u); // 12

 c2=t[0]>x2; // 13

 if(c2) t[1]--; // 14

 t[1]-=hhf(u); t[1]-=v; // 15,16

 c11=0; // 17

 }

 if(c10) {

 x3=t[1]>cHigh; // 18

 x4=t[1]==cHigh; // 19

 x5=t[0]>=tohf(cLow); // 20

 x6=x4&&x5; // 21

 c3=x3||x6; // 22

 t0=t[0]-tohf(cLow); // 23

 x7=mnnd-tohf(cLow); // 24

 c4=t0>x7; // 25

 t1=t[1]-cHigh; // 27

 if(c4) t1--; // 26

 aH=aHigh+1; // 28

 if(c3) {

 t[0]=t0; // 28a

 t[1]=t1; aHigh=aH;

 } else {

 c5=cHigh==mnnfd; // 29

 if(c5) {

 aLow=lhf(t[1]); // 30

 } else {

 x8=tohf(t[1])+hhf(t[0]); // 31

 x9=cHigh+1; // 32

 aLow=(nnfd)((nnd)x8/x9); // 33

 }

 u=(nnd)aLow*(nnd)cLow; // 34

 v=(nnd)aLow*(nnd)cHigh; // 35

 t[0]-=u; // 36

 x10=mnnd-u; // 37

 c6=t[0]>x10; // 38

 if(c6) t[1]--; // 39

 t[0]-=tohf(v); // 40

 x11=mnnd-tohf(v); // 41

 c7=t[0]>x11; // 42

 if(c7) t[1]--; // 43

 t[1]-=hhf(v); // 44

 }

 c10 = 0; // 45

 }

 if(!c3) {

 x12=t[1]>0; // 46

 x13=t[1]==0; // 47

 x14=t[0]>=c; // 48

 x15=x13&&x14; // 49

 c8=x12||x15; // 50

 x16=t[0]-c; // 51

 x17=mnnd-c; // 52

 c9=x16>x17; // 53

 if(c9)t1=t[1]-1;else t1=t[1];//54

 aL=aLow+1; // 55

 if(c8) {

 t[0]=x16; // 55a

 t[1]=t1; aLow=aL;

 } else {

 *a=tohf(aHigh)+aLow; // 56

 break;

 }

 } else c10 = 1; // 57

 }}

Figure 3.14. Accelerated basic single-block model of C code fragment for RSA

92

Let us demonstrate the estimation of model parameters on the C-code

of the NN_DigitDiv function (model SOURCE) that is a part of the RSA

standard (the developers of this standard are Ronald Rivest, Adi Shamir

and Leonard Adleman, 1977) [84], the skeleton of which, that is built on

seven large basic blocks B1, ..., B7, is shown in Fig. 3.15a.

By transforming the fragment shown in Fig. 3.15a, we obtain a struc-

tured model STRUCT, presented in Fig. 3.15b. To do this, we have in-

troduced a variable N, which takes the value of a basic block number,

and have introduced a loop for, the iterations of which are repeated until

the value of N falls outside the range of basic block numbers.

At each iteration of the loop, the switch statement switches to the cor-

responding basic block, followed by statements that determine the num-

ber of the next basic block which will be selected at the next iteration of

the loop. The basic single-block model BSBM of function NN_DigitDiv

is shown in Fig. 3.15c, and the result of its accelerating transformation

(model TRANSF) is shown in Fig. 3.14.

a) B1

L1: while (1) { B2

 if(c1) {B3} else break;

} B4

L2: while (1) { B5

 if(c2) {B6} else break;

} B7

c) u1 = 1;

u2 = 1;

while (1) {

 if(u1) { B1 }

 if(u1) { u1 = 0; }

 if(u2) { B2 }

 u3 = u2&&c1;

 u4 = u2&&!c1;

 if(u3) { B3 }

 if(u4) { B4 }

 if(u2) { u2 = 0; }

 u5 = !c1;

 if(u5) { B5 }

 u6 = u5&&c2;

 u7 = u5&&!c2;

 if(u6) { B6 }

 if(u7) { B7 break; }

 if(c1) { u2 = 1; }

}

b) for(N=1; N<8;) {

 switch(N) {

 case 1: B1 N=2; break;

 case 2: B2 if(c1) N=3; else N=4; break;

 case 3: B2 N=2; break;

 case 4: B4 N=5; break;

 case 5: B5 if(c2) N=6; else N=7; break;

 case 6: B6 N=5; break;

 case 7: B7 N=8; break;

 }

}

Figure 3.15. Transform of C/C++ code fragment for RSA to structured model

93

These four models SOURCE, STRUCT, BSBM and TRANSF are

executed on the following input data: the dividend is represented with

b[0] = 717576735 nad b[1] = 2379867; the divisor is c=12345678. The

obtained results are reported in Tables 3.1- 3.4.

Table 3.1

Dynamic parameters of the SOURCE model
Basic block Statements Exrecutions Complexity Critical path

1 5 1 5 5
2 1 0

3 2 1 2 2

4 8 1 8 8
5 5 43 215 215

6 6 42 252 252

7 1 1 1 1
8 1 0

9 3 1 3 3

10 11 1 11 11
11 5 71 355 355

12 5 70 350 350

13 1 1 1 1

 233 1203 1203

Table 3.2

Dynamic parameters of the STRUCT model

Basic

block

State-

ments

Execu-

tions

Local

critical

path

Comple-

xity

Total

critical

path

for(;N<14;) 1 234 1 234 234

switch(N) 1 233 1 233 233

1 5 1 2 5 2
2 1 0 1

3 2 1 2 2 2

4 8 1 6 8 6
5 5 43 3 215 129

6 6 42 4 252 168

7 1 1 1 1 1

8 1 0 1

9 3 1 2 3 2
10 11 1 6 11 6

11 5 71 3 355 213

12 5 70 3 350 210
13 1 1 1 1 1

 699 1670 1207

94

The dynamic parameters of the SOURCE model (Table 3.1) and

STRUCT model (Table 3.2) are estimated in terms of basic blocks

(Fig. 3.4), and the dynamic parameters of the BSBM (Table 3.3) and

TRANSF (Table 3.4) models are described in more detail in terms of

individual statements.

The parameters of a basic block are the number of its statements, the

total number of their executions, the total computational complexity,

measured as the total number of statements executions, and the total

critical path length, while taking into account all the performances.

Table 3.3

Dynamic parameters of the BSBM model

Statement Complexity
Critical

path
 Statement Complexity

Critical

path

1 1 1 30
2 1 31 1 1

3 1 32 1

4 1 33 1 1
5 1 1 34 1 1

6 35 1

7 1 1 36 1 1
8 1 1 37 1

9 1 1 38 1 1

10 1 1 39 1 1
11 1 40 1

12 1 41 1

13 1 42 1
14 1 43 1 1

15 1 44 1 1

16 1 45 43
17 1 46 71

18 43 47 71 71

19 43 48 71
20 43 43 49 71 71

21 43 43 50 71 71

22 43 43 51 70 70

23 42 42 52 70

24 42 53 70 70

25 42 42 54 70 70
26 42 42 55 70

27 42 42 56 1 1

28 42 57 42

29 1 1  1289 736

95

Table 3.4

Dynamic parameters of the TRANSF model

Statement Complexity
Critical

path
 Statement Complexity

Critical

path

1 1 1 30

2 1 31 1 1
3 1 32 1

4 1 33 1 1

5 1 1 34 1 1
6 35 1

7 1 36 1 1

8 1 1 37 1
9 1 1 38 1 1

10 1 1 39 1 1

11 1 40 1

12 1 41 1

13 1 42 1
14 1 43 1 1

15 1 44 1 1

16 1 45 43
17 1 46 71

18 43 47 71 71

19 43 48 71
20 43 43 49 71 71

21 43 43 50 71 71

22 43 43 51 70
23 42 52 70

24 42 53 70

25 42 54 70
26 42 54a 70 70

27 42 55 70

28 42 56 1 1
28a 42 42 57 42

29 1 1  1401 469

For each basic block of the STRUCT model, the local critical path is

also estimated. For each individual statement of the BSBM and

TRANSF models, the contribution to the total computational

complexity and the total critical path is estimated using the statements

precedence graph shown in Fig. 3.16. The SOURCE code has 13

detailed basic blocks, the STRUCT code has 15 blocks, including two

additional blocks which are for and switch statements. The OBBM

model code and the transformed model TRANSF code have a single

basic block. The total number of executions of basic blocks of the source

96

code is 233, the structured code is three times more (699). The only basic

block of BSBM and TRANSF models has 113 executions, which is

equal to the number of complete iterations of the single loop.

1 3 2 4

10

5 7

8 6

9

18

17 16 15 13 14

12 11

28

19 20 21

24 23

22

25 26

27 29

30
31 32

33

34 35

36 37

38

39

40

41

42

43 44

45

57

46 47 48

49

50

51

52

53

54

55

56

57

Figure 3.16. Statements precedence graph for basic single-block model

97

Static parameters of the models include the average number of

statements in a basic block, which is equal to 4.15 and 3.73 for SOURCE

and STRUCT respectively, and equal to 57 and 59 for BSBM and

TRANSF respectively. Dynamic parameters include the average number

of statements executions in a basic block. For models SOURCE and

STRUCT it is equal to 5.15 and 2.39 respectively, and equal to 11.41 and

12.40 for BSBM and TRANSF respectively. The increase in the average

number of statements executions against the static average number of

statements in SOURCE is due to the frequent long runs.

The reduction of this parameter is approximately five times higher for

BSBM and TRANSF, which is explained by the fact that the statements

of the single block are executed only when certain conditions are met.

Static and dynamic estimates of the average number of statements on

the critical path of the single basic block characterize the parallelization

potential of the models. Taking into account the frequency of execution

of basic blocks, these estimates give an evaluation of the total execution

time of the entire code.

Since the total number of executions of all basic blocks of the BSBM

is 113, we conclude that on average a 2.06 of basic blocks execute within

on iteration of single loop.

At the same time, the number of iterations in the single loop of

source code is 233, and the internal parallelism of the basic blocks of

the source code provides a parallelization factor of 1.38.

Let's give a comparison of the parallelism extraction models, using

the C-code of function NN_DigitDiv. Analyzing the skeleton of

SOURCE model that is presented in Fig. 3.15a, it is easy to see that two

while loops with labels L1, L2 separate the basic blocks B1, B4, B7 from

each other. Basic blocks B2 and B3 of loop L1 and basic blocks B5 and

B6 of loop L2 are separated by conditional instructions.

The basic blocks that are inside of a loop are also separated from the

basic blocks outside the loop. Thus, the statements of different basic

blocks of the source code are not mutually parallelizable.

It is easy to see that in STRUCT model shown in Fig. 3.15b, only

one basic block of the source code executes at the current iteration of

the loop. Consequently, the total number of iterations is equal to the

sum of the numbers of block executions plus one. Along with notice-

able overhead, this is a significant drawback of this model. It is im-

98

possible to perform and even more to parallelize two or more basic

blocks within one iteration of the loop, although parallelization within

basic block is possible. This is a serious obstacle for the subsequent

use of other methods and tools for the extraction of parallelism that

are based on the STRUCT model.

Both static and dynamic comparisons of parallelism extraction mod-

els are possible. The static comparison uses parameters of the control

flow graphs and the data flow graphs of the models codes. The most im-

portant static parameters are the size of the graph, the length of the criti-

cal path on the graph, and others. The disadvantage of the static compari-

son is the inability to take into account the behavioral properties of the

models in the process of solving typical problems.

As a consequence, the dynamic parameters of the models are prefera-

ble. The first dynamic parameter is the computational complexity

CCompl(M) of the model M, which is measured in the number of execut-

ed operations of the programming language (or in the sum of the weights

of the operations) on the sets of input data that are most typical at solv-

ing the problem. The second important dynamic parameter is the length

of the critical path CPath(M) on the data flow graph, which is expanded

during code execution. The third parameter can be calculated over the

dividing the first parameter by the second one, it is a factor of potential

parallelism PFactor(M) of model M that is calculated as

.
)(

)(
)(

MCPath
MCCompl

MPFactor  (3.2)

The fourth parameter is the acceleration Accel(M) of model M against

model SOURCE that is considered as a reference model. It does not de-

pend on the computational complexity of both M and SOURCE. The

acceleration can be calculated using the operation of dividing the critical

path length of SOURCE by the critical path length of M:

.
)(

)(
)(

MCPath
SOURCECPath

MAccel  (3.3)

99

It is obviously, the smaller the length of the critical path, the larger

the factor of parallelization potential of the model, and the higher the

acceleration it yields.

Table 3.5 reports the parameters of models SOURCE, STRUCT,

BSBM and TRASF which are measured on function NN_DigitDiv. The

transition from SOURCE to STRUCT has increased the computational

complexity from 1203 to 1670 statements executions, or by 40.5%. The

transition from SOURCE to BSBM has implied lower growth of the

computational complexity from 1203 to 1289. The transition from

BSBM to TRASF has increased the computational complexity to 1401 or

8.7% higher. As for the critical path, the trend here is completely oppo-

site to the computational complexity. The length of the critical path in

the STRUCT model remains almost the same as in the SOURCE model

(1207 against 1203). In the BSBM and TRASF models it is reduced

against SOURCE from 1203 down to 736 and further down to 469, or by

38.8% and 60.0% respectively.

Table 3.5

Parameters of parallelism extraction models of RSA
Параметр SOURCE STRUCT OBBM TRASF

Вычислительная сложность 1203 1670 1289 1401

Критический путь 1203 1207 736 469

Коэффициент распараллели-

вания
1.00 1.38 1.75 2.99

Ускорение 1.00 1.00 1.64 2.57

The parallelization factor is an integrated indicator that takes into ac-

count changes both in computational complexity and in the critical path.

The parallelization factor of STRUCT, BSBM and TRASF models in-

creased by 1.38, 1.75 and 2.99 times compared to the original SOURCE

model. It should be noted that in the STRUCT model, the growth is ex-

plained by increase in the computational complexity, the acceleration of

computations has not occurred.

In contrast, in the BSBM and TRASF models, an acceleration of 1.64

and 2.57 times is achieved due to the extraction of parallelism.

Thus, the BSBM model with one basic block is organized in such a

way, that the potential parallelism of operators is not reduced by the

100

dominance of the sequential execution of control structures. The parallel-

ism has effectively extracted by the split and eliminate of sequential con-

trol structures from the code.

3.7. Conclusion

A method of extraction of parallelism from a difficult to parallelize

sequential algorithm is proposed. It uses a set of transformation rules and

applies them step-by-step to the source code. The selection of the rules

and choosing of the preferable code fragments, which have to be trans-

formed, is performed in such a way as to obtain better parameters of the

equivalent parallel code.

The transformation of the control flow of the source algorithm and its

basic blocks ensure the extraction of the most important types of

parallelism from hard-to-parallel loop / branching programs, which

process arbitrary data types and are built using while, do-while, if, switch

and other statements.

A basic single-block flow model (BSBM) of the algorithm, that is

constructed of a single loop whose body includes a single basic-block,

provides real extraction of parallelism of many types from the source

code. The model provides efficient techniques for analyzing

dependencies among statements, identifying pairs of parallelizable

operators, pairs of orthogonal mutually exclusive operators, and parallel

paths in the algorithm. It allows for efficient estimation of the

computatioinal complexity, critical path length and parallelization factor

of the code.

A step-by-step transformation method of an arbitrary sequential algo-

rithm to the basic single-block flow model is proposed. It guarantees ob-

taining a model code in a finite number of steps for any source algo-

rithm, based on universal transformation rules such as inserting operators

before and after a loop, merging sequential and nested loops in one loop,

eliminating loops’ continue statements and merging break statements

into one break, and others.

A technique of evaluating the static and dynamic parameters (includ-

ing the level of hidden parallelism) of algorithm models has been devel-

oped. It is applied to the source, structured, single-block and transformed

single-block models. The influence of the parameters of the basic blocks

101

on the parameters of the whole models, including the degree of implicit

potential parallelism of blocks and models is shown.

A detailed comparison of parameters of the four parallelism extrac-

tion models on the RSA standard is carried out. It proves the possibility

of a significant reduction in the critical path length, of an increase of the

parallelization factor, and an increase in the acceleration factor of the

basic single-block flow model, and further modifications of this model

against the known models.

102

4. ANALYSIS OF BASIC SINGLE-BLOCK MODEL

4.1. Goals of analysis

The main goal of analysis is the precise estimation of the computa-

tional complexity, critical path and parallelization potential of the basic

single-block model. The estimation crucially depend on finding out data

dependences among statements within one iteration of the loop and be-

tween consecutive loop iterations. In its turn, data dependences analysis

cannot be performed without finding the statements which are mutually

exclusive, and which of them are not. Mutually exclusive statements

cannot be data dependent.

In this work, the algorithm (program code) transformation and analy-

sis techniques are essentially base on single assignment model of a vari-

able. It requires that each variable to be used once, although it may have

several producers and several consumers. All producers must belong to

mutually exclusive branches of nested conditional statements within one

iteration of the loop and among several loop iterations.

4.2. Analysis of structured basic single-block model

The structured program improves the clarity, quality, and develop-

ment time of an algorithm [11, 13]. It is constructed by use of the struc-

tured control flow constructs of selection (if-then-else), repetition (while

and for), block structures, and procedures and functions. It explicitly de-

fines all pairs of mutually exclusive operators over branches of nested if-

then-else statements.

Example 4.1. Fig. 4.1 presents an example C/C++ code of structured

program that is constructed of one loop and three branching statements.

The loop contains data flow feedback. All pairs of mutually exclusive

operators can be easily seen. All of them belong to one iteration of the

loop. These cannot be seen for different loop iterations. Fig. 4.2 shows

the equivalent basic single-block model that is a result of transformation

of the source code. The iteration scheme of the loop is quite simple, but

the number of short if-then statements equals 17 that is much larger than

the number of if-then-else statements in the source code. It is difficultly

https://en.wikipedia.org/wiki/Block_(programming)

103

to find out in the basic single-block model what pairs of operators are

mutually exclusive and what of them are not.

void DataFlowFeedback(float *A, float *B, float *C, int n) {

float a0, b0, c0, d1, d0 = 0.0f;

for (int i = 0; i < n; ++i) {

a0 = A[i];

b0 = B[i];

if (a0 == b0) {

c0 = 0.0f;

} else {

d1 = a0 - b0;

if (b0 < 0) c0 = d1 + 1.0f;

else {

if (d0 > 0) c0 = d1 - 1.0f;

else c0 = d0;

}

d0 = d1;

}

C[i] = c0;

}

}

Figure 4.1. Example C/C++ structured looping/branching code with dataflow feedback

Given two if-then statements “if (ti) Si” and “if (tj) Sj”, how to find out,

wither Si and Sj are mutually exclusive or not? It is clear that everything

depends on the Boolean conditional variables ti and tj. In addition to val-

ue false (0), each of them can take value true (1). If both variables can

take value 1 simultaneously, then Si and Sj are not mutually exclusive.

Therefore, Si and Sj are mutually exclusive if the pair (ti, tj) can only take

values 00, 10 and 01.

4.2.1. Evaluating conditional variables using Boolean expressions

Let T be a set of conditional Boolean variables occurred in if-then

statements of the basic single-block model. The conditional variables

determine the control flow of the single loop body. Let B be a set of oth-

er Boolean variables of the model which are used for evaluating the con-

104

ditional variables. The set of primary Boolean variables is denoted as P.

The basic single-block model evaluates these variables mostly using re-

lational operators.

void DataFlowFeedback(float *A, float *B, float *C, int n) {

float a0, b0, c0, d1, d0=0.0f;

int i = 0;

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13;

while (true) {

t0 = i < n; // 1

t1 = ! t0; // 2

if(t1) break; // 3

if (t0) a0 = A[i]; // 4

if (t0) b0 = B[i]; // 5

if (t0) t2 = a0 == b0; // 6

if (t0) t3 = ! t2; // 7

t8 = t0 && t2; // 8

if (t8) c0 = 0.0f; // 9

t9 = t0 && t3; // 10

if (t9) d1 = a0 - b0; // 11

if (t9) t4 = b0 < 0; // 12

if (t9) t5 = ! t4; // 13

t10 = t9 && t4; // 14

if (t10) c0 = d1 + 1; // 15

t11 = t9 && t5; // 16

if (t11) t6 = d0 > 0; // 17

if (t11) t7 = ! t6; // 18

t12 = t11 && t6; // 19

if (t12) c0 = d1 - 1; // 20

t13 = t11 && t7; // 21

if (t13) c0 = d0; // 22

if (t9) d0 = d1; // 23

if (t0) C[i] = c0; // 24

if (t0) ++i; // 25

}

}

Figure 4.2. Example structured basic single-block model with dataflow feedback

Intermediate Boolean variables of set B \ P are evaluated over prima-

ry variables, and conditional variables are evaluated over primary and

intermediate variables.

105

Example 4.2. There are 8 conditional Boolean variables in the basic

single-block model shown in Fig. 4.2. They belong to set T = {t0, t1, t8,

t9, t10, t11, t12, t13}. Set B = {t0, t2, t3, t4, t5, t6, t7} of additional 7

Boolean variables helps to evaluate the conditional variables. It includes

4 primary variables, i.e. P = {t0, t2, t4, t6}. It also includes 3 intermedi-

ate variables, i.e. B \ P = {t3, t5, t7}.

We can evaluate all conditional variables with Boolean expressions,

which can be extracted from the code. Thus conditional variable t0 is

evaluated with expression “i<n” over relational operation, therefore it is

simultaneously a primary variable. Conditional variable t1 is evaluated

with expression “t0” over Boolean negation. Conditional variable t11 is

evaluated with expression “t9  t5” over Boolean conjunction. In its

turn, variable t9 is evaluated with expression “t0  t3”, variable t5 is

evaluated with expression “t4”, and variable t3 is evaluated with ex-

pression “t2”. After substitution, variable t11 can be evaluated with

expression “t0  t2  t4” over three primary variables. Variable t11

takes values which depend on the combinations of values of variables t0,

t2 and t4.

4.2.2. Relations among values of primary Boolean variables

Dependences among values of primary Boolean variables strongly

influence dependences among values of conditional Boolean varia-

bles. These dependences can be described with relations on tuples of

Boolean values.

When the values of conditional variable t11 are analyzed (Fig. 4.2),

relations among values of primary variables t0, t2 and t4 must be consid-

ered. These relations are associated with the feasible bit-vector values of

the primary variables which can appear during code execution. Expres-

sions “i < n”, “a0 == b0” and “b0 < 0” evaluate variables t0, t2 and t4

and, as can be easily seen, are independent. It means their vector value

can take any tuple from 000 to 111.

Matrix F of feasible values of pairs of primary variables is repre-

sented with Equation (4.1).

106

9...

............

...9

...9

...

21

221

112

2

1

kk

k

k

k ff

ff

ff

t

t

t

F  . (4.1)

In matrix F, rows and columns correspond to primary variables ti;

feasibility characteristic function fij is a binary Boolean function f(ti,tj)

which determines a four-bit vector, which is encoded with decimal num-

bers 0…15, and whose elements show the feasibility (value 1) or infeasi-

bility (value 0) of the corresponding two-bit values of primary variables

ti and tj. Value 9 in the principal diagonal of matrix F represents the

equivalence () binary Boolean function (1001).

Matrix F allows computation of feasible bit-vector values of n varia-

bles over feasible values of variable pairs.

Example 4.3. For our example primary variables t0, t2 and t4, matrix

F is as follows:

91515

15915

15159

4

2

0

t

t

t

F  .

In this matrix, value 15 (1111) represents binary Boolean function

Constant 1 which means that all values 00, 01, 10 and 11 of pair (ti,tj) are

feasible during execution of the code. Bellow we will see that fij can be

other binary Boolean function.

4.2.3. Pairs of orthogonal conditional variables

We assume that two conditional Boolean variables ti and tj depend on

the same set of primary variables. They are orthogonal if they never take

value 1 simultaneously. In other words, if ti takes 1 then tj takes 0, and if

tj takes 1 then ti takes 0.

In the structured basic single-block model, the orthogonal pairs of

conditional variables can be found out using Boolean logic. Thus

107

source conditional statement “if (t0) Si else Sj” produces in the single-

block model the code with additional Boolean variable t1, assignment

statement and two short if-then statements: “t1=!t0; if (t0) Si if (t1)

Sj”. It is easy to see that variables t0 and t1 are orthogonal, and two

short if-then statements with Si and Sj inside are mutually exclusive.

Nested conditional statements “if (t0) if (t1) Si else Sj” produce code

“t2 = ! t1; t3 = t0 && t1; t4 = t0 && t2; if (t3) Si; if (t4) Sj”, which

explores three additional Boolean variables. Variable pairs (t0, t3)

and (t0, t4) are not orthogonal, while variables t3 and t4 are orthogo-

nal as t1 and t2 are orthogonal.

In general form, the orthogonal condition can be represented with the

following logical equation:

 )()(ijji ttttp  , (4.2)

where  is Boolean negation,  is Boolean conjunction,  is Boolean

implication, p is a vector of primary variables which ti and tj depend on,

and  is a universal quantifier (for all p) which ties variables of p. After

substitution of the evaluating expressions instead of variables ti and tj,

Equation 4.2 can be expressed in terms of primary variables.

Example 4.4. Let us consider pair t9 and t13 of conditional variables.

The expression of evaluating t9 is “t0  t2” and the expression of eval-

uating t13 is “t0  t2  t4  t6”. After substituting these expres-

sions in Equation (4.2) we obtain:

((t0  t2)  (t0  t2  t4  t6)) 

((t0  t2  t4  t6)  (t0  t2)) =

((t0  t2)  (t0  t2  t4  t6)) 

((t0  t2  t4  t6)  (t0  t2)) =

t0  t2  t4  t6.

The inferred disjunction of four literals is not Boolean function Con-

stant 1, therefore variables t9 and t13 are not orthogonal.

108

Example 4.5. Now we consider variables t10 and t13. The expression

of evaluating t10 is “t0  t2  t4” and the expression of evaluating t13

is “t0  t2  t4  t6”. After substituting these expressions in Equa-

tion (4.2) we obtain:

((t0  t2  t4)  (t0  t2  t4  t6)) 

((t0  t2  t4  t6)  (t0  t2  t4)) =

((t0  t2  t4)  (t0  t2  t4  t6)) 

((t0  t2  t4  t6)  (t0  t2  t4)) =

t0  t2  t4  t4  t6 = 1.

The inferred disjunction has literals t4 and t4 as operands and is

equivalent to Boolean function Constant 1, therefore variables t10 and

t13 are orthogonal.

Matrix Ort (Equation 4.3) describes all pairs of orthogonal and all

pairs of non-orthogonal conditional variables of the example basic sin-

gle-block model. This matrix completely determines all pairs of mutually

exclusive operators in the basic single-block mode.

01010110

10010110

00010110

11100110

00000110

11111010

11111101

00000010

13

12

11

10

9

8

1

0

t

t

t

t

t

t

t

t

Ort 
. (4.3)

4.2.4. Estimating parameters of basic single-block model

Analysis of the basic single-block model yields computational com-

plexity, critical path and parallelization potential of the block. These pa-

rameters depend on input data of the algorithm.

109

Various aspects of the model are important while estimating compu-

tational complexity: the cost of operators, the cost of control structures,

and the cost of memory operations. The complexity of operators is de-

rived directly from the behavioral description. The complexity of control

structures and memory operations depends on the implementation meth-

od of algorithm and on the basic parallel architecture.

Example 4.6. The loop body shown in Fig. 4.2 includes 25 statements

which contain only 4 arithmetic operators and 4 relational operators. It

includes 10 low cost logic scalar operators and 17 if-then statements.

Only 6 if-then statements may not be removed; one of them covers break

operator, 4 of them select one value of 4 producers for variable c0, and

another one select new value for state variable d0 which has two produc-

ers: operator 22 and the current state value. The model also includes 24

assignments and 3 array indexing operators.

The basic single-block model includes many if-then statements which

allow flexible reordering of statements in the block and efficient partition

of the model. Both pipelined and non-pipelined partitioning can be ac-

complished. Most of if-then statements need no implementation in the

target architecture. In hardware architecture, only if-then statements are

saved and implemented which describe more than one producers of a

variable; other if-then statements may be removed from the model. In

software architecture, if-then statements with identical conditional varia-

ble can be merged into one if-then statement, and one if-then-else state-

ment can be generated of several if-then statements, thus reducing the

amount of computations on one processor.

Now we transform the basic single-block model shown in Fig. 4.2 to

a model for hardware implementation which is presented in Fig. 4.3. We

remove 11 if-then statements which may be omitted without changing

the algorithm behavior. We extract computations from 2 of 4 producers

of variable c0 and merge these producers to one long conditional state-

ment which can be implemented with multiplexor. Input and output vari-

ables of statements and matrix Ort of orthogonal conditional variables

(Equation 4.3) which determine mutually exclusive operators are the ba-

sis for data dependences analyses. The main rule is as follows. If condi-

tional variables ti and tj are orthogonal according to Ort, then statements

“if (ti) y=x;” and “if (tj) z=y;” are independent, although variable y is out-

110

put of the first statement and is input of the second statement. If ti and tj

are not orthogonal, then the statements are data dependent.

Fig. 4.4 shows the data dependency graph for the transformed basic

single-block model presented in Fig. 4.3. State variables i and d0 consti-

tute dataflow feedback in the graph. Their values produced in one itera-

tion of the loop are consumed in next loop iteration.

void DataFlowFeedback(float *A, float *B, float *C, int n) {

float a0, b0, c0, d1, d0=0.0f;

int i = 0;

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13;

while (true) {

t0 = i < n; // 1

t1 = ! t0; // 2

if(t1) break; // 3

a0 = A[i]; // 4

b0 = B[i]; // 5

t2 = a0 == b0; // 6

t3 = ! t2; // 7

t8 = t0 && t2; // 8

t9 = t0 && t3; // 9

d1 = a0 - b0; // 10

t4 = b0 < 0; // 11

t5 = ! t4; // 12

t10 = t9 && t4; // 13

t11 = t9 && t5; // 14

t6 = d0 > 0; // 15

t7 = ! t6; // 16

t12 = t11 && t6; // 17

t13 = t11 && t7; // 18

c00 = d1 + 1; // 19

c01 = d1 - 1; // 20

if (t8) c0 = 0; else if (t10) c0 = c00; else

if (t12) c0 = c01; if (t13) c0 = d0; // 21

if (t9) d0 = d1; // 22

C[i] = c0; // 23

++i; // 24

}

}

Figure 4.3. Transformation of example model for hardware implementation

111

4

2

1 5

8

6

9

3

7

19

13

11

12

14

17 20

10

15

16

18

21

22

24

23

Figure 4.4. Data dependency graph of example basic single-block model in Fig. 4.3

The data dependencies among statements allow evaluation of the crit-

ical path and parallelization potential of the code. These parameters may

vary depending on input data. In any case, the parallelization potential of

code shown in Fig. 4.3 is higher than that one shown in Fig. 4.2.

4.3. Advanced analysis of basic single-block model

Very often programmers do not write purely structured code although

this code is close to structured one. Fig. 4.5 shows an example of such

code. This code indicates mutually exclusive branches rather with condi-

tional expressions than with then and else alternatives. Such expressions

intensively use relational operators.

The loop body contains at top level two if-then statements whose

conditional expressions are constructed of variables a0 and b0, and are

112

constructed of two relational operators “>” and “<=”. In its turn, the sec-

ond if-then statement contains two additional if-then statements whose

conditional expressions are constructed of two relational operators “<=”

and “>”, and are constructed of variable a0 and literals 0 and 4.

Fig. 4.6 presents the basic single-block model that is functionally

equivalent the source code. The logic part of the model differs from that

of the previous model. Thus statement 18 describes a conditional expres-

sion for the fourth producer of variable c0. This producer must be mutu-

ally exclusive against three previous producers.

Analysis of such basic single-block model differs from the above

considered structured basic single-block model.

void relationalOperators(float *A, float *B, float *C, int n) {

float a0, b0, c0, d0 = 3;

for (int i = 0; i < n; ++i) {

a0 = A[i];

b0 = B[i];

if (a0 > b0) {

c0 = a0 - d0 * b0;

}

if (a0 <= b0) {

c0 = b0 - a0;

if (a0 <= 0) {

c0 = b0 + 1;

}

if (a0 > 4) {

c0 = a0 - 5;

}

}

C[i] = c0;

d0 = c0;

}

}

Figure 4.5. Example C/C++ non-structured code with dataflow feedback

4.3.1. Feasibility functions for pairs of primary Boolean variables

Section 4.3.2 proves that the feasibility function for two independent

primary Boolean variables is Boolean constant 1. Various kinds of de-

113

pendency between primary variables may exist in program code

(Fig. 4.6). In this section, we analyze relational operators ==, !=, >, >=, <

and <=from this point of view.

void relationalOperators_(float *A, float *B, float *C, int n) {

float a0, b0, c0, c1, d0 = 3;

int i = 0;

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;

while (true) {

t0 = i < n; // 1

t1 = ! t0; // 2

if (t1) break; // 3

if (t0) a0 = A[i]; // 4

if (t0) b0 = B[i]; // 5

if (t0) t2 = a0 > b0; // 6

t7 = t0 && t2; // 7

if (t7) c1 = d0 * b0; // 8

if (t7) c0 = a0 - c1; // 9

if (t0) t3 = a0 <= b0; // 10

t8 = t0 && t3; // 11

if (t8) t4 = a0 <= 0; // 12

t9 = t8 && t4; // 13

if (t9) c0 = b0 + 1; // 14

if (t8) t5 = a0 > 4; // 15

t10 = t8 && t5; // 16

if (t10) c0 = a0 - 5; // 17

if (t8) t6 = ! (t4 || t5); // 18

t11 = t8 && t6; // 19

if (t11) c0 = b0 - a0; // 20

if (t0) C[i] = c0; // 21

if (t0) d0 = c0; // 22

if (t0) ++i; // 23

}

}

Figure 4.6. Example non-structured basic single-block model with dataflow feedback

Let primary Boolean variables ti and tj be assigned values with two

assignment statements, which contain binary relational operators in the

right part whose input variables are identical (Equation (4.4)): x and y are

numerical (may be other type of) variables, and Ri and Rj are relational

114

operators. As many as 36 combinations of Ri and Rj are possible. All of

them are represented with matrix RV shown in Fig. 4.7.

91176711

1396141314

76911711

6141391314

71171196

1314131469

!

!















RV

Figure 4.7. Feasibility functions for relational operators with identical input variables

Element fRi,Rj of the matrix is a function that determines the feasibility

of vector values of pair (ti, tj). Function 6 is Boolean exclusive or, func-

tion 7 is disjunction, functions 11 and 13 are implication, and function

14 is Sheffer stroke (negation of conjunction).

ti = x Ri y; (4.4)

tj = x Rj y;

Example 4.7. For instance, the feasibility function for operators >=

and > and statements (4.4) has decimal code 11 that equivalent to binary

code 1011. It means that pair (ti, tj) of Boolean variables can take values

00, 10 and 11, and cannot take value 01.

Indeed, if x >= y equals 0, then x > y cannot be equal to 1. Similarly,

the feasibility function for operators <= and >= has decimal code 7 (bi-

nary code 0111). Value 00 is infeasible as x <= y equals 0 implies x >= y

equals 1. The code in Fig. 4.6 contains statements “t2 = a0 > b0;” and

“t3 = a0 <= b0;”. The feasibility function for > and <= (Fig. 4.7) has

code 6 (0110), as values 00 and 11 are infeasible, and values 01 and 10

are feasible.

Let variables ti and tj be assigned values by two assignment state-

ments with relational operators, one identical variable and two different

literals in the right part:

115

ti = x Ri li; (4.5)

tj = x Rj lj;

where li and lj are numerical literals that satisfy inequality li < lj. Matrix

RL (Fig. 4.8) describes feasibility functions for statements (4.5) and all

36 pairs of relational operators.

Example 4.8. For instance, the feasibility function (Fig. 4.8) for oper-

ators = and > has decimal code 14 (binary code 1110). It means that pair

(ti, tj) of Boolean variables can take values 00, 01 and 10, and cannot

take value 11. Indeed, at li < lj, if x = li equals 0, then x > lj equals 0 at

x < li. Moreover, if x = li equals 1, then x > lj cannot be equal to 1. The

code in Fig. 4.6 contains statements “t4 = a0 <= 0;” and “t5 = a0 > 4;”.

The feasibility function for <=and > has code 14 (1110) in matrix RL, as

values 00, 01 and 10 are feasible while value 11 is infeasible.

It should be noted that the feasibility functions that are located on

principal diagonal of matrix RL may be different.

111177711

111177711

141413131314

141413131314

111177711

141413131314

!

!















RL

Figure 4.8. Feasibility functions for relational operators with identical input variable

 and different numerical literals

4.3.2. Feasibility functions and pairs of orthogonal variables

The orthogonal condition for two conditional variables ti and tj can be

represented with the following logical equation:

  )()()(ijji ttttpp   , (4.6)

116

where p is a vector of primary Boolean variables, and (p) is a conjunc-

tion of feasibility functions for all pairs of conditional variables. Equa-

tion (4.6) means that in case (p) is true we need a proof that (ti  tj) 

(tj  ti) is true, and in case (p) is false we need no any such proof.

There are five primary Boolean variables t0, t2, t3, t4 and t5 in the

code shown in Fig. 4.6. Equation (4.7) describes feasibility functions for

all pairs of these variables.

914151515

149151515

15159615

15156915

151515159

5

4

3

2

0

t

t

t

t

t

F  . (4.7)

We can represent functions 9 and 15 with Boolean constant 1. The

matrix is a basis for construction of the conjunction of feasibility func-

tions:

(p) = (t2  t3)  (t4  t5).

Example 4.9. Let us check, if conditional variables t7 and t8 are

orthogonal. The code shown in Fig. 4.6 allows the derivation of evaluat-

ing expressions for t7 and t8:

t7 = t0  t2,

t8 = t0  t3.

Substitution of these expressions in (4.2) yields the logical equation

as follows:

(t2  t3) (t4  t5) 

((t0  t2 (t0  t3))  (t0  t3   (t0  t2))) =

(t2  t3)  t2  t3  (t4  t5)  t0 = 1.

117

As it can be seen, this equation is equivalent to Boolean function

Constant 1, therefore variables t7 and t8 are orthogonal.

Example 4.10. Let us now consider conditional variables t9 and t11:

t9 = t8  t4 = t0  t3  t4

t11 = t8  t6 = t0  t3  t4  t5.

Equation (4.2) for these variables is as follows:

(t2  t3) (t4  t5) 

((t0  t3  t4 (t0  t3  t4  t5)) 

(t0  t3  t4  t5   (t0  t3  t4))) =

(t2  t3)  (t4  t5)  t0  t3  t4  t4  t5 = 1.

The inferred disjunction contains literals t4 and t4 and is equiva-

lent to Boolean function Constant 1, therefore variables t9 and t11 are

orthogonal.

Matrix Ort (4.8) describes all pairs of orthogonal conditional varia-

bles in the code shown in Fig. 4.6.

0110110

1010110

1100110

0000110

1111010

1111101

0000010

11

10

9

8

7

1

0

t

t

t

t

t

t

t

Ort 
. (4.8)

Matrix Ort determines all pairs of mutually exclusive operators which

are covered by 16 if-then statements (Fig. 4.6).

There are other cases when a set of primary variables may not take

arbitrary vector value. All the cases and corresponding rules for compu-

118

ting the feasibility functions are accumulated in a data base and are used

during analysis of the basic single-block model.

4.4. Formal method of basic single-block model analysis

Now we formulate in general form the equations and tasks that are

used for analysis of the basic single-block model. Let t=t1,…tn be a vec-

tor of conditional Boolean variables, p=p1,…,pk be a vector of primary

Boolean variables, g=g1(p),…,gn(p) be a vector of Boolean functions that

evaluate conditional variables over primary variables, and F = {f(pi, pj) |

i, j = 1,…,k, i<j} is a set of feasible functions for values of pairs of pri-

mary variables.

4.4.1. Tautology problem for a pair of conditional variables

For two conditional variables ti and tj, whose evaluating functions are

gi(p) and gj(p), the orthogonal condition can be represented with Boolean

Equation (4.9), if all pairs of primary variables are mutually independent:

 .))()(())()((pgpgpgpgp ijji  (4.9)

This equation can be transformed to the equation as follows:

  ,)(pp  (4.10)

where (p) = gi(p)  gj(p) . Equation (4.10) represents a logical tau-

tology. It must be solved in terms of primary variables which are inde-

pendent. Any vector value of primary variables must satisfy the equation.

Solving this equation may have high computational complexity and con-

sume huge CPU time, if the number of primary variables grows signifi-

cantly.

4.4.2. Partial tautology problem for orthogonal variables

If at least one pair of primary variables is dependent, the conjunction

(p) of Boolean feasibility functions is not equivalent to Boolean con-

119

stant 1. In this case, the characteristic function (p) describes the set of

feasible vector values of primary variables p:

).,()(
}...1{,

ji

ji
kji

ppfANDp




 (4.11)

A relaxation of Equation (4.10) is possible, as only a part of primary

variables values is feasible. The orthogonal condition for two conditional

variables ti and tj with evaluating functions gi(p) and gj(p) can be repre-

sented with Boolean equation (4.12):

 .)()(ppp   (4.12)

In fact, Equation (4.12) is a partial tautology as we do not need a

proof of (p)  1 if (p) = 0. At the same time, the procedure of traversal

all vector values of p has very high computational complexity. We can

avoid this procedure by reformulating tautology (4.12) to a satisfiability

(SAT) problem.

4.4.3. Contradiction procedure and SAT problem for orthogonal

variables

Very often it is easier to solve the orthogonal variables problem by

means of transition to an inverse problem. Applying the first De Mor-

gan's law to expression (4.12), we obtain:

 ,)()(ppp   (4.13)

where  is an existential quantifier (there exists p) which ties variables of

p. After substituting the evaluating functions instead of (p), replacing

implication with disjunction and applying the second De Morgan’s law

we have:

 ppp ()(  =

https://en.wikipedia.org/wiki/Existential_quantification

120

 ppp ()(  =

 .)()()(pgpgpp ji   (4.14)

Such approach to solving the problem is called a contradiction proce-

dure, and Equation (4.14) formulates a satisfiability problem. To perform

objection of (4.14), it is sufficient to find a vector value of p which satis-

fies function (p)gi(p)  gj(p). In case such value does not exist, this

function is equivalent to Boolean constant 0, and problems (4.14) and

(4.12) are solved.

Example 4.11. For example, we apply the problem (4.14) to proving

that conditional variables t7 and t8 are orthogonal in the code shown in

Fig. 4.6. Substitution of expression (t2t3)(t4t5) instead of (p),

expression t0t2 instead of gi(p)=t7, and expression t0t3 instead of

gj(p)=t8 in (4.14) leads to transformations as follows:

 [((t2  t3) (t4  t5)  t0  t2  t0  t3)] =

 [(t2  t3 (t4  t5)  t0  t2  t3) 

(t2  t3 (t4  t5)  t0  t2  t3)] =

 [0  0] =  [0] = 1.

The source expression is equivalent to disjunction of two conjunc-

tions. The first conjunction contains opposite literals t3 and t3 and is

equal to 0. The second conjunction contains opposite literals t2 and t2

and is also equal to 0. As a result, expression (4.14) is equal to 1, and

variables t7 and t8 are orthogonal

4.4.4. Problem solving over minimization of partial functions

Using a pair of completely specified functions (p) and (p) we can

construct a partial (incompletely specified) Boolean function

)).(),(()(ppp   (4.15)

121

This function depends on Boolean arguments p and can take three

values: 0, 1 and dc (don’t care value). Boolean function (p)(p) de-

scribes off-set off(p) of partial function (p). Boolean function

(p)(p) describes on-set on(p) of function (p). Boolean function

(p) describes don’t-care-set dc(p) of function (p).

Solving the orthogonal variables problem can be performed by mini-

mization of function (p) through appropriate changing its value with

new value 0 or 1 on those values a of variable p for which (a) is false.

If new function ’(p) is Boolean constant 1, then conditional variables ti

and tj are orthogonal, otherwise they are not orthogonal. The minimiza-

tion of function can be performed with Karnaugh map.

For example, for conditional variables t7 and t8 function (p) is de-

scribed with expression (t0t2)(t0t3), and function (p) is de-

scribed with expression (t2t3)(t4t5). Function (p) depends on

three variables t0, t2 and t3, meanwhile function (p) depends on four

variables t2, t3, t4 and t5. Function (p) does not depend on t4 and t5,

therefore we omit them in new function ’(p) = t2t3. The on-set of

’(p) is larger than that one of (p). This is a guarantee for the correct

minimization of (p).

Example 4.12. Fig. 4.9 shows the Karnaugh map of partial function

’(p) = ((p), ’(p)). It is easy to see, function (p) can be replaced with

Boolean constant 1 in (p), and therefore conditional variables t7 and t8

are proved to be orthogonal.

1 dc 1 dc

1 dc 1 dc

t2

t0

t3

Figure 4.9. Karnaugh map of partial function ’(p)

122

4.4.5. Orthogonal subsets of the set of conditional variables

Let C = {c1…cm} be a subset of all set of the Boolean conditional var-

iables that are represented with vector t. Variables of C are orthogonal if

only one of them can take value 1, while the others take value 0 at any

state of the code execution. This is formalized with expressions as fol-

lows.

  )()(
,...,1

ppANDp i
mi

 


, (4.16)

where

 .)(...)()(...)(

)()(

111 pcpcpcpc

pcp

mii

ii








 (4.17)

Solving the orthogonal problem for m conditional variables is equiva-

lent to solving the orthogonal problem of all non-ordered pairs of these

variables. All subsets of orthogonal conditional variables can be deter-

mined from matrix Ort, for example, from matrix (4.8). Thus subset

C = {t1, t7, t9, t10, t11} is maximal one for matrix (4.8). The set of all

such subsets can be considered as a set of cliques of a non-directed graph

that is represented with matrix Ort.

4.5. Analysis of basic single-block model with control flow feedback

The conditional variables and if-then statements define the control

flow within one iteration of the single loop of the basic single-block

model. The dataflow feedback can influence the control flow implicitly

over recalculating conditional variables which depend on dataflow varia-

bles at each iteration of the loop. Very often, algorithms obtain the prop-

erty of control flow feedback. In this case, conditional variables are

global with respect to the loop, and their values are recalculated within

the loop body.

Example 4.13. Fig. 4.10 shows an example C/C++ looping/ branching

code with control flow feedback. Boolean variables s0 and s1, which are

initialized in their declaration, represent control flow state in the loop

123

body. The body recalculates the values of the variables in one iteration.

Fig. 4.11 presents a basic single-block model that is derived from the

example code by means of equivalent code transformation.

void ControlFlowFeedback(float *A, float *B, float *C, int n) {

float a0, b0, c0, d1;

bool s0 = true;

bool s1 = false;

for (int i = 0; i < N; ++i) {

a0 = A[i];

b0 = B[i];

d1 = a0 - b0;

if (d1 > 0) {

if (s0) c0 = d1 - 2;

if (s1) {

c0 = d1;

s0 = true; s1 = false;

}

} else {

if (s0) {

c0 = d1;

s0 = false; s1 = true;

}

if (s1) c0 = d1 + 2;

}

C[i] = c0;

}

}

Figure 4.10. Example C/C++ looping/branching code with control flow feedback

A problem is how to recognize, what pairs of conditional variables

are orthogonal and what pairs are not in the model. Our focus is on con-

trol flow state variables, as the analysis technique for other type of pairs

of conditional variables we have already considered and developed. Re-

garding the example basic single-block model, our focus is on state vari-

ables s0 and s1. It should be noted that although these variables are con-

ditional in the source C/C++ code (Fig. 4.10), they are rather intermedi-

ate than conditional in the basic single-block model (Fig. 4.11). The

orthogonal problem remains in any case.

124

void ControlFlowFeedback_(float *A, float *B, float *C, int n) {

float a0, b0, c0, d1;

bool s0 = true;

bool s1 = false;

int i = 0;

bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11;

while (true) {

t0 = i < n;

t1 = ! t0;

if (t1) break;

if (t0) a0 = A[i];

if (t0) b0 = B[i];

if (t0) d1 = a0 - b0;

if (t0) t2 = d1 > 0;

if (t0) t3 = !t2;

if (t0) t4 = t2 && s0;

if (t0) t5 = t2 && s1;

t8 = t0 && t4;

if (t8) c0 = d1 - 2;

t9 = t0 && t5;

if (t9) c0 = d1;

if (t9) s0 = true;

if (t9) s1 = false;

if (t0) t6 = t3 && s0;

t10 = t0 && t6;

if (t10) c0 = d1;

if (t10) s0 = false;

if (t10) s1 = true;

if (t0) t7 = t3 && s1;

t11 = t0 && t7;

if (t11) c0 = d1 + 2;

if (t0) C[i] = c0;

if (t0) ++i;

}

}

Figure 4.11. Example basic single-block model with control flow feedback

Below we develop a formal method that is based on mathematical in-

duction technique. This technique requires two cases to be proved. The

base case proves that the orthogonal variables property holds for the ini-

tial computational state before entering the loop. The induction step

proves that, if the property holds for one loop iteration l, then it holds for

125

the next iteration l+1. The base case uses the initial values of the state

variables. The induction step uses the statements of the loop body which

update the values of state variables.

Let si and sj be two Boolean control flow state variables whose or-

thogonal property we are going to prove.

Base case. If one of two variables is initialized to 1 and other variable

is initialized to 0, then the orthogonal property holds.

Induction step. Represent the values of state variables si and sj in next

iteration of the loop with s’i and s’j. These variables can be evaluated

over primary variables and current-iteration variables si and sj, using

evaluating Boolean functions gi(q) and gj(q). Vector q represents both

primary variables and state variables within current iteration.

If the orthogonal variables property holds for variables si and sj at the

current iteration of loop, then our goal is to prove that it holds at the next

iteration for variables s’i and s’j. This can be represented with implica-

tion

 )''()(jiji ssssp  =

 ))()(()(qgqgssp jiji  . (4.18)

If expression (4.18) is a tautology, i.e. is satisfied for any value of p,

then state variables si and sj are orthogonal.

The C/C++ code, and in particular statements “if (tb) si= eb;” which

assign a new value to state variable si, are a source for construction of

evaluating function gi(q):
















b

B

b
ibb

B

b
i tsetqg

11
)()(, (4.19)

where B is the number if-then statements for si. The first term of disjunc-

tion in (4.19) represents new value of si, and the second term represents

current value.

In case, the primary variables are dependent, and the feasibility func-

tion (p) is not equivalent to Boolean constant 1, expression (4.18) for

the orthogonal state variables property should be modified in order to

126

take into account two situations: when the values of state variables are

updated in the loop body, and when they save previous values:

























)))()()((

))()()(((

)(

jj

ii

ji

spqgp

spqgp

ss

p



 . (4.20)

Expression (4.20) describes that variables si and sj can update their

values when (p) is true, and these variables do not change their values

when (p) is false.

Example 4.14. Let us prove the orthogonal property for state variables

s0 and s1 of the code shown in Fig. 4.11.

It is easy to see, that in base case the initial values 1 (true) and 0

(false) of the variables are orthogonal.

In induction step, we assume that s0 and s1 are orthogonal in current

iteration, and the Boolean function s0  s1 is true.

Function gs0 that evaluates new value of s0 is

gs0 = t0  (t91  t100  (t9t10)  s0)  t0s0 =

= t0t2s1  t2s0s1  t0s0.

Function gs1 that evaluates new value of s1 is

gs1 = t0  (t90  t101  (t9t10)  s1)  t0s1 =

= t0t2s0  t2s0s1  t0s1.

In the C/C++ code, all primary variables are independent, there-

fore (p) = 1 and the orthogonal property for s0 and s1 holds when

(4.18) is tautology. Performing transformations for a sub-expression

of (4.18) we obtain:

gs0  gs1 =  (t0t2s1  t2s0s1  t0s0) 

 (t0t2s0  t2s0s1  t0s1) =

= t0  s0  s1.

127

The whole expression (4.18) for s0 and s1 can be written and

transformed as:

(s0  s1)  (t0  s0  s1) =

s0s1  t0  s0  s1 = 1.

This expression is equivalent to Boolean constant 1, therefore state

variables s0 and s1 are orthogonal in induction step.

Finally we can conclude that state variables s0 and s1 are orthogonal

in the code shown in Fig. 4.11.

It should be noted, the proposed method can be generalized for more

than two state variables. For many variables, the orthogonal property can

be represented using expressions (4.16) and (4.17).

4.6. Conclusion

The evaluation of the computational complexity, critical path and

parallelization potential of an algorithm that is represented with the basic

single-block model is more complicated against the algorithm structural

model where mutually exclusive operators are described explicitly. This

is due to implicit dependences among statements in the basic single-

block model.

To find the mutually exclusive short if-then statements, a logic

analysis technique has been proposed that is capable of determining

pairs of orthogonal conditional variables. For structured BSBM, it

uses a mechanism of the conditional variable evaluation with Boolean

expressions and functions, relations among values of primary Boolean

variables, and a definition of the orthogonal condition with a tauto-

logical logical equation.

To perform the advanced analysis of basic single-block model, a con-

cept of feasibility functions for pairs of primary Boolean variables has

been introduced, which allows for determining values combinations the

primary variables can take during algorithm execution. The formulation

of the orthogonal condition for conditional variables is extended taking

into account the feasibility functions.

128

In the case of basic single-block model with control flow feedback, a

mathematical induction technique is proposed for determining orthogo-

nal pairs of conditional variables.

129

5. SYNTHESIS AND OPTIMIZATION

OF COMPUTATIONAL PIPELINES

This chapter introduces a new methodology for pipeline synthesis

with applications to data flow high level system design. The pipeline

synthesis is applied to BSBM whose operators are translated into graphs

and dependencies relations that are then processed for the pipeline archi-

tecture optimization. For each pipeline-stage time, firstly a minimal

number of pipeline stages is determined and then an optimal assignment

of operators to stages is generated with the objective of minimizing the

total pipeline register size. The obtained optimal pipeline schedule is au-

tomatically transformed into a pipeline structure that then can be synthe-

sized to efficient hardware implementations. Two new pipeline schedul-

ing techniques, i.e., a least cost search branch and bound technique, and

a heuristic technique have been developed. The first technique yields

global optimum solutions for middle size designs, whereas the second

one generates close-to-optimal solutions for large designs. Experimental

results on FPGA designs show that the total pipeline registers size gain

in a range up to 4.68x can be achieved. The new algorithms overcome

the known ASAP and ALAP techniques concerning the amount of pipe-

line registers size by up to 100% on average.

5.1 Computational pipelines

Pipelining is a well-known, efficient and effective way of increasing

the operating frequency and the associated throughput of data intensive

digital systems in various application fields. A pipelined system is usual-

ly described by an appropriate concurrent design language.

Pipelining can be seen as the transformation of a source behavioral

specification into a functionally equivalent description, which partitions

all operators into pipeline-stage-fragments that are executed in time-

sliced fashion. Complex digital systems are typically characterized by

irregular structures, thus it is impossible to perform a straightforward

mapping of the behavioral specification into a pipeline implementation.

In this chapter, an approach for the transformation of an irregular

complex digital system, which is described in a system description lan-

130

guage, into pipelined implementations achieving increased operating

frequency after hardware synthesis is developed. Therefore, this chapter

develops an efficient pipelining model for large digital system designs

implying several "low cost" chained operators in one basic processing

block, which takes into account key parameters of behavioral elements

including the variable sizes, the operators delay, the relations on the set

of variables and operators, and finally the mutually exclusive operators

handling. The approach does not explore the resource sharing for both

functional units and registers as such option would result in the serializa-

tion of the operator execution and would cause a slowdown of the overall

dataflow implementation.

Two optimization problems are crucial for this approach: the compo-

nent selection and the optimization of the pipeline registers. The first

problem is thoroughly developed in [3]. The second problem is attacked

in [77-82]. It is the main subject of this chapter. We explicitly define the

whole pipeline solutions space and propose an efficient heuristic optimi-

zation algorithm which is capable of pipelining large designs with the

objective of minimizing the overall registers size and to increase the op-

erating frequency after register transfer level (RTL) synthesis.

This chapter is organized as follows: firstly it provides an overview of

related works on pipeline synthesis and optimizations. Secondly, it de-

scribes the methodology based on dataflow pipeline synthesis. Thirdly, it

presents the relations and associated graphs for the pipeline modeling

and its optimization. Fourthly, it describes the time constrained optimiza-

tion for pipelines. Then it presents a new heuristic algorithm which

speeds up the optimization process for very large designs. And finally,

experimental results are reported for several video processing applica-

tions, which are followed by conclusions.

5.2 Pipelining of algorithms

In computing, a pipeline is a set of data processing elements connect-

ed in series, so that the output of one element is the input of the next one

[3], [17]. The elements of a pipeline are executed in a time-sliced fash-

ion; in such case, pipeline registers are inserted in between pipeline stag-

131

es. The pipeline stage time has to be larger than the longest delay be-

tween pipeline stages. A pipelined system requires more resources than

one that executes one batch at a time, because its stages cannot reuse the

resources of a previous stage. Numerous languages and intermediate rep-

resentations have been created for describing pipelines, among them can

be mentioned the programming language C [89], [51], [12], data flow

graphs (DFG) [9], signal flow graphs [28], [88], transactional specifica-

tions [50] and other notations [39], [29], [61]. Pipelines can also be syn-

thesized directly from binaries [51]. CAL is a formal dataflow language

that was recently developed and standardized to address the goal of high-

level system specification and design, particularly addressing the wide

field of streaming applications [16], [49]. The concurrent algorithmic

language, CAL is capable of representing pipelined networks of actors.

A pipeline system is characterized by several parameters such as the

clock cycle time, the stage cycle time, the number of pipeline stages, the

latency, the data initiation interval, the turnaround time and the through-

put. The pipeline synthesis problem can be constrained either by re-

sources or time, or by a combination of both.

An important concept in the pipelining circuit is retiming, which ex-

ploits the ability to move registers in the circuit so as to decrease the

length of the longest path and preserve its functional behavior [40], [44],

[85]. The concept is based on the assumption that the pipeline structure

has already been fixed and considers only the problem of adding pipeline

buffers with the objective of improving the performance.

The work of Sehwa [53] can be considered as the first pipeline syn-

thesis program. It minimizes the time delay using a modified list sched-

uling algorithm with a resource allocation table. The force directed

scheduling that has been proposed in [54] and modified in [88], [25] per-

forms a time-constrained functional pipelining. ATOMICS [20] per-

forms loop optima-zation starting by estimating a latency and an inter-

iteration precedence. The pipelined DSP data-path synthesis system

called SODAS [28], receives a signal flow graph as input and generates a

trade-off for the pipeline designs by changing the synthesis parameters of

the data initiation interval, the clock cycle time and the number of pipe-

line stages. In [86] an adaptation of the ASAP list scheduling and the

132

iterative modulo scheduling are used for the design space exploration

based on slow, but area efficient modules, and fast, but area consuming

modules. Speculative loop pipelining from binaries, proposed in [51],

speculatively generates a pipeline netlist at compile time and modifies

it according to the result of the runtime analysis. The automatic pipe-

lining proposed in [50] requires user-specified pipeline-stage bounda-

ries and synthesizes a pipeline which allows the concurrent execution

of multiple overlapped transactions in different stages. Integer linear

programming formulations of the pipeline optimization problem, as

an efficient approach for the design space exploration, are also pre-

sented in [10], [26], [23].

Pipelining is an effective method for optimizing the execution of

loops. The loop winding method is proposed in Elf [18]. The percolation

based scheduling [56] deals with the loop winding by starting with an

optimal schedule [2] that is obtained without considering resource con-

straints. The PLS pipelining [24] is another effective method to optimize

loops for DSP. The rotation scheduling of loop pipelining by means of

the retiming the processing nodes is introduced in [9]. The pipeline vec-

torization method, based on pipelining the inner most loops in a loop

nest by removing the vector dependences, is proposed in [89].

The problem of pipeline scheduling of DFGs for a variable number of

pipeline stages under throughput constraints is addressed in [4], [35], [3].

The macro pipelining based scheduling technique [4] aims at pipelining

heterogeneous multiprocessor systems. The number of pipeline stages is

identified during the scheduling and the pipeline cycle delay is mini-

mized in two steps. The first step finds a global coarse solution by using

the ratio cut partitioning, and the second step improves the result by rep-

artitioning the solution. The ratio balances the load on processors with

the communication traffic in the interconnection network. This model

cannot be directly applied to high-level synthesis with the objective of

register size minimization as it is based on pure timing model.

A novel pipeline decomposition tree (PDT) based scheduling frame-

work at system level is presented in [35]. It groups the tasks into clusters

and groups the clusters into partitions which are assigned to pipeline

stages. Partitions at different depth levels of the PDT can be flexibly

configured to generate various stage-length pipelines. The equations that

133

are used for decomposing the cluster dependency graph into two sub-

graphs equalize the partitions with regard to execution times and inter

cluster dependences within one stage. The cluster-partition concept does

not aim at minimizing the data transfer between adjacent pipeline stages

and cannot be directly used for pipeline register minimization, as our

method presented in this chapter can do.

The cost-optimized algorithm for selecting the components and pipe-

lining a DFG, given a library of multiple implementations of operators

and latency constraint, is presented in [3]. The algorithm starts by map-

ping each operator to the fastest component and then slows down opera-

tors by mapping them to progressively slower components in order to

balance the use of slow and fast components and minimize the total cost.

At each slowdown the algorithm partitions the DFG into a minimal

number of stages to meet the stage delay constraint. Then it traverses the

graph in downward and upward directions and accumulates delays in

order to associate pipeline registers with edges. In comparison with [3]

our methodology does not consider the component selection, but ex-

haustively minimize the register size over all the pipeline stages for the

selected component implementations. The ASAP and ALAP algorithms

constructed on the operator conflict graph in this book are similar to the

downward and upward direction traversal algorithms.

Several previous works, including [19], [15] have discussed the rela-

tionship between design scheduling and register size. Most of them are

devoted to the non-pipelined designs and all of them exploit resource

sharing. The interdependent heuristic code scheduling technique and the

DAG-driven register allocator are proposed in [19]. Such method reduc-

es stage delays of a given pipeline for the given number of general pur-

pose registers. Contrary to our work it explores intensively the resource

sharing for registers and pipelined functional units keeping a constant

size for the variables.

Modulo scheduling followed by stage scheduling is another efficient

technique for exploiting instruction level parallelism in loops [15]. The

stage scheduling performs exhaustive and heuristic searches of minimum

register requirements for one modulo schedule by shifting operations by

multiples of the initiation interval cycles. The resource sharing is used

twice, for functional units and also for registers. The stage scheduling

processes only a restricted part of the whole solution space as modifica-

134

tions of only one modulo schedule are considered. Differently from

[15], our work searches for the fastest pipeline schedule at a minimum

pipeline register cost over all the solution space for large dataflow hard-

ware designs at various stage counts without any resource sharing.

Since deep-submicron silicon technology provides large amounts of

available resources, faster pipelines without (or with minimal) sharing of

resources can be synthesized with advantages in performance, without

incurring in too much penalties in terms of additional silicon surface.

The pipeline optimization model proposed in [34] is based on precise

mathematical formulation of the optimization problem which uses the

coloring of vertices of an operator conflict directed graph and an explicit

stack mechanism for optimal solution search.

5.3 Pipelining data flow programs

For the pipelining methodology introduced here, it is also important

that, as described in [69], a method of transforming a mixed control-data

flow high-level behavioral description to a purely dataflow description

consisting of the single basic block by means of elimination of control

structures is available. Therefore, here the emphasis is again on efficient

and affective techniques of pipeline synthesis and optimization that are

based on the single basic block model. Resource sharing approaches are

not employed, but pipeline scheduling for chained operators is exploited

intensively. These two basics are well associated with FPGA based syn-

thesis of pipelines from DFGs with many low cost operators describing

random logic. In this book the focus is on pipelines with only one clock

cycle for each stage (Fig. 5.1).

5.4 Modeling pipelines with relations and graphs

5.4.1 Relations and graphs on sets of operators, variables

and pipeline stages

The dataflow program under pipelining is transformed to an acyclic

DFG ([48], [7]). After that the DFG is analyzed. The analysis of DFG

results in a number of relations and other graphs which constitute a basis

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%20%d0%be%d1%82%d0%bb%d0%b8%d1%87%d0%b8%d0%b5%20%d0%be%d1%82&translation=as%20distinct%20from&srcLang=ru&destLang=en

135

for the creation of pipeline optimization methodologies.

Let N={1,…,n} be a set of algorithm operators, M={1,…,m} be a set

of algorithm variables including input and output tokens and S={1,…,k}

be a set of pipeline stages. A set of input variables of operator i=1,…,n is

denoted as in(i) and a set of its output variables is denoted as out(p).

…

stage 1

stage k

pipeline registers

operator chains

no resource sharing

among operators

low cost operators

one clock cycle

one clock cycle

Input data flow

Output data flow

Figure 5.1. Pipeline scheduling with chaining and without resource sharing

From the sets, a set cons(j)N of consumers and a set prod(j)N of

producers is being computed for each variable jM.

The operator precedence relation P describes a partial order on the

set of operators that is derived from the analysis of data dependences

between operators in DFG. The operator direct precedence relation Pdi-

rect is computed as minimal anti-transitive relation of precedence relation

P. This relation also represents the direct precedence graph, GP. In this

136

book only acyclic graphs GP are considered.

The pipeline stage time Tstage is defined as a worst case delay of all

operator chains within one stage. In pipeline optimization, the time can

be treated as pipeline constraint. The constraint essentially influences the

pipeline frequency, throughput and load of equipment.

The longest path delays between operators constitute a basis for de-

fining pipeline constraints and are called the lengths of longest paths on

the operator direct precedence graph. A matrix L=li,j  li,j,i,jN of

dimension nn describes the delays. As graph Gp is DAG matrix L can

be computed in a polynomial time. For DFG shown in Fig. 5.2 and for its

elements that are described in Table 5.1, matrix L is given in Fig. 5.3.

In Table 5.1, for the operand size of 8 the relative delays of “”, “”,

bitand and bitxor operators are taken as 1.0, 1.1, 0.1 and 0.1 respectively.

For other operand sizes the operator relative delays are recalculated us-

ing a linear timing model. Constants are not listed in this table. The addi-

tive timing model has been used, although we consider more complex

timing models of operators and paths.

Figure 5.2. Example data flow graph consisting of 15 operators and 18 variables.

Variables i1, i2 and i3 are inputs and variables o1, o2 and o3 are outputs

137

25.1

00.048.2

00.010.463.1

00.000.000.048.2

18.300.000.000.093.1

28.300.000.000.003.210.0

00.030.683.300.000.000.020.2

00.000.000.058.200.000.000.010.0

35.100.000.000.000.000.000.000.010.0

00.030.882.500.000.000.020.400.000.000.2

00.058.200.068.200.000.000.020.000.000.010.0

03.505.1057.723.478.385.195.500.000.075.300.075.1

18.510.663.300.093.300.000.000.000.000.000.000.000.2

68.670.1123.988.543.550.360.700.075.140.500.040.300.065.1

00.050.1002.888.400.000.040.640.200.020.430.200.000.000.020.2

L

Figure 5.3. Longest paths matrix L for the dataflow graph in Fig. 5.2

Table 5.1

Elements of example data flow graph

Operators Variables

N Type Relative delay N Name Mode Size

1  2.20 1 i1 in 16

2  1.65 2 i2 in 12

3  2.00 3 i3 in 12

4  1.75 4 a loc 16

5 bitxor 0.10 5 b loc 10

6  2.00 6 c loc 13

7 bitxor 0.10 7 d loc 14

8 bitand 0.10 8 e loc 18

9  2.20 9 f loc 16

10 bitand 0.10 10 g loc 6

11  1.93 11 h loc 18

12  2.48 12 p loc 13

13  1.62 13 q loc 14

14  2.48 14 r loc 13

15 + 1.25 15 s loc 10

 16 o1 out 17

 17 o2 out 14

 18 o3 out 10

138

Operator conflict relation. If in matrix L the value of li j is larger than

Tstage we say that there is a pipeline stage conflict between operators i and

j. In order to avoid the conflict, such operators must be scheduled to dif-

ferent pipeline stages. The operator conflict relation is a set

C = (i,j)  i,jN,lij>Tstage. Inclusion CP holds for this relation. In pipe-

line scheduling, C may be replaced with its minimal anti-transitive ver-

sion Ca.

Operator nonconflict relation. It is defined as Cn=P\C. Inclusion

CnP holds for the relation. In pipeline scheduling Cn may be re-

placed with its minimal anti-transitive version Cna. For matrix L and

Tstage=3.825 the conflict C and nonconflict Cn relations are presented in

Fig. 5.4.

Operator conflict graph. The conflict relation, Ca describes a minimal

ant-transitive operator conflict graph, GC
a. A set of direct predecessors of

operator p in the graph will be denoted as cdpred(p) and a set of direct

successors will be denoted as cdsucc(p).

An operator minimal ant-transitive nonconflict graph, GCn is created

in a similar way. A set of direct predecessors of operator p in the graph

will be denoted as ncdpred(p) and a set of direct successors will be de-

noted as ncdsucc(p). To speed up the optimization process, we consider

only minimal anti-transitive operator conflict and nonconflict graphs.

0

00

010

0000

00000

000000

0100000

00000000

000000000

0110001000

00000000000

111100100000

1100100000000

11111010010000

011100100100000

C

 0

00

000

0000

10000

100010

0010000

00010000

100000000

0000000000

01010001000

000011000100

0010000000000

00000100100100

000000010010000

Cn

Figure 5.4. Example matrices C and Cn for the dataflow graph in Fig. 5.2

139

Mapping of operators onto pipeline stages is defined as stage:

NS. According to the mapping, s=stage(p) is a stage sS assigned

to operator pN .

5.4.2 Number of pipeline stages versus stage time

The number l of pipeline stages is defined by the length of a longest

path in GC. For l-stage pipeline a minimum stage time is denoted as

Tstage(l). The stage time for l is larger than the stage time for l+1. There-

fore all pipelines that are generated for a stage time Tstage from the range

Fstage(l+1)≤Tstage<Tstage(l) have the same number l of stages as shown in

Fig. 5.5. In order to generate all possible pipelines all values of elements

lij that occur in matrix L have to be used as stage time. We denote the

least stage time that is equal to a largest operator delay as Tmin and denote

the largest stage time that is equal to the length of a longest path in ma-

trix L as Tmax. At Tstage=Tmin the number of stages is a maximum and is

equal to Smax. At Tstage=Tmax the number of stages is a minimum and is

equal to 1.

Tmin

Smax

Tmax

1

Tstage(l) Tstage(l+1)

l

…

…

Tstage

l+1

stageCount

Figure 5.5. Number of pipeline stages versus stage delay

140

5.4.3 As soon as possible (ASAP) and as late as possible (ALAP)

pipeline schedules

Classical ASAP may not be applied to scheduling of pipelines. We

propose a modified version of ASAP. The main modification is that the

operator precedence relation that is used as input data is replaced with

the operator conflict relation. Due to this the operators are distributed not

on a set of control steps but on a set of pipeline stages. Besides that the

technique gives the fastest pipeline schedule without sharing resources.

The number of stages in the schedule is equal to the length of a longest

path in the operator conflict graph.

Similar observations concern ALAP. The mobility of operator p in

pipeline under optimization is defined as its ability to be scheduled to

various pipeline stages. The earliest stage operator p may be assigned to

is asap(p) and the latest stage is alap(p). Hence the operator p mobility

can be estimated as mobility(p)=alap(p)-asap(p)+1. Fig. 5.6 shows

ASAP and Fig. 5.7 shows ALAP pipeline schedule for the dataflow

graph example in Fig. 5.2. Operators 1, 2, 6, 9, 13 and 14 have mobility

of 1, operator 4 has mobility of 2, operators 3, 11, 12 and 15 have mobil-

ity of 3 and operators 5, 7, 8 and 10 have mobility of 4.

5.5 Time constrained optimization of pipelines

5.5.1 A set of pipelines with the same stage time

In previous chapter pipelines with a minimal number of stages for a

given stage time were generated. Among them are ASAP and ALAP

pipelines. It appears that a huge set of pipelines with the same stage

count can be generated from the same operator conflict and non-conflict

graphs. The number of pipelines growth exponentially depending on the

number of operators. Pipeline parameters are different. As the time pa-

rameters are already taken into account in the stage time constraint, areas

cost parameters have to be analyzed. First of all, variations in assignment

of operators to pipeline stages may influence the size of pipeline regis-

ters. It appears that a large reduction in pipeline register size is feasible.

141

Figure 5.6. Asap pipeline schedule for Tstage=3.825

Figure 5.7. Alap pipeline schedules for Tstage=3.825

142

5.5.2 Evaluation of overall pipeline registers size

The operator and variable clustering within one pipeline stage is a

way to achieve pipeline optimization. All variables within one stage are

represented as wires. If a variable is produced in one stage and consumed

in the next neighbor stage then it is replaced with a register inserted in

between the stages. Several registers should be inserted instead of a vari-

able that transmits data over several stages.

The number of pipeline registers that are introduced for variable v de-

pends on the lifetime of v. For one variable v this dependence is illustrat-

ed in Fig. 5.8. Variable lifetime is determined by the earliest stage of

producers and the latest stage of consumers. Two and more producers

v:=e1; … v:=ek; have to be under conditional instructions with orthogo-

nal test variables c1…ck:

if c1 then v:=e1; endif

…

if ck then v:=ek; endif

q1

v

ql …

cons(v)

)(max
)(

i
vconsq

qstage
i

lifetime

p1 pk …

prod(v)

)(min
)(

i
vprodp

pstage
i

Figure 5.8. Pipeline stage range (lifetime) of variable v

143

An overall registers size RS takes into account registers for all varia-

bles of M. For the single assignment model of the source algorithm de-

scription the total pipeline register size is estimated as follows:

.
)(min

)(max

)()(

)(

)(




















 


Vv

vprodp

vconsq

pstage

qstage

vsizestageRS (5.1)

The size RS is a sum of register sizes that are introduced for each var-

iable v depending on the latest stage of consumers cons(v) and the earli-

est stage of producers prod(v). The variable size and its lifetime may

dominate each other.

5.5.3 Optimization task: objective function and constraints

Pipelines with different number of stages can be generated by means

of varying the operator conflict matrix. Different pipelines with the same

number of stages can be generated by means of varying the stage time

Tstage in the range from Tstage(l) to Tstage(l+1) where l is a stage count. Dif-

ferent pipelines are also possible due to varying the mapping stage at the

given Tstage and conflict graph. Let Ω be a set of possible valid mappings

of operators onto pipeline stages. The objective function as follows min-

imizes the total pipeline registers size over all mappings of Ω:

)(min stageRS
stage 

. (5.2)

Every valid mapping stage(p) must meet operator, time and prece-

dence constraints as follows:

 for each pN inequality asap(p)≤stage(p)≤alap(p) must hold;

 if for two operators p and q inequality lp,q>Tstage holds, then the op-

erators may not be included in the same stage (inequality

144

stage(p)≠stage(q) must hold), otherwise the operators may be in-

cluded in the same stage;

 If a pair (p, q) of operators belongs to C then inequality

stage(p)<stage(q) must hold;

 If a pair (p, q) belongs to Cn then inequality stage(p)≤stage(q)

must hold.

The constraints define the structure of solution space. It should be no-

ticed that the optimization problem (5.2) is nonlinear and retiming [40]

may not be used for solving it, as every operator employs only one vari-

able for transferring its output value to consumers in pipeline.

5.6 Least cost search branch and bound technique for pipeline

optimization

Three strategies, i.e. breadth first search (BFS), depth search first

(DFS) and least cost search (LCS) are available to find a minimum cost

solution of an optimization problem. A search with bounding functions is

branch and bound (BB) search. In [77] a DFSBB technique for optimiza-

tion of pipeline schedules was proposed. In paper [79] a LCSBB tech-

nique, which overcomes DFSBB with respect to pipeline quality and op-

timization tool throughput, is proposed.

5.6.1 Pipeline schedule search tree

The search tree structure is shown in Fig. 5.9. The nonterminal

nodes of the tree are associated with assignments of operators to pipe-

line stages.

A level p of the tree corresponds to operator p. Level’s nodes de-

scribe various assignments of operator p to pipeline stages from ear-

lyi(p) to latei(p). Index i indicates a path in the tree from root to the

node. Various paths show various incomplete or complete assign-

ments of operators to stages.

145

…

operator 1

…

root

operator 2

operator 3

operator n

…

…

… …

early1(1) late1(1)

stage1(1)

stagei(2)

stagej(n)

…

…

early1(n)

early1(2)
latei(2) earlyi(2)

…

…

latej(n)

…
…

…

earlyj(n)

terminal nodes

Complete schedules

late1(2)

…

late1(n)

i

j

Figure 5.9. Search tree for pipeline optimization. The tree size is 2100 at =2 and n=100,

and the size is 31000 at =3 and n=1000

All terminal nodes at level n+1 of the tree describe candidate com-

plete solutions. The search tree size can be estimated as n where  is an

average mobility of operators in the number of pipeline stages. The size

grows rapidly depending on operator count and stage count. The search

tree is generated dynamically by means of expanding non-terminal

nodes. Its size depends on the operator expanding order. Reordering of

operators is a mechanism of increasing efficiency of the branch and

bound optimization technique.

LCSBB estimates a lower bound of total register size (LBRS) for each

expanded non-terminal node. Initial lower bound LBRS0 is estimated for

root. At step t of operator p scheduling, the lower bound LBRSt=LBRSt-

1+Sp is estimated for each stage(p) from earlyi(p) to latei(p) where Sp

is the increase of the lower bound after assignment of p to stage(p). The

stage with minimum of Sp is preferably selected for passing to the next

146

nonterminal node in the search tree. After n steps, LBRSn is equal to the

actual RS(stage) .

5.6.2 Incomplete mapping of operators onto pipeline stages

For operator p a Boolean variable assign(p) is introduced. It takes

value true when the operator has been already assigned to a pipeline

stage(p). If the operator has not been assigned to a stage then the value

of assign(p) is equal to false and the value of stage(p) is undefined.

A procedure of mapping the operators to pipeline stages as a step by

step process of updating the variables assign(p) and stage(p) is defined.

Let assignt(p) and staget(p) be state variables at step t. For some operator

p whose stage(p) is determined, assignt(p) may have value true and for

other operator whose stage(p) is undetermined it may have value false.

Then LBRSt can be estimated as:

.
)(min

)(max

)(

)(

)(




















 


Vv

vprodp

vconsp

t
pstal

pstas

posvsizeLBRS (5.3)

where pos(x)=x if x>0, and pos(x)=0 otherwise; stas(p)=asap(p) if as-

sign(p)=false, and stas(p)=stage(p) if assign(p)=true.

It is easy to see that the inequality LBRSt≤LBRSt+1 holds for all

steps t as according to (5.3) the assignment of next operator to a pipeline

stage can only increase the lower bound of register size. Equation (5.3)

has high computational complexity in order to execute at expanding of

each node of the search tree. Computing Sp between two neighbor

nodes in the search tree seems to have significantly less computational

complexity.

5.6.3 Updating overall registers size lower bound

Let p be an operator which is assigned at step t to a pipeline stage

stage(p) implying the value of assign(p) to be changed from false to true.

147

The operator may produce more than one variable of out(p) while may

consume more than one variable of in(p). LBRS may change for each of

these variables.

Now a procedure of computing Sp for all variables that are associat-

ed with operator p is considered. Each output variable uout(p) may in-

fluence the increase of register size. For all variables of out(p) the in-

crease of register size lower bound can be estimated as:

 

 

,

)(),(min

)(

)(),(min

)(

)(
)(

' 


































 













 


poutu

p

p

p

uSTALpalap

uSTAS
pos

uSTALpstage

uSTAS
pos

usizeS

(5.4)

where

)(min)(
),(

qstaluSTAL

pq
uprodq

p






and

).(max)(
)(

qstasuSTAS
uconsq



For all variables of in(p) the increase of register size lower bound is

 

 
,

)(

)(),(max

)(

)(),(max

)(
)(

" 


































 













 


pinv p

p

p

vSTAL

vSTASpasap
pos

vSTAL

vSTASpstage
pos

vsizeS

(5.5)

where

)(max)(

),(
qstasvSTAS

pq
vconsq

p






and

).(min)(
)(

qstalvSTAL
vprodq



148

Taking into account (5.4) and (5.5) the increase of LBRS for operator

p assignment can be estimated as:

."'

ppp SSS  (5.6)

As stage(p) may vary for most of operators depending on their mobil-

ity, it can significantly influence the value of Sp. The increase of

stage(p) can cause decrease of S’p and increase of S”p. As a result Sp

has a local minimum.

5.6.4 Computing earliest and latest pipeline stages of operator

The dynamic earliest early(p) and latest late(p) pipeline stages of op-

erator p are bounds of a range of varying stage(p). First of all, the value

of early(p) depends essentially on the array variables assign and stage

and scalar variable asap(p). Secondly, it depends on the set cdpred(p) of

direct predecessors of operator p in the operator conflict graph. Thirdly,

the value of early(p) depends on the set ncdpred(p) of direct predeces-

sors of operator p in the operator nonconflict graph. The value of ear-

ly(p) can be estimated as follows:

.

)(max

,1)(max

),(

max)(

)(
),(

)(
),(















































qstage

qstage

pasap

pearly

trueqassign
pncdpredq

trueqassign
pcdpredq

 (5.7)

When no direct predecessor of cdpred(p) and ncdpred(p) has been as-

signed to a pipeline stage yet, the second and third operands in (5.7) are

equal to 1 and 0 respectively.

First of all, the value of late(p) depends essentially on the array varia-

bles assign and stage and scalar variable alap(p). Secondly, it depends

on the set cdsucc(p) of successors of operator pin the conflict graph.

Thirdly, it depends on the set ncdsucc(p) of direct successors of operator

pin the nonconflict graph. The value of late(p) can be estimated as fol-

149

lows:

.

)(min

,1)(min

),(

min)(

)(
),(

)(
),(















































qstage

qstage

palap

plate

trueqassign
pncdsuccq

trueqassign
pcdsuccq

 (5.8)

When no direct successor of cdsucc(p) and ncdsucc(p) has been

assigned to a pipeline stage yet, the second and third operands in (5.8)

are equal to ∞.

5.6.5 Operator assignment conflicts

The early(p) and late(p) stages of operator p estimated with (5.7) and

(5.8) are not fully accurate, but are fast estimations of the stage range

bounds. The estimated range may be wider than the actual range. This

may imply operator-to-stage assignment conflicts when the early stage is

larger than the late stage: early(p)>late(p). A reason for such result is the

influence of predecessors and successors that are already assigned to

pipeline stages on the assignment of p. No stage may be assigned to the

operator p in this case. The conflict problem is being solved by the reas-

signment of operator predecessors and/or successors to other more suita-

ble pipeline stages. This may imply additional backtrackings during the

traversal of the search tree.

5.6.6 Least cost search branch and bound minimization of overall

pipeline registers size

The least cost search branch and bound technique (LCSBB) is de-

scribed in Fig. 5.10. The technique is represented as a recursive func-

tion LCSBBScheduling with one input, top. It uses global variables as

follows:

150

LCSBBScheduling(top) begin

if top<0 then return; end if;

if top≥n then

pipelineCount:=pipelineCount+1;

OptimalSchedule:=Extract(Stack);

Best:=Stack(top-1).bound;

return;

end if

p:=order-1(top);

b:=Stack(top).lateStack(top).early+1;

for s in Stack(top).early to Stack(top).late do

w(s):=RegSizeIncrease(p, s);

end for;

To sort b stages on increase of w(s) and compute Stack(top).rank(i), i=1…b;

for i in 1 to b do

s:= Stack(top).rank(i);

Stack(top).stage :=s;

lowerBound:=Stack(top).bound+w(s);

if lowerBound≥Best then pruneCount:=pruneCount+1; return; end if;

if top<n-1 then

q:=order-1(top+1);

Stack(top+1).bound:=lowerBound;

Stack(top+1).early:=EarlyStage(q);

Stack(top+1).late:=LateStage(q);

if Stack(top+1).early>Stack(top+1).late then continue; end if

end if;

LCSBBScheduling (top+1);

end for;

end.

Figure 5.10. Least cost search branch and bound technique (LCSBB)

for pipeline optimization

 Stack is an array of records that includes such elements as a pipe-

line stage, lower bound of total register width, early and late

stages of operator; rank of stages where, rank(i) is a stage at

position i and rp is current position of the rank; the current

record of the stack is indexed with top;

 OptimalSchedule is the current best assignment of operators to

pipeline stages;

 Best is the current best LBRS;

151

 order-1 is the mapping of stack records onto operators;

 pipelineCount is the number of generated complete assignments;

 pruneCount is the number of pruned nodes of the tree.

The slave function Extract(Stack) generates a next complete assign-

ment of operators to pipeline stages. Function RegSizeIncrease(p,s)

computes Sp(s) using (5.4)-(5.6). Function EarlyStage(q) computes ear-

ly(q) for operator q using (5.7), and function LateStage(q) computes

late(q) for operator q using (5.8).The optimal pipeline schedule for the

example DFG is shown in Fig. 5.11.

Figure 5.11. Optimal pipeline schedule for Tstage=3.825. The schedule includes

13 pipeline registers consisting of 167 bits. ASAP schedule includes 17 registers

consisting of 247 bits and ALAP schedule includes 16 registers consisting of 216 bits

5.7 Heuristic technique for optimization of pipelines

It was assumed in LCSBB that early(q) and late(q) of a nonscheduled

152

operator q can be estimated using asap(p), alap(p) and stage(p) of all

other operator p. This is not a completely accurate estimation, although

LCSBB is capable of finding a global optimum. In fact early(q) and

late(q) of nonscheduled operator q may directly or indirectly depend on

early(r) and late(r) of other nonscheduled operator r.

The accurate recalculation of early(q) and late(q) is a time consuming

procedure and it may significantly slow down LCSBB. Moreover

LCSBB takes some assumptions concerning register size lower bound

estimation. The main assumption is that asap(q) and alap(q) are used in

(5.7) and (5.8) although tighter bounds early(q) and late(q) of stages

which are available for operator q can be computed. The heuristic pipe-

line optimization technique proposed in paper [79] finds only one feasi-

ble complete assignment of operators to pipeline stages that gives possi-

bly minimal total registers size. In order to find a best path from root to a

leaf of the search tree the technique needs efficient heuristics.

5.7.1 Dynamic evaluation of earliest and latest stages of operators

Assume that at step t-1 the values of assignt-1(p), earlyt-1(p) and latet-

1(p) are determined for pN. The sets cdpred(p), ncdpred(p), cdsucc(p),

ncdsucc(p) of predecessors and successors of each operator p in the con-

flict and non-conflict graphs have been computed, they stay the same for

all scheduling steps.

Let at step t nonscheduled operator r has been mapped onto stage(r)

and assignment assignt(r):=true has been already performed. Then, the

early pipeline stage of a nonscheduled operator pN can be evaluated

recurrently as

,

)(max

,1)(max

),(

max)(

)(

)(

1



































qsearly

qsearly

pearly

pearly

t
pncdpredq

t
pcdpredq

t

t
 (5.9)

153

where searlyt(q)=earlyt(q) if assignt(q)=false, and searlyt(q)=staget(q) if

assignt(q)=true. It is easy to observe that the inequality earlyt(p)≥earlyt-

1(p) holds for all t=1…n.

At step t the late pipeline stage of a nonscheduled operator pN can

be evaluated recurrently as

,

)(min

,1)(min

),(

min)(

)(

)(

1


































qslate

qslate

plate

plate

t
pncdsuccq

t
pcdsuccq

t

t

 (5.10)

where slatet(q)=latet(q) if assignt(q)=false, and slatet(q)= stage(q) if

assignt(q)=true. It is easy to observe that the inequality latet(p)≤latet-1(p)

holds for all t=1…n. Equations (5.9) and (5.10) demand an appropriate

order of nonscheduled operators to properly compute earlyt(p) and

latet(p). For earlyt(p) this order is p=1…n. For p=1…r-1,

earlyt(p)=earlyt-1(p) and for p=r+1…n, earlyt(p) is estimated with (5.9).

For latet(p) this order is p=n…1. For p=n…r+1, latet(p)=latet-1(p) and for

p=r-1…1, latet(p) is estimated with (5.10).

5.7.2 Dynamic estimation of overall registers size lower bound

At step t the values of assignt(p), pN describe the current incom-

plete assignment of operators to pipeline stages. If assignt(p)=true then

stage(p) has been already determined. If assignt(p)=false then earlyt(p)

and latet(p) have been already computed for p. Then the total register

size lower bound at scheduling step t can be estimated as:

..
)(min

)(max

)(

)(

)(




















 


Vv t

vprodp

t
vconsp

t
pslate

psearly

posvsizeLBRS (5.11)

154

LBRSt computed with (5.11) is a more precise estimation over those

computed with (5.3). Obviously LBRSt can only increase with increasing

of t. It means that the inequality lowerBoundt1≤lowerBoundt holds for

all scheduling steps t=1…n.

5.7.3 Dynamic ordering of operators

Reordering of operators makes pipeline scheduling more efficient

versus optimization time and pipeline quality. The dynamic heuristic

pipeline scheduling uses a heuristic weight p of nonscheduled opera-

tor pNnon:

,)(
1








i

iip p (5.12)

where k is the number of heuristic parameters; i, i=1…k are heuris-

tic factors satisfying the equality 1
...1

  ki i .The heuristic parameters

i(p),i=1…k describe features of nonscheduled operator p in pipeline

under optimization.

The parameters are defined to satisfy two key requirements. Firstly,

they have to vary in the range from 0 to 1. Secondly, the higher value of

the parameter is expected to imply better pipeline parameters. Then the

value of p varies in the range from 0 to 1. Operator pNnon with the

maximum value of p is selected as the next scheduled operator.

Four heuristic parameters have been used in the example shown in

Fig. 5.12 for the DFG of Fig. 5.2 and Table 5.1. The mobility of opera-

tors 1, 2, 6, 9, 13 and 14 determined by ASAP and ALAP schedules

(Fig. 5.6 and Fig. 5.7) is equal to 1, therefore these operators are as-

signed to stages 1, 1, 2, 3, 3 and 4 respectively. The early-late stages of

the rest operators 3, 4, 5, 7, 8, 10, 11, 12 and 15 are 1-3, 1-2, 1-4, 1-4, 1-

4, 1-4, 2-4, 2-4 and 2-4 respectively.

155

Figure. 5.12. Selection of next operator for assignment to a stage. Operators 1, 2, 6, 9,

13 and 14 are already assigned to stages s1-s4 implying the lower bound register size,

LBRS=61; operators 8 and 10 will be assigned at the end of the scheduling process;

for each other operator the heuristic weight, p is computed. Operator 12 has

the maximal weight of 0.713 and is selected as the next scheduled operator

The overall LBRS that is estimated with Equation (11) is equal to 61

as only variables a, f and r have a nonzero register size lower bound of

32, 16 and 13 respectively. Thus LBRS of variable a is 16(max(1,2,3)–

min(1)) = 162 = 32 as its consumers are operators 5, 6 and 9 and its

producer is operator 1. Operators 6, 9 and 1 are already assigned to stag-

es 2, 3 and 1 and the early stage of operator 5 is 1.

Operators 8 and 10 have the equal size of input and output therefore

the movement of operators over stages does not change the overall pipe-

line register size. Those operators will be assigned at the end of schedul-

156

ing process. The heuristic weight, p is computed for each other operator

with Equation (12) at the vector of heuristic factors, =(0.210, 0.301,

0.087, 0.401), which gives the global optimum solution. Operator 12 has

the maximum weight of 0.713 and is selected as the next scheduled op-

erator. Its heuristic parameters, (12) = (0.5, 0.933, 0.125, 0.789) are

evaluated according to the following procedure.

The first parameter is a complement-on-one of the relative dynam-

ic operator mobility over pipeline stages, 1(12)=1-(4-3)/(4-2)=0.5

where 3 is the dynamic mobility of operator 12. The maximal mobili-

ty among nonscheduled operators (operators 5 and 7 have the mobili-

ty of 4) is 4 and 2 is the minimal mobility among nonscheduled oper-

ators (operator 4 has the mobility of 2). Low values of the mobility

imply high values of 1.

Operator 12 can be assigned to stages 2, 3 and 4. For each possible

assignment a new LBRS is computed. For instance, if stage 2 is chosen

then the early-late stages of operators 4, 5 and 8 are modified with (9)

and (10) to 1-1, 1-2 and 1-2 respectively. As a result the LBRS of varia-

bles d, e and o1 is changed with (11) from 0 to 14, 36 and 34 respective-

ly. The overall LBRS increases from 61 to 145. If stages 3 and 4 are cho-

sen for operator 12 then the overall LBRS grows form 61 to 110 and 89

respectively.

The second parameter is a relative LBRS difference over available

stages of operator 12 among all nonscheduled operator, 2(12)=(145-

89)/60=0.933 where 145 is LBRS computed with (11) after assignment of

operator 12 to stage 2; 89 is LBRS after assignment of operator 12 to

stage 4; 60 is the maximal LBRS difference among available stages over

all nonscheduled operator (operator 15 has the maximal difference of

60). Parameter 2 shows the relative difference between the best and

worst cases of operator assignment to available stages.

The third parameter is a relative minimal LBRS increase over all

nonscheduled operator, 3(12) = 1(8961)/(9361)= 0.125 where 89

is the minimal LBRS increase of operator 12 over stages 2-4; 61 is the

minimal LBRS increase of operator 15; 93 is the minimal LBRS in-

crease (maximum among the operators) of operator 5. Parameter 3

shows the relative increase of LBRS after assignment of the operator

to the best available stage.

157

The fourth parameter is a relative difference between inputs and

outputs sizes of the operator, 4(12) = (18+1417)/ (16+16-13)=0.789

where 18, 14 and 17 are the sizes of variables h, d and o1 (operator

12) and 16, 16 and 13 are the sizes of variables a, f and p (operator 9

whose size difference is the largest). Parameter 4 shows the im-

portance of moving the operator over stages: moving should be done

to the earliest available stage if the outputs size is larger than the in-

puts size and vice versa.

Stage 4 has a minimum LBRS of 89 among stages 2, 3 and 4 and is

selected for assignment of operator 12. Applying the heuristics to

other operators yields the operator sequence, 11, 3, 4, 15, 7, 5, 8 and

10, the corresponding LBRS sequence, 102, 115, 129, 139, 151, 167,

167 and 167, and the corresponding stage sequence, 3, 1, 1, 3, 1, 4, 4

and 3. The resulting pipeline schedule is the global optimum solution

shown in Fig. 5.11.

5.7.4 Heuristic technique for pipeline optimization

The heuristic technique (HT) is represented in Fig. 5.13 as recursive

function HeuristicScheduling with one input top. It uses global variables

as follows:

 Stack is an array of n+1 records that include such elements as op-

erator, rank of avalable pipeline stages for the operator, current

position rp in the rank, current stage assigned to operator, mobili-

ty of operator, current lower bound of total register size, set

nschop of nonscheduled operators, arrays of early and late stages

for the nonscheduled operators, array vbnd of register sizes for all

variable in the scheduled algorithm;

 pipelineSchedule is a mapping of operators onto pipeline stages

generated by the heuristic algorithm;

 registerTotalSize is the overall pipeline registers size.

The slave function ExtractPipelineSchedule generates the resulting

pipelineSchedule. Function ChooseOperator computes heuristic parame-

ters  for nonscheduled operators from the set nschop and chooses an

operator with the maximal heuristic weight (5.12).
HeuristicScheduling(top) begin

158

if top≥n then

pipelineSchedule := ExtractPipelineSchedule(Stack);

registerTotalSize := Stack(top-1).bound;

return;

end if;

p:=ChooseOperator(Stack(top).nschop);

Stack(top).operator:=p;

Stack(top).rank:=GenerateRank(p);

mobility:=|Stack(top).rank|;

for rp in 1 to mobility do

stage:=Stack(top).rank(rp);

Stack(top).stage:=stage;

Stack(top).bound:=RegisterLowerBound(p, stage, Stack(top).vbnd);

Stack(top+1).nschop:=Stack(top).nschop\{p};

Stack(top+1).early := EarlyStages(Stack(top).early);

Stack(top+1).late:=LateStages(Stack(top).late);

if AssignmentConflict(Stack(top+1).early, Stack(top+1).late) then

continue;

end if;

Stack(top+1).vbnd := VariableRegisterBounds(Stack(top).vbnd);

HeuristicScheduling(top+1);

end for;

end.

Figure 5.13. Heuristic technique HT for pipeline optimization

Function GenerateRank computes a rank of pipeline stages which are

available for the selected operator p. Function RegisterLowerBound es-

timates LBRS for p using (5.11). Function EarlyStages computes using

(5.9) the early stage of each nonscheduled operator after assignment of p

to an avalable stage. Function LateStages computes using (5.10) the late

stage of each nonscheduled operator. Function AssignmentConflict re-

turns true if a nonscheduled operator q has been found for which ear-

ly(q)>late(q), otherwise it returns false. Function VariableRegister-

Bounds recalculates using (5.11) the lower bound register size for each

of vbnd.

5.7.5 Tuning heuristic factors

The heuristic weight p is a criterion for choosing a next scheduled

operator. The operator is assigned to a pipeline stage which gives a min-

159

imum of LBRS. The result of the operator choice significantly depends

not only on the heuristic parameters of , but also on the heuristic factors

of . The factors determine the weight of each parameter in the criterion.

Important parameters should have larger factor value. The optimization

problem in the solution space described by the vector  is to determine

the importance of each parameter during pipeline optimization. Conduct-

ed experiments show that the problem has many local optima. As the

function HeuristicScheduling is fast enough and it is possible to generate

many vectors  and to compute RS for each of them, a random search

and a genetic algorithm have been used to solve this problem. The ran-

dom search is capable of finding an optimal solution for RS, but very

often it yields a suboptimal solution.

5.8. Conclusion

A new pipeline synthesis and optimization methodology that starting

from partitions of a large dataflow design increases the data throughput

of whole design by selecting design partitions and by generating the

pipelined implementations has been presented. The methodology is ca-

pable of determining the most appropriate pipeline stage time and the

number of pipeline stages for each partition of the dataflow design.

Two pipeline optimization techniques that minimizes the total pipe-

line register size for each stage time and the stage count have also been

developed. The first methodology is called" least cost search branch and

bound" and the second is referred to as a "heuristic pipeline optimiza-

tion". The branch and bound algorithm is capable of finding the global

optimum pipeline schedule for low size designs, whereas the heuristic

algorithm is capable of finding close-to-optimal solutions also in the case

of large designs.

160

6. OPTIMIZATION OF PIPELINES FOR MEANINGFUL

APPLICATIONS

The pipeline optimization algorithms LCSBB and HT that are pro-

posed in the previous chapter and the downward and upward direction

traversal algorithms that are proposed in [3] and represented as ASAP

and ALAP are compared in this chapter on several meaningful test

benches.

6.1. Bayer filter based on improved linear interpolation

The Bayer filter test bench (Fig. 6.1) was considered in detail in

[77]. It contains 13 input ports, 5 output ports and 63 local variables,

totally 81 variables. The variable size varies in the range from 8 to

23, and the average size is 20.41. The Bayer filter also contains 68

operators including 32 additions, 19 subtractions, 3 multiplications

and 13 bitand operators.

A relative time delay is assigned to each operator as follows: 1.0 for

addition, 1.1 for subtraction, 3.0 for multiplication and 0.02 for bitand.

The total delay of all operators is 62.2. The design critical path length is

15.62 or 25.1% over the total operator delay.

As reported in [79], pipelines with 2 to 7 stages were optimized by

DFSBB and synthesized to FPGAs. The global optimum was obtained

for 2 and 3 stage pipelines and suboptimal solutions were generated for 4

up to 7 stage pipelines.

Table 6.1 reports pipeline scheduling results obtained by four

scheduling techniques: LCSBB, HT, ASAP and ALAP. One pipeline

stage count is represented with a range of stage time. LCSBB has

generated a global optimum for each stage time. HT has given total

register size that is very close to global optimum, 2.0% more on aver-

age. LCSBB and HT show superior results compared to both ASAP

and ALAP, 48.8% and 82.6% on average respectively.

It should be noted that for 7-stage pipeline the number of pipeline

registers, 60 is comparable with the number of operators, 68. This

proves the importance of register minimization problem.

161

Figure 6.1. Data flow of Bayer filter

Table 6.2 reports parameters of LCSBB that are obtained on Bayer

filter. The CPU time is less than 1 sec for 2 pipeline stages and is equal

to 959 sec for 7 stages. The number of pruned branches grows rapidly up

to 1818112224 and the number of updated optimal schedules grows form

1 to 4 with increasing the number of stages from 2 to 7. The number of

conflicts also grows rapidly.

162

Table 6.1

Results for Bayer filter obtained by LCSBB, HT, ASAP and ALAP

Sta-

ges

Stage

time

LCSBB HT ASAP ALAP

Register

size

Register

size
%

Register

size
%

Register

 size
%

1 15.62 0 0 0 0

2 15.60 100 100 0.0 100 0.0 142 42.0

11.62 100 100 0.0 100 0.0 248 148.0

10.52 108 123 13.9 123 13.9 286 164.8

10.12 116 116 0.0 146 25.9 263 126.7

9.42 116 116 0.0 169 45.7 301 159.5

8.52 124 124 0.0 192 54.8 270 117.7

8.30 147 147 0.0 215 46.3 285 93.9

3 7.42 232 232 0.0 315 35.8 381 64.2

7.12 240 240 0.0 338 40.8 464 93.3

6.32 240 240 0.0 361 50.4 479 99.6

6.30 271 286 5.5 407 50.2 494 82.3

6.12 294 294 0.0 430 46.3 532 81.0

5.32 340 355 4.4 453 33.2 501 47.4

4 5.22 387 396 2.3 599 54.8 681 76.0

5.12 403 403 0.0 622 54.3 658 63.3

5.10 403 403 0.0 668 65.8 673 67.0

4.32 426 441 3.5 691 62.2 672 57.8

4.30 472 472 0.0 760 61.0 702 48.7

5 4.10 573 588 2.6 883 54.1 836 45.9

4.00 596 612 2.7 929 55.9 920 54.4

3.32 650 657 1.1 975 50.0 926 42.5

3.22 650 665 2.3 998 53.5 926 42.5

6 3.20 752 759 0.9 1167 55.2 1128 50.0

3.12 759 774 2.0 1213 59.8 1235 62.7

3.10 842 881 4.6 1259 49.5 1250 48.5

7 3.00 960 990 3.1 1451 51.2 1383 44.1

On average: 2.0 48.8 82.6

Table 6.2

Parameters of LCSBB on Bayer filter

Stages Stage time
LCS branch and bound

CPU time Pruned branches Schedules Conflicts

2 8.30 <1 22 1 2

3 5.32 <1 3422 2 0

4 4.30 1 62453 1 64

5 3.22 <1 96725 2 119

6 3.10 14 24103979 3 294947

7 3.00 959 1818112224 4 151966

163

Table 6.3

Comparison of DFSBB against LCSBB (times) on Bayer filter
Stages CPU time Pruned branches Schedules Conflicts

2 1.00 14.09 6.00 1

3 1.00 6.86 4.50 1

4 1.00 6.14 27.00 5.48

5 1.00 10.76 15.50 53.47

6 8.36 21.45 12.00 0.04

7 1.54 3.03 11.75 216.71

 2.32 10.39 12.79 46.28

For DFSBB the CPU time, the number of pruned branches, the num-

ber of feasible complete schedules and the number of operator assign-

ment conflicts are by 2.32x, 10.39x, 12.79x and 46.28x larger on average

respectively over LCSBB (Table 6.3). LCSBB has given less overall reg-

isters size of 15.4% and 14.1% over DFSBB for the stage time of 3.1 (6

stages) and 3.0 (7 stages) respectively [79]. The CPU time for the heuris-

tic algorithm has not exceeded 1 sec for all stage time and all count of

pipeline stages.

The heuristic factors have been tuned for each stage time using the

random search technique. Each factor has been varied in a wide range of

values. The average factors over all the stage times and the stage counts

are average=(0.292, 0.299, 0.213, 0.196). Therefore, each factor is a sig-

nificant heuristic. Due to the variations of factors, total register size vari-

ations in the range from 0% up to 36.4% have been observed, 10.4% on

average. Therefore the tuning of the heuristic factors is an effective

mechanism of pipeline optimization.

It should be noted that the solution space grows very rapidly in the

case of the Bayer filter design depending on the number of pipeline stag-

es. It means that a huge number of pipeline schedules exist which are

very close to each other with respect to the total register size. In general,

the capability of LCSBB depends on the number of operators, on the

length of the critical path, on the mobility of operators and on the num-

ber of pipeline stages. LCSBB is capable of synthesizing optimal pipe-

lines with a low number of pipeline stages for large DFGs (>1000 opera-

tors) which have long critical paths and low mobility of operators. For

large designs the fast HT algorithm becomes a preferable option.

164

Figure 6.2. The ratio “maximum/ minimum” of total register size vs. pipeline stage time

for the Bayer filter design case. The ratio varies in the range from 1.94x to 4.68x

In order to measure the distribution of the total register size variation,

LCSBB has been modified in such a way to maximize the register size

instead of minimizing it. The resource gain has been estimated with the

ratio “maximum / minimum” of the total register size that is shown in

Fig. 6.2 as a function of pipeline stage time and can reach the significant

value of 4.68x. Each local minimum corresponds to the minimum stage

time for each number of pipeline stages.

6.2. Forward 88 discrete cosine transform

The forward discrete cosine transform FDCT64 has been implement-

ed in CAL as an actor consisting of one action and then automatically

transformed into a single basic block model by means of applying vari-

ous transformation including unrolling loops. The FDCT64 is a relative-

ly large design with 64 input ports, 64 output ports and 2304 local varia-

bles, for a total of 2432 variables. The word size varies in the range from

1 up to 32 bit and the average size is equal to about 23. FDCT64 core

processing module includes 2368 operators of which 336 are additions,

496 are subtractions, 64 are multiplications, 576 are right shifts, 64 are

left shifts and 832 are static assignments. A relative time delay has been

assigned to each operator as follows: 1.0 for addition, 1.1 for subtraction,

3.0 for multiplication and 0.1 for shift. The static assignment has no

hardware implementation correspondence, therefore its relative delay has

165

been set to 0.0. The total delay for all operators is 1137.6. The design

critical path length is 19.6 or 1.72% over total operator delay. LCSBB

cannot yield global optimum results for a large design such as FDCT64,

therefore HT algorithm has been used in this case.

Table 6.4 reports the parameters of pipeline schedules generated for

FDCT64. For each stage count in column 1 the minimal stage time is

given in column 2. Column 3 reports the register size depending on the

stage time for HP. The size has increased from 688 for 2 stages to 24896

for 9 stages. The results for ASAP that are given in columns 4 and 5 are

much worse (100.3% on average) over HT. ALAP has produced better

results on average (columns 6 and 7) over ASAP, and worse results

(50.0% on average) over HT. Within 2 and 3 pipeline stages the total

register size grows slowly from 688 to 4096 and starting from 4 stages

the size grows rapidly.

Table 6.4

Results for FDCT64 obtained by HT, ASAP and ALAP

Sta-

ges

Stage

time

HT ASAP ALAP

Register

size (bit)

Register

size (bit)
%

Register

size (bit)
%

2 19.59 688 2088 203.5 688 0.0

18.00 2048 2864 39.8 3072 50.0

17.00 2048 3776 84.4 4096 100.0

16.00 2048 3488 70.3 4608 125.0

15.00 2048 3608 76.2 4096 100.0

14.00 2048 4160 103.1 3072 50.0

13.00 2304 4736 105.6 2304 0.0

11.00 2560 7112 177.8 2560 0.0

10.00 3584 8672 142.0 4096 14.3

9.71 4096 7536 84.0 4608 12.5

3 9.00 4096 10272 150.8 7168 75.0

8.00 4096 9656 135.7 7168 75.0

6.70 4352 8752 101.1 7168 64.7

4 5.40 9440 17200 82.2 11264 19.3

5 4.30 12608 22104 75.3 13568 7.6

6 4.10 15872 27168 71.2 27392 72.6

7 3.30 20128 33232 65.1 32256 60.3

8 3.20 22784 37352 63.9 36528 60.3

9 3.00 24896 43344 74.1 40704 63.5

On average, %: 100.3 50.0

166

It is interesting to notice that the CPU time used by the HT algorithm

has resulted to stay within 2 sec for all pipeline stages. For large design

such as the FDCT64 only static heuristic parameters have been exploited

by the HT algorithm for operator ordering.

In case of FDCT64 design, HT yields much better results than

LCSBB in case of the Bayer filter, when comparing both to results of

ASAP and ALAP. Therefore, it can be concluded that HT is capable of

generating large pipelines that are close to optimal solutions.

6.3. Experimental results for random middle size designs

A program for the random generation of data flow graphs has been

developed to test the performances of a design with different statistical

properties of their operators. The generic parameters are the number of

operators, variables, input and output ports, the operator types, operator

delays and variable sizes. For conducting the experiments, the operator

types and associated probabilities have been chosen as follows: addition

(0.3), subtraction (0.25), multiplication (0.1), shift (0.1) and bitand

(0.25). The operator delays have been assigned to the same values used

in the previous experiments. The variable lifetime in terms of operator

interval is also a control parameter. By varying the parameter value it is

possible to generate DFGs with different critical path length.

In order to measure parameters of pipeline optimization techniques,

two random design series have been generated. The first one includes

five middle size designs constructed of 100 up to 300 operators. In Table

6.5, the total operator delay and critical path length is indicated for each

design. The critical path length varies in the range from 20% down to

16% of the total operator delay. For each variable its size was randomly

generated in the range from 4 to 28 and the average size is indicated for

each design in Table 6.5.
Each pipeline schedule constructed of 2, 3, 4 and 5 stages was opti-

mized with respect to the total register size for each design by LCSBB,

HT, ASAP and ALAP. In Table 6.5 the register size is given in bits for

LCSBB. The symbol * indicates suboptimal solutions for 5-stage pipe-

lines, therefore the comparison of HT, ASAP and ALAP over LCSBB in

% is given for 2-, 3- and 4-stage pipelines. The average register size pro-

167

duced by HT is only 2.28% larger than the minimum size produced by

LCSBB. It means that HT can be considered as a "close-to-optimal" op-

timization technique. Again, ASAP and ALAP results end to be much

worse (53.8% and 48.3% respectively) than LCSBB.

Table 6.5

Results for random middle size designs
Parameters Design

Number of operators 100 150 200 250 300

Total operator delay 111 152 175 231 280

Critical path 23.3 31.9 33.0 39.2 43.4

Variable average size 16.25 15.94 15.53 15.21 15.36

Pipeline registers size given by LCSBB (bit)

Stages

2 334 209 175 244 182

3 457 413 291 348 454

4 686 595 478 697 601

5 901* 805* 701* 732* 826*

Register size HT (%) 3.6 0.4 2.4 3.5 1.5

Register size ASAP (%) 49.3 50.8 64.1 31.1 73.9

Register size ALAP (%) 43.0 49.6 50.1 37.7 61.0

Variables average lifetime given by LCSBB (stages)

Stages

2 0.189 0.086 0.057 0.073 0.057

3 0.302 0.173 0.109 0.107 0.117

4 0.434 0.265 0.175 0.195 0.165

5 0.594 0.333 0.245 0.221 0.215

Var lifetime HT (%) 4.5 0.8 0.0 -4.2 0.9

Var lifetime ASAP (%) 35.5 30.3 27.8 11.4 30.7

Var lifetime ALAP (%) 24.8 21.3 35.2 21.3 18.8

Decrease in pipeline registers average size over variables average size (%)

Register size LCSBB % 8.4 9.3 16.2 18.2 34.1

Register size HT (%) 9.0 9.6 14.2 11.8 33.5

Register size ASAP (%) -2.7 -5.0 -7.4 0.3 2.5

Register size ALAP (%) -6.5 -10.4 4.5 2.7 0.3

Average CPU time for LCSBB (sec)

CPU time LCSBB (sec) 444 376 276 508 678

.

Two key factors influence the minimization of the total pipeline reg-

ister size: the reduction of the variables average lifetime in terms of pipe-

line stages and the decrease in the pipeline registers average size over the

variables average size. In Table 6.5 the variable lifetimes grow with the

168

increase of the stages number. The lifetime given by HT is very close to

the lifetime given by LCSBB. The variables average lifetime for ASAP

is 27.1% and for ALAP is 24.3% larger than for LCSBB. LCSBB and

HT have decreased significantly the pipeline registers average size over

the variables average size (17.2% and 15.6% on average respectively). It

is interesting to notice that HT (9.0) succeed in reducing the word width

better than the LCBB (8.4) for designs with about 100 operators. At the

same time LCBB reduces the lifetime of the registers in comparison to

the HT algorithm by a factor of 4.5%. As a result the LCBB algorithm

outperforms HT with respect to the register size by a factor of 3.6%.

ASAP and ALAP are not capable of assigning pipeline registers to small

size variables. Due to such limitation, the registers average size results to

increase of a factor 2.5% for ASAP and of 1.9% for ALAP over the vari-

able average size. LCSBB consumes more CPU time, from 276 to 678

sec.

6.4. Experimental results for random large size designs

The second series includes five large designs constructed of 1000 up

to 5000 operators (Table 6.6). The critical path length is about 10% of

the total operator delay for all design. The results reported in Table 6.6

show that HT yields superior results compared to both ASAP and ALAP,

32.7% and 40.6% on average respectively concerning the total register

size and 16.9% and 25.5% with respect to the variables average lifetime.

In contrast to ASAP and ALAP, it also results into smaller size variables

that are mapped onto the pipeline registers. It is also important to notice

that HT requires very limited CPU time for large design, only from 4 to

112 sec, thus, could be successfully used in commercial pipeline optimi-

zation tools.

6.5. Conclusion

Based on the mathematical models, design formulations and selected

algorithms, a program that automatically transforms a non-pipelined al-

gorithm into a pipelined design within a range of 1-2 min of CPU time

169

has been developed.

The experiments performed on the design test benches of a Bayer

filter, 88FDCT, middle size and large random designs, have proven

that the proposed LCSBB and HT algorithms yields much better re-

sults against ASAP and ALAP. Results characterized by a low pipe-

line registers size has been achieved by means of reducing the varia-

ble average lifetime in terms of pipeline stage interval and choosing

small size variables that are mapped onto pipeline registers inserted in

between stages.

Table 6.6

Results for random large designs
Parameters Design

Number of operators 1000 2000 3000 4000 5000

Operator total delay 885 1721 2640 3573 4469

Critical path 88 173 266 351 447

Variable average size 15.83 15.55 15.52 15.51 15.47

Pipeline registers size given by HT (bit)

Stages

2 484 568 676 976 1090

3 940 952 1455 1748 2388

4 1469 1712 2192 3067 3318

5 1995 2093 2895 3773 4430

Register size ASAP (%) 32.51 32.89 33.77 33.22 31.11

Register size ALAP (%) 66.59 43.94 32.34 27.38 32.64

Variables average lifetime given by HT (stages)

Stages

2 0.032 0.020 0.017 0.017 0.016

3 0.069 0.036 0.036 0.033 0.033

4 0.102 0.059 0.052 0.052 0.049

5 0.141 0.075 0.070 0.069 0.065

Var lifetime ASAP (%) 19.19 12.34 19.96 18.14 14.63

Var lifetime ALAP (%) 51.73 29.42 15.43 16.92 14.20

Decrease in pipeline registers average size over variables average size (%)

Register size HT (%) 12.03 13.10 14.14 10.76 13.33

Register size ASAP (%) 0.52 -4.38 2.59 -1.79 -0.84

Register size ALAP (%) 1.79 1.97 -0.42 1.73 -2.42

Average CPU time for HT (sec)

CPU time for HT (sec) 4 7 26 55 112

170

7. GENETIC ALGORITHM FOR TUNING OPTIMIZATION

HEURISTICS

7.1. Heuristics for solving optimization problems

A heuristic technique or simply a heuristic, is any approach to prob-

lem solving that employs a practical method, not guaranteed to be opti-

mal, perfect, but instead sufficient for reaching an immediate goal [55].

Where finding an optimal solution is impossible or impractical, heuristic

methods can speed up the process of finding a satisfactory solution.

Heuristics can be mental shortcuts that ease the cognitive load of

making a decision. A rule of thumb, a guesstimate, an educated guess, an

intuitive judgment, a common sense and profiling are examples that em-

ploy heuristics.

Heuristic is the strategy derived from previous experiences with simi-

lar problems. This strategy relies on using readily accessible information

to control problem solving in human beings and computers. The analysis

of heuristic search procedures includes a classification of graph search

strategies that put into perspective the approaches found in typical

presentations of search procedures.

Weight (p) represents an integrated heuristic of selecting operator p

in the partially generated pipeline, which is estimated as:

,)()(
1








i

ii pp (7.1)

where i(p) is a heuristic parameter of operator p; i is a factor at the

heuristic parameter; k is a number of parameters. The heuristic factors 

must satisfy the equality as follows:

.1
1







i

i
 (7.2)

171

In the heuristic algorithm, the heuristic parameters are dynamically

modified as they depend on the current optimization state, which is up-

dated on passing from one loop iteration to another. The heuristic param-

eter i(p) must meet the following two requirements. Its value has to

vary in the range from 0 to 1. The higher value of the parameter, the bet-

ter pipeline properties are expected. The operator pQ with the maxi-

mum value of (p) is selected as the next candidate for scheduling.

Operator p* whose weight (p*) is a maximal one among all non-

scheduled operators of set Q is the most preferable candidate for sched-

uling at the next step:

).(max*)(pp
Qp



 (7.3)

Let us consider in detail four heuristic parameters 14, the heuristic

technique HT uses and dynamically recalculates (see Section 5.7.3 of

this book) at each step of the pipeline optimization process. Fig. 7.1.

gives a strict definition of these parameters.

First parameter 1(p) is a complement-on-one of the relative dynamic

mobility of operator pQ over pipeline stages that are available for p. It

is estimated on absolute mobility(p), minimal mobilitymin and maximal

mobilitymax over all operator of Q. Low value of mobility(p) implies high

value of 1. This parameter will also be referred as mob.

Second parameter 2(p) is a relative lbrs difference over available for

p pipeline stages, among all operator of Q. It is estimated over minimal

rslbmin(p) and maximal rslbmax(p) on available stages, and maximal

drslbmax on all operator of Q. The higher lbrs difference for p the higher

value of 2. This parameter will also be referred as drslb.

Third parameter 3(p) is a complement-on-one of the relative increase

of minimal over stages lbrs for p against minimal lbrs over nonscheduled

operator of Q. The parameter shows the increase of minimal lbrs after

assignment of p to the best available stage against all operator of Q. It is

estimated over minimal rslbmin(p) of p on available stages, minimal

oprslbmin and maximal oprslbmax on the set Q of nonscheduled operator.

This parameter will also be referred as mrslb.

172

,
)(

1)(
minmax

min

1
mobilitymobility

mobilitypmobility
p






,1)()()( pearlyplatepmobility

),(minmin qmobilitymobility
Qq



)(maxmax qmobilitymobility
Qq



,
)()(

)(
max

minmax

2
drslb

prslbprslb
p




),,(min)(
)()(

min sprslbprslb
platespearly 



),,(max)(
)()(

max sprslbprslb
platespearly 



 )()(max minmaxmax qrslbqrslbdrslb
Qq




,
)(

1)(
minmax

minmin

3
oprslboprslb

oprslbprslb
p






),(min minmin qrslboprslb
Qq



)(max maxmax qrslboprslb
Qq



,
)()(

)(
max4

dsize

poutsizepinsize
p




,)()(
)(





pinputv

vsizepinsize

,)()(
)(





poutputv

vsizepoutsize

)()(maxmax qoutsizeqinsizedsize
Qq




Figure 7.1. Heuristics 1mob, 2drslb, 3rslb and 4dios for dynamic ordering

 of operators at each step of pipeline optimization

Fourth parameter 4(p) is a relative difference between overall input

variables size and overall output variables size of operator p. The param-

eter shows the importance of moving the operator over stages: moving

should be done to the earliest stage if the output variables size is larger

than the input variables size and vice versa. It is estimated over overall

inputs size insize(p), outputs size outsize(p) and the maximal size differ-

ence dsizemax over all operator of Q. This parameter will also be referred

as dios.

7.2. Motivation of tuning heuristics

The significance of the heuristic parameter i(p), i = 1 ... k in the inte-

173

grated heuristic (p) is determined by the value of factor i. The higher

is the value, the more important is the parameter. Best optimization re-

sults are usually correlated with the use of most important heuristics.

Searching for the best values of the factors in vector  is a complicated

optimization problem with many local optima.

Thus, in the pipeline optimization heuristic algorithm HT, the choice

of the next scheduled operator essentially depends not only on four heu-

ristic parameters 1 - 4, but also on the heuristic factors 1 - 4. Fig. 7.2

shows that for a 3-stage pipeline TB1000 the overall pipeline registers

size varies between 871 and 1163 bits at 1=0, 3=0,…,1, 4=0,…,1 and

2=1134. A high value of i is associated with the high im-

portance of the corresponding parameter i in the weight (p). A low

value of i is taken when the corresponding parameter i poorly recog-

nizes the best solutions.

Figure 7.2. Overall pipeline registers size variations from 871 to 1163 in solution space

projection 3-stage pipeline TB1000: heuristic factor 4 (dios) is horizontal axis,

factor 3 (mrslb) is vertical axis, factor 1=0 (mob), and factor 2= 113 4 (drslb)

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%bb%d0%b0%d0%b1%d0%be&translation=poorly&srcLang=ru&destLang=en

174

It is easy to see that finding an optimal value of vector  is a compli-

cated problem as the registers size has many local minima in the multi-

dimensional space. This Chapter presents a genetic algorithm that is ca-

pable of efficiently solving heuristics tuning problem.

7.3. Genetic algorithm of tuning heuristics

7.3.1. Basics

The vector of heuristic factors =(1,…,k) is an individual. The

heuristic factor i is a gen. The population is a set of individuals which

exist during the genetic algorithm operation. The generation is a set of

individuals which exist during one iteration of the genetic algorithm. A

fitness function F() of individual  represents quality of the corre-

sponding solution. In the pipeline optimization problem, it is determined

over the objective function that is a minimum of the overall pipeline reg-

isters size RS() obtained by HA. The fitness function F() is a differ-

ence between the maximum of RS(worst) of the worst individual in the

population and RS() of individual .

7.3.2. Genetic operations

The selection operation aims at choosing parents to perform a crosso-

ver or mutation operation and produce a next generation of individuals.

The fitness proportionate selection (FPS) evaluates the fitness func-

tion F() for each individual  and normalizes each fitness value with

dividing it by the sum of all fitness values. The sum of normalized val-

ues equals 1 and the values can be considered as probabilities. The popu-

lation is sorted on descending of fitness values. Accumulated normalized

fitness values are computed, a random number r between 0 and 1 is cho-

sen and the selected individual is the first one whose accumulated nor-

malized value is greater than r.

The worst parent selection (WPS) chooses a parent with the worst

fitness value and replaces it in the next generation with the best off-

spring in case the fitness value of the offspring is larger than fitness

value of the parent.

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Fitness_function

175

The worst individual selection (WIS) chooses the individual with the

worst fitness value in the current population and replaces it with the best

offspring in case the fitness value of the offspring is larger than fitness

value of the individual.

The half uniform crossover (HUX) chooses randomly half of gen in-

dices that are represented with a subset K1 of the set K={1,…,k}. HUX is

a partially matched crossover. The simple recombination of parent’s gens

is not sufficient for obtaining a correct offspring as for the new individu-

al the sum of heuristic factors may appear unequal to 1. Two following

cases for two parents are differentiated.

Case 1. The fitness values of 1 and 2 are approximately equal:

F(1)(F(2). In this case HUX tries to save the genotype of parent 1 in

the first offspring and the genotype of parent 2 in the second offspring.

The first offspring 3 is constructed of original gens of parent 1 which

are indexed with iK1 and of normalized gens of parent 2 which are

indexed with iK\K1. The second offspring 4 is constructed of original

gens of parent 2 which are indexed with iK\K1 and of normalized gens

of parent 1 which are indexed with iK1. The gen normalization is per-

formed with the ratios as follows:





1

1

Ki

ia  , (7.4)





1

2

Ki

ib  , (7.5)

   ba  111 , (7.6)

ab2 . (7.7)

Ratio 1 aims at the normalization of gens of 2 in offspring 3:

3
i=12

i for iK\K1. Ratio 2 aims at the normalization of gens of 1 in

offspring 4: 4
i=21

i for iK1.

Case 2. The fitness value of 1 significantly exceeds the fitness value

of 2: F(1)>(F(2). In this case HUX tries to save the genotype of par-

176

ent 1 in both offspring. The first offspring is the same as 3. The sec-

ond offspring 5 is constructed of original gens of parent 1 which are

indexed with iK\K1 and of the normalized gens of 2 which are indexed

with iK1. The gen normalization is performed as 5
i=2

i/2 for iK1.

An illustration of two cases of crossover HUX is given in Fig. 7.3. In

case 1 the fitness values of 175 and 173 of two parents are close, and

each offspring 3 and 4 tries to save the genotype of both parents. In

case 2 the fitness value of 175 of first parent is significantly higher than

the fitness value of 92 of second parent and each offspring, 3 and 5

tries to save the genotype of the first parent.

1=(0.31, 0.47, 0.09, 0.13), 2=(0.25, 0.14, 0.53, 0.08)

K1={1, 3}, K\K1={2, 4}

a=0.31+0.09=0.4, b=0.25+0.53=0.78

1=(10.4)/(10.78)=2.73, 2=0.78/0.4=1.95

3=(0.31, 0.38, 0.09, 0.22)

Case 1:

F(1)=175, F(2)=173

4=(0.60, 0.14, 0.18, 0.08)

Case 2:

F(1)=175, F(2)=92

5=(0.13, 0.47, 0.27, 0.13)

Figure 7.3. Illustration of crossover HUX

The single offspring crossover (SOX) takes two parents, 1 and 2

and produces one individual. Firstly, the heuristic factor weights  and 

are computed as:

 = F(1) / (F(1) + F(2)), (7.8)

 = 1  . (7.9)

Secondly, the single offspring  is calculated as a vector of weighted

sum of parent gens:

i =   1
i +   2

i for i=1…k. (7.10)

177

SOX:

1=(0.31, 0.47, 0.09, 0.13)

2=(0.25, 0.14, 0.53, 0.08)

F(1)=175

F(2)=92

=175/(175+92)=0.655

=10.655=0.345

=(0.29, 0.36, 0.24, 0.11)

TGM:

=0.3

=(0.31, 0.47, 0.09, 0.13)

i=2, j=4

=0.47*0.3=0.14

2=0.470.14=0.33

4=0.13+0.14=0.27

=(0.31, 0.33, 0.09, 0.27)

Figure 7.4. Illustration of crossover SOX and mutation TGM

The offspring meets all the requirements to the individual. Its gens

are closer to the first parent if F(1)>F(2), and are closer to the second

parent otherwise. This crossover tries to scan the region of the search

space that is closer to the point with best fitness function. An illustration

of crossover SOX is given in Fig. 7.4, left. The fitness values of 175 and

92 of two parents are used to calculate factors  and . Value 0.655 of 

is higher than value 0.345 of . Therefore, offspring  is closer to parent

1 over parent 2.

The two gene mutation (TGM) alters two heuristic factor values in

one parent 1 from its initial state. The heuristic factors 1
i and 1

j are

selected randomly. The corresponding factor values in the single off-

spring  are calculates with a mutation factor  whose value satisfies

inequality 0<<1:

 =   1
i,, (7.11)

i = 1
i  , (7.12)

j = 1
j + . (7.13)

TGM is capable of correctly changing the value of any two heuristic

factors in opposite direction. An illustration of TGM is given in Fig. 7.4,

right. The value of randomly chosen heuristic factor 2 is decreased by

0.14 at the mutation factor =0.3 and the value of 4 is increased by

0.14. To determine what will be performed next, crossover or mutation,

two probabilities are used: pcross and pmut.

178

7.3.3. Genetic algorithm

Fig. 7.5 summarizes the genetic algorithm (GA). GA consists of an

initialization stage and a loop that iteratively updates the population by

means of genetic operators in such a way as to find a schedule with the

minimal overall pipeline registers size. For a small design or a large de-

sign with few pipeline stages, the exit condition is defined over the max-

imum number of iterations, which give no improvement of the best indi-

vidual. For a large design and/or a large number of pipeline stages, it is

defined over a CPU time constraint.

GA is a random strategy at all steps of its operation. It randomly

chooses the genetic operation, randomly chooses parents for performing

crossover and mutation operations, randomly performs these operations,

and randomly updates the population of individuals.

1. Produce initial population by repeatedly generating k-1 random

numbers i, i=1…k-1 between 0 and 1, ordering the numbers

on ascending, computing next individual as =(1,

21,…,k-1k-2, 1k-1), and adding it to the population.

2. Perform the heuristic algorithm for each individual  that is

interpreted as a vector of heuristic factors, find the worst indi-

vidual, compute the fitness function F() for all individuals

and reorder the individuals on descending of F().

3. while (not Exit condition) do

4. Randomly choose genetic operation, crossover or mutation

with probabilities pcross and pmut respectively.

5. Randomly choose parents using selection operation FPS.

6. Perform crossover HUCX or SOCX and obtain two or one

offspring.

7. Perform the heuristic algorithm for each offspring to obtain

F() for each offspring .

8. Perform selection operation WPS or WIS to update popula-

tion.

end while

9. Return the best individual.

Figure 7.5. Genetic algorithm for optimization of heuristic factors

179

7.4. Two modes of exploiting the genetic algorithm

GA can be exploited in two modes: (1) while actually solving the op-

timization problem in real time, and (2) during accumulation of

knowledge on the best heuristic factors. In the first mode, GA searches

for the best heuristic factors for one set of input data of the heuristic al-

gorithm. In the second mode, GA accompanies the heuristic algorithm

regarding heuristic factors, which executes many times on various input

data. It results in generating cumulative distribution functions for all heu-

ristic factors.

7.4.1. Solving optimization problem

The first mode of actual solving the optimization task over tuning the

heuristic factors requires GA to be capable of generating at least 50-100

individuals in population in acceptable CPU time. In this case the

runtime of the heuristic algorithm (in particular the runtime of HT of

pipeline optimization) should not exceed 1-2 sec.

For Intel i3 CPU it is feasible for 1-7 stage pipelines for the design

size of 1000 operators. For larger designs, GA can find a high quality

solution for only 2-3 stage pipelines. Of course GA works perfectly for

designs of <1000 operators.

7.4.2. Evaluation of cumulative distribution functions

The second mode aims at preliminary extracting and accumulating

knowledge on the heuristics and on the best heuristic factors 1k,

which describe importance of these heuristics in the integrated optimiza-

tion criterion. In this case, the GA runtime constraint may be taken of

tens and hundreds of minute.

Vector best of the best heuristic factors can be treated as a random

continuous variable. Its probability distribution can be estimated based

on the multiple execution of GA on various design and various number

of pipeline stages. Let U be the number of GA runs and u is the vector

of best heuristic factor values for the uth run, u=1…U. Each projection

i
u, i=1…k of the vector can be represented with a histogram hi(j),

180

j=1…w that divides (Fig. 7.6) the interval [0,1] of i
u values into w parts

with step=1/w. The jth subinterval, j=1…w includes the factor values of

the range from (j1)step to jstep. The value of hi(j) is the number of

vector factors whose value belong to the jth subinterval in projection i
u.

Fig. 7.6 gives an example of the histogram for factor 2 at the drslb

heuristic. The histogram aims at estimating the probability density func-

tion fi(j)=hi(j)/U, and the cumulative probability distribution function,

 


j

v ii vfjQ
1

)()(. Fig. 7.7 provides an example of the cumulative

probability function of factor 2.

Figure 7.6. Histogram of the best value of factor 2 (drslb) in HT

Figure 7.7. Estimation of cumulative probability distribution function (CDF) for the best

value of factor 2 (drslb)

https://en.wikipedia.org/wiki/Probability_density_function

181

7.4.3. Random algorithm of searching for heuristic factors

In their turn, the cumulative function is a basis for efficient random

search for an optimal solution using the heuristic algorithm. This search

can produce the initial generation of individuals and initialize the popula-

tion in GA. Fig. 7.8 presents a random search algorithm (RA) for pro-

ducing promising heuristic factors. For each heuristic, it firstly generates

a uniform random number, determines the lowest subinterval whose cu-

mulative function value is not less than the random number, and calcu-

lates a preliminary heuristic factor value. Secondly, it normalizes the

vector of preliminary factor values by means of computing the values

sum and dividing each factor value by this sum. And finally, it calls the

heuristic algorithm with the randomly obtained factors, which returns the

value of fitness function. This procedure repeats until the CPU time con-

straint is not met.

51. for each i in {1…k} do

2. Generate random number i with uniform probability distribu-

tion.

3. Find lowest value j between 1 and w such that Qi(j) i.

4. Assign i=jstep.

end for

5. Calculate sum s of i, i=1…k.

6. For i in {1…k} assign i:=i/s (normalization) .

7. Compute fitness function F() by call the heuristic algorithm with

heuristic factors =(1,…,k) as actual parameters.

Figure 7.8. Random search algorithm (RA) for generating heuristic factors

7.5. Experimental results

7.5.1. Test benches for pipeline optimization

The random test benches (TB1000-TB5000) that are described in [79]

and consist of 1000-5000 operators are exploited intensively in this book

in order to study properties of the heuristics and algorithms that have

been proposed. TB1000-TB5000 are constructed of such operators as

addition, subtraction, multiplication and logical operators. The probabil-

182

ity of appearing the operators is 0.3, 0.25, 0.1 and 0.35 and the operator

relative delay is 1.0, 1.1, 3.0 and 0.1 respectively.

The variable size varies between 4 and 28 and equals to 15.83 on av-

erage. The design critical path length is about 10% of the total operators

delay for all test benches. All experiments were performed on the Intel®

Core™ i3 CPU 550 @ 3.20 GHz 3.19 GHz, 4 GB.

7.5.2. Optimization of heuristics

We have written a computer program that measures the effectiveness

of each of four heuristics for pipeline optimization with respect to the

registers size minimization. The program divides each axis of the search

space, which is associated with a heuristic factor, into intervals by means

of 21 points from 0.0 to 1.0 with the step of 0.05. As only three of four

heuristics are mutually independent, it represents the search space with

1771 points corresponding to various combinations of the factor values.

Fig. 7.9 shows that the number of combinations equals 1 if one of the

factors has the value of 1.0 and the number equals 231 if one of the fac-

tors has the value of 0.0. The program computes the overall pipeline reg-

isters size using HT for each point of the search space.

Two of four heuristics can be used in the static mode. These are 1

(mob) and 4=11 (dios). In this case, the optimization space includes

only 21 points (Fig. 7.10). The statically heuristic algorithm orders oper-

ators before optimizing the pipeline. The pipeline optimization results

can significantly depend on what point has been chosen. The value of

0.25 of the static heuristic factor 1 decreases the registers size RS by

12.1% over the value of 0.60.

Fig. 7.11 presents a minimum of RS for TB1000 3-stage pipeline

among all factor value combinations. The average minimum RS is equal

to 881.1 for 2, is equal to 887.19 for 4, is equal to 887.95 for 1 and is

equal to 923.38 for 3. Fig. 7.12 also proves the effectiveness of the heu-

ristic 2. The average RS decreases with increasing the value of 2. This

is a sign of high importance of drslb in the weighted criterion (7.1). The

importance of other heuristics decreases in the order as follows: 4, 1

and 3. It can be seen, the lower value of 3 implies the lower RS.

183

Figure 7.9. Number of combinations of three heuristic factors values vs. the factor value

of selected heuristic (21 values for one factor)

Figure 7.10. Overall pipeline registers size RS (bits) for 10-stage pipeline TB1000

obtained by heuristic algorithm that uses static heuristics vs. heuristic factor 1 (mob)

Figure 7.11. Minimum of overall registers size subtracted by 871 vs. heuristic factor

value: 1mob (dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot)

184

Figure 7.12. Average overall registers size subtracted by 888 vs. heuristic factor

value: 1mob (dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot)

Figure 7.13. Overall registers size range (%) vs. heuristic factor value: 1mob

(dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot)

It is important for the optimization, what heuristic factor is capable of

changing RS and in what direction. Fig. 7.13 reports that choosing a par-

ticular value of 1 or 3 allows large variations in RS due to varying the

value of other factors. At the same time an appropriate selection of the

value of 2 or 4 reduces the variations and may lead to rapidly finding a

minimum of RS. It should be noted that there is a slight correlation be-

tween drslb and dios and between drslb and mob.

185

7.5.3. Cumulative distribution probability functions of heuristic

factors

GA is capable of obtaining the best heuristic factor values for various

deigns and various number of pipeline stages. The cumulative distribu-

tion probability functions (CDF) that are shown in Fig. 7.14 are generat-

ed on the best values of heuristic factors that result from numerous opti-

mization runs for the designs TB1000-TB5000.

The average values of the best factors at the mob, drslb, mrslb and

dios heuristics are as follows: 2=0.466, 1=0.292, 4=0.186 and

3=0.056. Each best factor takes values in a restricted interval. Thus, 2

should be between 0.15 and 0.9, 1 should be between 0.0 and 0.6, 4

should be between 0.0 and 0.55, and 3 should be between 0.0 and 0.25.

CDFs that are presented in Fig. 7.14 are an effective facility for gen-

erating the initial population in GA using the random algorithm RA

(Fig. 7.8). These functions can be also used as a fast solution search tool

in the case when only few HT runs can be done in an acceptable runtime.

Figure 7.14. Cumulative probability distribution functions (CDF) for best heuristic

factors: 1mob (dash), 2drslb (solid), 3mrslb (round dot), 4dios (dash dot)

186

7.5.4. Tuning genetic algorithm

In order to properly choose in each design case the most efficient

genetic operations among those proposed in section 7.3.2, several ex-

periments have been done on large designs. Two of three curves that

are shown in Fig. 7.15 compare two crossovers HUX and SOX in case

when the mutation operation is not used. The first 50 individuals are

generated randomly with a uniform probability distribution. Starting

conditions for SOX (884.8) have appeared to be preferable over start-

ing conditions for HUX (885.8).

But very quickly (after generating the 80 th individual) HUX started

to give the registers size RS much lower than SOX and this difference

increases with evolution of the population. The conclusion is as fol-

lows: SOX is preferable on a restricted population size and HUX is

preferable when more individuals can be generated. Both crossovers

can be used in the same genetic algorithm. The choice of one of them

can be performed randomly at each iteration of the genetic algorithm.

Third curve CDF-HUX in Fig. 7.15 shows that the replacement of the

uniform probability distribution with the cumulative probability distribu-

tion functions for the heuristics factors that are shown in Fig. 7.14 speeds

up the reduction of RS for a low-size population but can give a worse

result for a large-size population. The random search algorithm RA gen-

erates individuals (heuristic factors) in the initial population and can be

used for implementing the mutation operation.

Several experiments have been done in order to formulate the rules of

choice between the operations of worst parent selection (WPS) and worst

individual in population selection (WIS). Both operations give close

results very frequently for the pipeline optimization task. At the same

time, WPS may appear prefarable over WIS as it can preserve the diverse

genofond of the population. On its turn, WIS can produce a population

that includes a lot of very close individuals. For designs that can be

optimized with a large population, probability pcross of crossover may be

close to 1. For designs that can be represented with a small population,

probability pmut of mutation and mutation factor  should be increased as

in this case the search space can be scanned more thoroughly.

187

Figure 7.15. Overall registers size RS (bit) in 3-stage pipeline optimized by crossover

HUX (solid), SOX (round dot) and CDF-HUX (dash) vs. population size

(average on 5 runs of TB1000 for each crossover)

7.5.5. Effectiveness of genetic algorithm

Fig. 7.16 shows the dependency of the overall pipeline registers

size RS on the design size, which is obtained for three optimization

algorithms: ASAP, ALAP and GA. The size varies from 1000 to 5000

operators, and the registers size varies from 1288 to 4237 bits. GA

overcomes ASAP by 50.31%, 50.66%, 49.98%, 43.34% and 35.02%

for the design size of 1000, 2000, 3000, 4000 and 5000 operators re-

spectively. GA has 105.43% of gain over ALAP for the design size of

1000 operators. Then the gain reduces to 43.95%, 36.68%, 31.95%

and 35.63% for the size of 2000, 3000, 4000 and 5000 operators re-

spectively. The gain is obtained due to the own properties of the heu-

ristic algorithm (about 70%), and due to the optimization of heuristic

factors by the genetic algorithm GA (about 30%).

The design size significantly influences the runtime of the heuristic

algorithm in particular, and influences the runtime of GA in general.

Within 100 sec of CPU, the genetic algorithm GA has generated 874,

188

294, 95, 65 and 79 individuals of the population for the design size of

1000, 2000, 3000, 4000 and 5000 operators respectively.

Figure 7.16. Overall registers size RS (bit) in 4-stage pipeline optimized by GA (sold),

ASAP (dash) и ALAP (dash dot) vs. design size

7.6. Conclusion

Exact optimization techniques yield a global optimum solution for

small-size problems. Heuristic optimization techniques are capable of

handling large-size problems but are not able to guarantee finding an

exact solution. They can find a close to optimum solution, which de-

pends on heuristics that are exploited.

Usually several heuristics can be incorporated in a heuristic algo-

rithm. It is difficult to determine, which of them are more important, and

which are less important. In this chapter, we have presented a genetic

algorithm, which can search for an optimal heuristic factor for each heu-

ristic that is exploited. The factor determines the importance of the given

heuristic in an integrated heuristic, which recognizes preferable solutions

during solving the optimization problem.

189

8. NET ALGORITHMS

A schedule for a sequential finite state machine defines a distribution

of statements on control steps taking into account constraints on time and

resources. A net schedule defines both a partial precedence and concur-

rent execution of the statements under the same constraints.

This chapter introduces a net scheduling and allocation model, a

method, and techniques that allow to generate net schedules which min-

imize either the execution time or resources. The net schedule is a source

to synthesize a sequential schedule with chaining, multi-cycling, and

pipelining. Moreover the net schedule can be directly mapped to a com-

puting architecture or a parallel program. Experimental results show that

the net schedule execution time is more than 20% less than the sequential

schedule execution time in the case of variable execution time of opera-

tors, statements and program code fragments.

The theoretical models and methods of this chapter can first of all be

applied to the design and optimization of digital systems. Thus they are

implemented in the Ahiles VHDL-based high-level synthesis system

which is described below. Additionally these models and methods can be

used for the generation and optimization of parallel programs.

8.1. Sequential scheduling of algorithms

Scheduling is the first task in the synthesis process. Its results are

most important for the final parameters of the design. It should be noted,

the scheduling task is a NP-hard problem.

The known scheduling techniques such as ASAP, ALAP, list, free-

dom-based, force-directed, path-based scheduling, and integer linear

programming formulation use the precedence relation between opera-

tors/statements which is extracted from the data and control flow graphs

as input data for sequential scheduling.

Usually two optimization criteria are considered during the schedul-

ing: to minimize the execution time and to minimize the resources. In the

first case statements are parallelized to execute on the same control step.

In the second case, statements are distributed on different control steps to

execute on a same functional unit.

190

Two basic scheduling techniques synthesize the sequential schedule

with the shortest execution time and maximum resources. These are “as

soon as possible” (ASAP) and “as late as possible” (ALAP) [53]. ASAP

schedules statements on the control steps from the first to the last. A

statement is scheduled immediately if its predecessors have been sched-

uled. ALAP schedules statements on the control steps from the last to the

first. A statement is scheduled immediately if its successors have been

scheduled.

entity DIFFEQ is

port(DXP,AP,XP,UP: in BIT_VECTOR(7 downto 0);

YP : inout BIT_VECTOR(7 downto 0);

CLOCK,START: in BIT;

READY : out BIT);

end DIFFEQ;
architecture BEHAVIOR of DIFFEQ is

begin

process

variable DX,A,X,Y,U : BIT_VECTOR(7 downto 0);

variable B,C,D,E,H,G : BIT_VECTOR(7 downto 0);

variable R:BOOLEAN;

begin

wait until CLOCK'EVENT and CLOCK='1' and START='1';

READY<='0'; DX:=DXP; A:=AP; X:=XP; Y:=YP; U:=UP;

loop

R:=X<A; --1

exit when not R; --2

C:=X+(2*X); --3

B:=U*DX; --4

D:=B*C; --5

G:=U-D; --6

E:=Y*DX; --7

H:=E+(2*E); --8

U:=G-H; --9

X:=X+DX; --10

Y:=Y+B; --11

end loop;

wait until CLOCK'EVENT and CLOCK='1';

READY<='1'; YP<=Y;

end process;

end BEHAVIOR;

Figure 8.1. Differential equation integrating algorithm (DiffEq) in VHDL

191

The differential equation integrating algorithm (DiffEq) [20] shown in

Fig. 8.1 and represented in VHDL [45] is used in this paper to illustrate

scheduling techniques. ASAP scheduling is given in Fig. 8.2 and ALAP

scheduling is given in Fig. 8.3.

 2

 3

 4

7

8

Control step

5

10 4
 < + *

*

 *

 +

Operators

 1

2
exit

1 3
+

 6 -

 -
9

11
 +

Figure 8.2. How ASAP scheduling handles DiffEq

 2

 3

 4

7

8

Control step

5

10

4

 <

+ *

* *

 +

Operators

 1

2
exit

1

3

+

6
-

 -
9 11

 +

Figure 8.3. How ALAP scheduling handles DiffEq

List scheduling is a resources scheduling technique [53]. It assumes a

number of function units of each type to be given. The technique sched-

ules statements consecutively from the first to the last control steps, tak-

192

ing into account the constraints on resources. List scheduling for DiffEq

with two ALUs and one multiplier is show in Fig. 8.4.

 2

 3

 4

7

 8

Control step

5 10

4

 <
+ *

 *

 *

 +

Operators

 1
2 Exit

1
3

 5

+

6 -

 - 9

11 +

Figure 8.4. How list scheduling handles DiffEq

Freedom-based scheduling maps statements onto control steps tak-

ing into account the range of the steps which could be paired with the

statement. The statements on the critical path can be assigned to the

tightest range of steps and have to be scheduled at the beginning of

the scheduling process.

Force-directed scheduling is a time-constrained scheduling technique.

The technique schedules statements step by step in accordance with

"force" values. Each scheduling step follows by the re-evaluation of the

"force" values.

Integer linear programming formulation can be resource, time, and

feasible constrained scheduling technique. It can find optimal solutions

for practical problems. The described scheduling techniques can generate

schedules with chaining, multicycling, pipelining. They assume the op-

erator execution time to be constant.

The goal of allocation is to minimize computational resources. Ef-

fective allocation algorithms are based on interference and preference

graph coloring. The goal of allocation is to minimize the resources.

193

The algorithm operations are mapped onto functional units, variables

are mapped onto registers, and data dependences are mapped onto

multiplexers, buses and partitioned buses. It should be noted, the al-

location task is a NP-hard problem.

After the data path is synthesized, control signals (select signals for

multi-functional units and multiplexers, load-enable signals for registers)

are introduced and a finite state machine is generated based on the

scheduled behavioral description. The data path and finite state machine

are described in a hardware description language and used as input for

logic synthesis.

Effective high-level synthesis methodologies, algorithms and systems

(AMICAL, Cathedral, CMUDA, DAA, ELLA, HAL, HIS, Yorktown

Silicon Compiler, PASS, PSAL2, Sehwa, and others) for digital circuits

have been developed [20, 53, 54]. Using a source behavioral description

in a hardware description language (for example VHDL [62]) they de-

sign a register transfer level (RTL) structure consisting of two parts: the

data path (DP) and the control unit (CU). To synthesize the data path, the

following tasks are solved: compiling a behavioral description into an

internal form, control and data flow graphs (CFG and DFG) generation,

analyzing these graphs, scheduling, and allocation of statements. Known

scheduling techniques synthesizing a sequential schedule introduce con-

trol steps and finite state machine (FSM) states into the behavior distrib-

uting the statements on the control steps.

8.2. Net scheduling of algorithms

8.2.1. Net schedule

The statements, control steps, and FSM states are considered in the

sequential schedule. The sequential schedule describes a distribution of

the statements onto the control steps and FSM states. Net scheduling

does not introduce control steps and states; it defines only precedence

and concurrency between statements, which conserves both time and

resources [60].

Let N={1,...n} be a set of the statement numbers. Directed graph

GH=(N,H) can describe the net schedule, where H is the statement’s di-

rect precedence relation. If statements i1,...,ik are direct predecessors of

194

statement j in the net schedule, then j may execute when all of its prede-

cessors have finished executing.

In a binary matrix, an element of the matrix can take one of two val-

ues. Elements of a triple matrix can take one of three elements.

Binary matrix Q describes data dependences between the statements,

in which element qi,j equals 1 if i is a predecessor of j, and equals 0 oth-

erwise. In triple matrix W, element wi,j equals

 0 if the statements i and j may not execute on the same func-

tional unit

 1 if the statements may execute on the same functional unit se-

quentially

 2 if the statements may execute on the same functional unit

concurrently

The last case applies when the statements are orthogonal [57]; that is

the statements are “if c1 then P1; end if;“ and “if c2 then P2; end if;” and

conditional signals or variables c1 and c2 are orthogonal (their conjunc-

tion equals false). We can equivalently transform any VHDL behavioral

description, without changing mapping functions, to the form consisting

of if-then statements and loop-statements without an iteration scheme

[69, 70]. Note that an orthogonal statement cannot precede another or-

thogonal statement. For the DiffEq in Fig. 8.1, Ahiles gives us the matri-

ces Q and W in Fig. 8.5, assuming that "<", "+", "-" operators execute on

the same ALU. Statements i and j are sequential if a path exists between

i and j on the graph GH, otherwise the statements are concurrent.











































00000000000

00000000000

00000000000

00100000000

10110000000

00100000000

00100100000

00100110000

00100110000

10000000000

10000000010

Q











































01110100101

10110100101

11010100101

11100100101

00000011000

11110000101

00001001000

00001010000

11110100001

00000000000

11110100100

W

Figure 8.5. Matrices for DiffEq

195

Two statements are mutually exclusive in the net schedule if they

never execute simultaneously. For this to be true, the statements must

be orthogonal or sequential. If mutually exclusive statements may

execute on the same functional unit, they are compatible and can

share same resources.

The zero elements of the top part of the Q matrix define maximum set

DM = {(i,j) | qi,j=0, i<j} of the concurrent statements pairs. Among the

pairs of set DM are the pairs of set DO, which are orthogonal statements.

Set D=DM defines the net schedule of maximum concurrency. The nodes

and arcs in Fig. 8.2 represent the most concurrent schedule for DiffEq.

Let tj and sj be functional unit j’s execution time and cost respective-

ly. Time tj can be constant or variable. If fu(i) denotes the type of func-

tional unit executing statement i, net schedule execution time is







ui

ifu
Uu

tT
D

)(max , (8.1)

where
D

U is the set of cliques of graph  DNG
D

, constructed on set

N of the nodes that represent statements and on set D of the edges that

represent sequential statements pairs. The graph
D

G clique that gives the

maximum sum of the statements’ execution time defines the execution

time. Schedule cost is













 jv
Vv

N

j

j msS
D

FU

max
1

, (8.2)

where NFU is the number of functional unit types. DV is the set of the

cliques of graph GD = (N, D) constructed on set N of the nodes and on set

D of the edges that are the pairs of concurrent statements. The number of

the functional units of type j needed to execute clique v statements con-

currently is mjv.

196

The sum of costs of the various functional unit types defines the total

cost. Clique set DV provides the number of functional units of any type.

Sets
D

U and DV describe the maximum paths and sections on graph GH.

Hence, the longest path defines the execution time, and the widest sec-

tion defines the cost.

8.2.2. Optimizing a net schedule

To optimize a schedule, net scheduling must meet one of two goals:

 minimizing the execution time with given constraints on the re-

sources

 minimizing the resources with given constraints on the execu-

tion time

While set DM determines the most concurrent (and thus fastest) net

schedule, subset D of DM determines a net schedule of less concurrency,

yet lower system cost. Set D also defines execution time T and cost S.

Finding pairs of concurrent operators

Ahiles can find up to 2r different net schedules, where r is the cardi-

nality of set DM.

Because of the concurrent execution of any pair of set DO of orthogo-

nal statements which does not require additional execution time and re-

sources, we can always include DO into D. For instance, DiffEq can be

potentially a source for generating 239 net schedules.

Synthesizing a net schedule involves solving one of two optimization

tasks, depending on the optimization criteria selected:

 0|min SST DD
DD M




 (8.3)

or

 0|min TTS DD
DD M




, (8.4)

197

where TO and SO are the constraints on execution time and cost. To ac-

count for execution time (Equation 8.1) and cost (Equation 8.2) esti-

mates, we reformulate Equation 8.3 and 8.4 as the tasks





























 


0

1

)(maxmaxmin Smst
FU

D
DM

N

j Vv

jvj

ui

ifu
UuDD

 (8.5)

and



























 




 


0)(

1

maxmaxmin Stms
ui

ifu
Uu

N

j Vv

jvj
DD

D

FU

D
M

. (8.6)

Two techniques let us generate D while solving Equation 8.5 and 8.6

consecutively adding pairs to D and consecutively moving pairs out of

D. The first technique solves Equation 8.5 and starts with set D=DO. The

second technique solves Equation 8.6, starts with set DM, and never

moves orthogonal pairs DO. (Because of the concurrency of orthogonal

statements, the pairs of DO do not require additional execution time and

resources. Hence we can always include DO in D.)

Both techniques select a pair for including or removing by analyzing

the maximum-weight cliques of sets
D

U and DV ; the techniques select

pairs that decrease the execution time and not increase the cost. The ad-

dition of pairs to set D is complete when any pair together with D pro-

duces cost S greater than bounding cost SO or produces a number of func-

tional units greater than the bounding number. Removing pairs from set

D is complete when each pair to be removed implies time T greater than

bounding time TO. Adding or removing pairs in different order yields

different contents for D.

Fig. 8.6 shows the influence D has on the net schedule execution time

T and cost S. When D is empty, the process yields the net schedule of

maximum execution time Tmax and minimum cost Smin. When D equals

DM, the net schedule uses minimum execution time Tmin and maximum

cost Smax. Including a pair in D can decrease the execution time, while

removing a pair from D can decrease the cost.

198

Recalculating clique sets

Adding or removing a pair from D changes the clique set according to

four rules. Two rules transform
D

U into
"D

U when we add pair

d = (i, j)  DM into set D creating new set D"=D{d}. The first rule

splits a clique containing statements i and j into two new cliques of

less cardinality; the second rule allows the removal of cliques from

the new set D":

 T

Tmax  

  D’D

 5

  D

 6

  D”D

Tmin  DM

 Smin Smax S

Figure 8.6. Set D’s effect on concurrency space

 Rule 1 (splitting)  If element u
D

U satisfies the condition that

{i, j}  u, then the elements u \ {i} and u \ {j} are added to set

"D
U ; otherwise element u is;

 Rule 2 (absorbing)  If in set
"D

U two elements u' and u" exist for

which u'  u", then element u" is removed from the set.

199

Two additional rules recalculate set DV as new set "DV . The third rule

combines two cliques containing both statements i and j into a new

clique that is included into set "DV . The fourth rule removes the absorbed

cliques from the set:

 Rule 3 (merging)  If v'  v"  {i, j} is true for v', v"  DV then

element v = (v'  v")  {i, j} is added to "DV . All elements of DV

are also included in "DV .

 Rule 4 (absorbing)  If in set "DV two elements v' and v" exist for

which v'  v" then element v" is removed from the set.

If we remove pair d from set D and D' = D \ {d} is the new set, then

rules 1 and 2 transform set DV into the set "DV and rules 3 and 4 trans-

form set
D

U into the set
"D

U .

Solving Equation 8.5 to minimize the execution time for DiffEq with

one multiplier and two ALUs (tMUL = 100 ns, tALU = 40 ns, sMUL = 5 and

sALU = 1) produces set , which contains 31 pairs, as described by the zero

elements of the top right part of matrix
x

DQ (Fig. 8.7). The markings

along the column heads indicate the exit statement, e, and VHDL opera-

tors <, +, =, and .

No pair can be added to D without increasing the number of function-

al units and exceeding the constraints. For each clique of set
D

U , the

execution time is the sum of the clique statements’ execution time. Over-

all execution time is 340 ns, and the cost is 7 (Fig. 8.8).

If we add pair (i, j) to set D statements i and j are concurrent; if

(i, j) is not included in set DM, statement i precedes statement j. For

pair (i, j) of set DM not included in set D, we know that statements i

and j are not concurrent, but do not know whether i should precede j

or j should precede i.

Introducing Boolean variable xij into matrix
x

DQ for pair (i, j) and its

negotiation ijx for pair (j, i) solve this problem. If xij equals 1, statement

i precedes statement j. If the value equals 0, j precedes i. Thus, while

many net schedules possible for a given D, for some sets D no net

schedule exists.

200













































00000000

00000000

00000000000

010000000

101100000

0100000000

0010100000

0010110000

0100110000

10000000000

100000010

xxx

xxx

xx

xx

x

x

x

x

xx

Q x

D

Figure 8.7. Matrix of set D for DiffEq with one multiplier and two ALUs

 < e + * * - * + - + + Time

 1 1 0 0 0 0 0 0 1 0 1 0 120

 2 0 0 1 0 0 1 0 0 0 0 1 120

 3 1 0 0 0 0 0 0 0 0 1 1 120

D
U = 4 0 0 0 0 0 0 1 1 1 0 0 180

5 0 0 0 1 1 1 0 0 1 0 0 280

6 0 0 0 1 1 0 1 0 1 0 0 340

 7 0 0 1 0 1 1 0 0 1 0 0 220

 8 1 1 0 0 0 0 0 0 0 0 1 280

 9 0 0 0 0 0 0 0 0 0 0 1 140

 T=340

 < e + * * - * + - + + ALU Mul Exit Cost

 1 0 1 0 0 0 0 0 0 1 1 0 2 0 1 6
 2 0 1 0 0 0 1 0 1 0 0 0 2 0 1 6

 3 1 0 0 0 0 0 0 0 1 0 0 2 0 0 6

 4 0 1 1 0 0 0 1 0 0 1 0 2 1 1 7
 5 0 1 1 1 0 0 0 0 0 1 0 2 1 1 7

 6 0 1 1 1 0 0 0 1 0 0 0 2 1 1 7

 7 1 0 0 0 0 1 1 0 0 0 0 2 1 0 7
VD= 8 0 0 0 0 0 0 0 0 1 0 1 2 0 0 2

 9 0 1 0 0 0 1 1 0 0 1 0 2 1 1 7

 10 1 0 1 1 0 0 0 0 0 0 0 2 1 0 7
 11 1 0 1 0 0 0 1 0 0 0 0 2 1 0 7

 12 0 0 0 1 0 0 0 1 0 0 1 2 1 0 7

 13 0 0 0 0 1 0 0 1 0 0 1 2 1 0 7
 14 0 1 0 0 1 0 0 0 0 1 0 1 1 1 6

 15 0 1 0 0 1 0 0 1 0 0 0 1 1 1 6

 16 1 0 0 0 1 0 0 0 0 0 0 1 1 0 6

 2 1 1 S=7

Figure 8.8. Clique sets for matrix Qx
D

201

8.2.3 Tackling the existence problem

Formulation of existence problem

Given set D, that net schedule GH exists in which pairs of concurrent

statements constitute D. Clique set
D

U must be the maximum-paths set

of graph GH, and clique set DV must be the maximum-sections set of the

graph; otherwise this proposition is not true.

For set D and the given values of variables xij, a net schedule exists if

the matrix derived from the matrix
x

DQ by substituting the variable val-

ues describes a transitive relation. This transitivity condition expresses

the requirement that the net schedule must have exactly that level of con-

currency defined by set D.

The relation is transitive if the following combined logical equation

has at least one solution for xij.

  0)()(

),(
),(
),(

,,
1  






kijkkjik

Djk
Dki
Dji
Nkji

zzzzL ,

  0)()(

),(
),(
),(

,,
2  






kijkjikjikij

Djk
Dki
Dji
Nkji

zzzzzzL , (8.7)























.,\),(

,,\),(

,),(

,),(

,

,

,0

,1

ijandDDijif

jiandDDjiif

ijandDjiif

jiandDjiif

x

x
z

M

M

M

M

ij

ij

ij

In combined Equation (8.7) variables zij are intermediate. Equation

L1 describes the transitivity conditions for the elements of set D and

202

equation L2 describes the transitivity conditions for the elements not be-

longing to this set.

One algorithm effectively solves the combined Equation (8.7) by

constructing graph
x

DG and searching for its non-conflicting labeling

(Fig. 8.9). The graph nodes are variables xij that correspond to non-

concurrent statements pairs. The algorithm introduces edge (xij, xik) if

statements j and k are concurrent and pair (j, k) belongs to set D. It labels

the graph nodes 0 and 1. The initial label 1 is assigned to the nodes be-

longing to set {xij | (i, j)DM, i, j = 1, ..., n, i < j} of the Boolean variables

that correspond to the nonconcurrent statements pairs not introduced into

set DM. If an edge connects two variables xij, xjk that satisfy constraint

i<j<k, it is labeled +, otherwise it’s labeled .

Labeling conflicts

Labeling two variables and the edge connecting them creates one type

of conflict if the variable labels are the same and the edge label is +, or

the variable labels are different and the edge label is . If the graph has at

least one of this first type of conflict, the equation for L1 has no solution.

For variables xij, xik, and xkj where i<k<j, there is a second type

conflict if variable xij‘s value equals 0 (1) and the values of xik and xkj

equal 1 (0). If the graph has at least one of the second type of conflict

the equation for L2 has no solution. To generate a net schedule, the

algorithm must label the nodes in such a way as to avoid the conflicts

of both types.

Fig. 8.9 shows graph
x

DG for the matrix in Fig. 8.7. Node x5,6 has the

label 1 and connects with node x6,11 via edge (x5,6, x6,11), labeled +; hence,

node x6,11 must be labeled 0. Nodes x6,11 and x1,11 have different labels

and are connect via the edge labeled ; this is a conflict. Equation (8.7)

has no solution. Therefore, the number of net schedules of the different

concurrency levels is less than the number of subsets of set DM.

Solving conflicts

If L1 and/or L2 have no solution, the algorithm searches for subset

D' of set D to solve Equation (8.5) and set D" that includes set D to

203

solve Equation (8.6) (see Fig. 8.6). Sets D' and D" must satisfy Equa-

tion (8.7). Set D' gives a less expensive net schedule, while set D"

gives a faster one.

How do we find appropriate sets D' and D"? A program like Ahiles

could use various procedures to solve this problem, but the main idea is

to reduce or extend set D to avoid the conflicts. It is better to minimize

the number of the concurrent statements pairs removed from or added to

set D, but the algorithm should examine the influence of each pair on the

execution time and cost as well.

X1,2

X3,5 X3,6

X4,7

X1,8

X3,9

X1,10 X1,11

X2,11

X3,11

X6,11

X7,11

X10,11

X4,5 X4,6

X5,6 X5,7

X7,8

X4,9

X5,9

X6,9

X7,9

X8,9 X8,10

1 1

1

1

1

1

1

1

1

1

1

1

1 1

1 1






































+

+

+

+

+

+



+

+ +

+



Figure 8.9. Graph
x

DG of logical equation L1, showing a labeling conflict of the

first type

204

The gradient method is the basis for one possible procedure. The pro-

cedure firstly uses a branch and bound technique to find labeling that

avoids conflicts of the second type and minimizes the number of the con-

flicts of the first type. Then for each pair that we can remove from or add

to D, it estimates the number of conflicts remaining and selects the pair

producing the minimum number of remaining conflicts. The procedure

repeats until no labeling conflicts remain. This technique’s efficiency

depends on the estimating method.

Now consider Equation (8.5). There are 10 conflicts for set D de-

scribed by the matrix in Fig. 8.7. Matrix Cnf in Fig. 8.10 describes for

each pair the number of conflicts that will remain if we remove the pair.

 1 2 3 4 5 6 7 8 9 10 11

1   11 12 10 9 11  9  
2   10 14 12 10 14 12 10 10 
3    11   10 11  10 
4        10  13 9

5        12  15 13

6        10  15 
7          10 
8           10

9          8 11

10           
11           

Figure 8.10. Matrix Cnf records the number of conflict remaining

for each pair if we remove it from D

As the matrix shows, removing a pair can sometimes create more

conflicts; for example, removing pair (5, 10) would result in 15 conflicts,

five more than we started with. Pair (6, 7) has the minimum number-

seven-of remaining conflicts, and the procedure selects it for removal.

Several steps of removing pairs and replacing 0 elements with x elements

transforms the matrix in Fig. 8.7 into matrix
x

DQ (Fig. 8.11) describing

set D of cardinality 22 that satisfies Equation (8.7).

This procedure also transforms the clique sets (see Fig. 8.12).

While the execution time increases from 340 ns to 380 ns because

nine pairs of concurrent statements became non-concurrent, the cost

remains unchanged.

205













































0000000

000000

0000000

010000000

10110000

100000

0010100000

0010110000

01011000

10000000

1000010

xxxx

xxxxx

xxxx

xx

xxx

xxxxx

x

x

xxx

xxx

xxxx

Q x

D

Figure 8.11. Matrix QD
x from Fig. 8.7, with the labeling conflicts resolved

 < e + * * - * + - + + Time

 1 0 0 0 0 0 1 1 0 1 0 1 220

 2 1 0 0 0 0 1 0 0 1 1 1 200

 3 1 1 0 0 0 1 0 0 1 0 1 160

D
U = 4 0 1 1 0 0 1 0 0 1 0 1 160

5 1 0 0 0 0 0 0 1 1 1 0 160

6 0 0 0 1 1 1 1 0 1 0 0 380

 7 0 0 0 0 0 0 1 1 1 0 0 180

 8 0 0 1 0 1 1 0 0 1 0 0 220

 T=380

 < e + * * - * + - + + ALU Mul Exit Cost

 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 6
 2 0 1 0 0 0 1 0 1 0 0 0 1 1 1 6

 3 1 0 0 0 0 0 0 0 1 0 0 1 1 1 6

 4 0 1 1 0 0 0 1 0 0 1 0 2 0 0 2
 5 0 1 1 1 0 0 0 0 0 1 0 2 1 0 7

 6 0 1 1 1 0 0 0 1 0 0 0 2 1 0 7

 7 1 0 0 0 0 1 1 0 0 0 0 2 1 0 7
VD= 8 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1

 9 0 1 0 0 0 1 1 0 0 1 0 2 1 0 7

 10 1 0 1 1 0 0 0 0 0 0 0 2 1 0 7

 11 1 0 1 0 0 0 1 0 0 0 0 2 1 0 7

 12 0 0 0 1 0 0 0 1 0 0 1 2 1 0 7

 13 0 0 0 0 1 0 0 1 0 0 1 1 1 1 6
 14 0 1 0 0 1 0 0 0 0 1 0 1 1 1 6

 15 0 1 0 0 1 0 0 1 0 0 0 1 1 0 6

 2 1 1 S=7

Figure 8.12. New clique sets for matrix Qx

D, with the labeling conflicts resolved

206

8.3 Generating a net schedule

Now graph Gx
D has no labeling conflicts. Ahiles can generate an

appropriate net schedule after considering the labels of the graph

nodes as Boolean variable values and substituting these values into

the matrix Qx
D,

Ahiles generates matrix QD. (Fig. 8.13). Since this matrix defines a

transitive relation and no row i and column j exists for which qij=qji=1,

Ahiles can reorder the matrix rows and columns to obtain a matrix with

zeros below the principal diagonal (Fig. 8.14). This reordered matrix de-

fines the statements’ precedence relation in a net schedule. To determine

the net schedule Ahiles uses the following procedure to calculate matrix

HD that defines the statements’ direct precedence:

DQH : ;

for i{0,...,N-1} do

for j{0,...,i} do

if    







 


  11 ,,1

1
,1 jiNkkj

N

k
jiNj hhh then

jiNjh  ,1 := 0;

end j;

end i;

Starting from the right top corner of HD, the procedure replaces 1

values with 0 values for elements hij for which the Boolean multipli-

cation of the row i and column j gives the value 1. For matrix QD, the

procedure gives the matrix HD shown in Fig. 8.15 and the net sched-

ule shown in Fig. 8.16.

Table 8.1 gives some experimental results for net schedules that

Ahiles synthesized for DiffEq. I measured the time spent to generate the

net schedules on a 486, 50-MHz PC. Theory predicts a probabilistic

growth of the number of the graph cliques depending on the size of the

graph. However, sets
D

U and DV include few cliques for the net sched-

ules, thus avoiding labeling conflicts, the most complex problem in net

schedule synthesis.

207

 1 2 3 4 5 6 7 8 9 10 11

1 0 1 0 0 0 1 0 1 1 1 1

2 0 0 0 0 0 1 0 0 1 0 1

3 0 1 0 0 1 1 0 0 1 0 1

4 0 0 0 0 1 1 0 0 1 0 0

5 0 0 0 0 0 1 0 0 1 0 0

6 0 0 0 0 0 0 0 0 1 0 0

7 0 0 0 1 1 1 0 1 1 0 1

8 0 0 0 0 0 0 0 0 1 0 0

9 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 1 0 1 1 0 1

11 0 0 0 0 0 1 0 0 1 0 0

Figure 8.13. Matrix QD before reordering

 1 3 2 7 4 5 10 8 11 6 9

1 0 0 1 0 0 0 1 1 1 1 1

3 0 0 1 0 0 1 0 0 1 1 1

2 0 0 0 0 0 0 0 0 1 1 1

7 0 0 0 0 1 1 0 1 1 1 1

4 0 0 0 0 0 1 0 0 0 1 0

5 0 0 0 0 0 0 0 0 0 1 1

10 0 0 0 0 0 0 0 1 1 1 1

8 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 1 1

6 0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0

Figure 8.14. Matrix QD after reordering to obtain a zero bottom part

 1 3 2 7 4 5 10 8 11 6 9

1 0 0 1 0 0 0 1 0 0 0 0

3 0 0 1 0 0 1 0 0 0 0 0

2 0 0 0 0 0 0 0 0 1 0 0

7 0 0 0 0 1 0 0 1 1 0 0

4 0 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 1 0

10 0 0 0 0 0 0 0 1 1 0 0

8 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0 0 0 0 0 0 0 1 0

6 0 0 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 0 0 0 0

Figure 8.15. Matrix HD calculated form matrix QD

208

 -

 -

 exit + *

 * 1 3 7

4 10 2

6

9

 < +

 + + * 5 8 11

Figure 8.16. Net schedule for HD, which uses two ALUs and one multiplier

Table 8.1

Ahiles net schedule synthesis results for DiffEq

N

Functional units Cardinality

No of

conflicts

Remo-

ved

pairs

No of cliques

Time

(sec)
No of

ALUs

No of

Multipliers

DM
Initial

D

UD

VD

1 2 1 39 31 6 5 6 22 0.11

2 1 1 39 21 7 4 5 14 0.11

3 2 1p 61 51 15 12 11 26 0.44

8.4 Transition from net schedule to sequential schedule

Ordinary, multicycling and chaining algorithms produce sequential

schedules from net schedules. These algorithms do not care about com-

putational resources as the resource constraints have been already taken

into account while generating the net schedule.

The well-known ASAP and ALAP scheduling algorithms assume the

statements’ execution time is less or equal to the clock cycle period. To

generate schedule these algorithms use the net schedule graph for GH as

input data. In this case the number of statements in the longest path of

209

the net schedule graph determines the minimal number of control steps

in the sequential ordinary schedule. In the case, multicycling is applied

to long-delay operators and statements, ASAP and ALAP account for the

execution time of each statement that can be larger than the clock cycle

period. One statement can be scheduled to several consecutive control

steps and several corresponding clock cycles.

In case, chaining is applied to short-delay operators and statements,

ASAP and ALAP assign chains of operators and statements to one con-

trol step and one corresponding clock cycle.

Given constraints on resources, the list scheduling technique can gen-

erate a sequential schedule from the net schedule while minimizing the

number of control steps. In this case, the list scheduling technique is ca-

pable of optimizing ordinary, multicycling and chaining sequential

schedules, which follows the synthesis and optimization of a resource-

constrained net schedule.

8.5 Graph language and tool for creation and simulation

of sequential and net algorithms

This section presents a graph language and a tool for visual interac-

tive development and simulation of net algorithms. The language is de-

veloped on the basis of C language, but the principles laid down in it are

applicable to other languages as well. The graph language is based on the

following construction principles:

1. The graph vertices are associated with primitives of the C lan-

guage: data types, variables, constants, logical and arithmetic operators,

statements, control structures, etc.;

2. The graph arcs connect the vertices and describe the control flow,

which can be either sequential or parallel;

3. Various labels are assigned to vertices and arcs, the interpretation

of which establishes the semantics of the language;

4 The. graph execution is dynamically visualized;

5. Source and termination vertices are fixed in the graph; only one ac-

tive vertex is executed in the graph that describes a sequential algorithm,

and several vertices are active and execute in the graph that describes a

concurrent algorithm;

210

6. The control flow of is described by tokens that mark the arcs and

move when the algorithm execute;

7. If tokens appear at all input arcs of a certain vertex, the vertex fires,

and the corresponding statement or variable assignment is performed

followed by moving the tokens from the input to the output arcs of the

vertex;

8. The token at exactly one output arc characterizes the sequential ex-

ecution of the graph; tokens at several output arcs characterizes its con-

current execution;

9. Firing of a vertex can be unconditional or conditional; in the sec-

ond case a test Boolean variable is associated with the vertex; if the vari-

able value is true when the vertex fires, the corresponding statement exe-

cutes; otherwise it does not execute; in any case, the tokens move from

the input to the output arcs;

10. The graph interacts in the process of operation with a storage of

variables and with a storage of statements;

11. In the process of interpreting and executing the visualized graph,

variable values are updated in the storage.

Fig. 8.17 shows the environment of visual simulation of a graph that

describes sequential behavior. The top part of the interface includes a

menu bar and a toolbar. The window of visualizing the graph includes

images of vertices and arcs.

Two upper rectangular vertices describe the cluster name and the

graph header. Seven lower rectangular vertices represent assignment

statements, three of which contain one operator in the right part.

The upper oval vertex describes the while loop, and the lower oval

vertex describes the if-then-else statement. Small round vertices with

identifiers c0 and c1 inside describe test variables. Even smaller round

vertices describe the operation of sequential execution.

All arcs are labeled. The oval vertex while has a stroke indicating that

the vertex is firing. The token moves along an arc directed into the loop

body. The lower part of the interface describes the storage of variables.

For each variable, the cluster to which it belongs, the kind, type, size in

bytes, current value and comment are indicated.

Fig. 8.18 illustrates a graph and its execution, which model and simu-

late a concurrent algorithm. The graph representation is a result of trans-

211

forming a branching and looping behavioral description that is per-

formed in a high level language into the basic single-block flow model,

which allows for a maximum of asynchronous parallelization and a min-

imum of the critical path in the graph. Such a graph can represent a par-

allel asynchronous behavior of an embedded system.

The graph vertices are assignment statements and variables. The as-

signment statement depicted by blue rectangles reads the values of the

input variables from the storage (bottom in this figure), perform logical,

arithmetic, or other operations and write the values of the output varia-

bles into the storage.

Figure 8.17. Interface of graph-based environment for execution of sequential algorithm

212

Figure 8.18. Illustration of executing a concurrent algorithm

Vertices-variables are divided into two classes: conditional (control)

variables (depicted in yellow circles) and value-assigned variables (de-

picted in orange rectangles). The value of a conditional variables affects

the execution of statements (value true enables execution, and value

false disables execution).

213

The vertices of the graph are connected with arcs. The arcs that are

represented with solid lines connect vertices-statements to vertices-

variables, and vice versa. The arcs represented by dashed lines connect

the control variables with the statements, the performance of which they

influence. Solid arcs can be marked with markers that indicate the flow

of control or data in the basic single-block model. When tokens appear at

all input arcs of a certain vertex, this vertex fires, and the tokens move to

the output arcs. The statement that is associated with the vertex executes

if the control variable connected to the vertex by the dashed arc takes

value true.

The firing vertex is indicated by a bypass line. Several vertices of the

graph can simultaneously fire, and the more such vertices, the higher the

level of concurrency of the behavior. The correct transformation of a

behavior into the basic single-block model ensures that the tokens do not

crawl on each other and ensures that two or more tokens on the same arc

cannot appear at the same time. The dynamics of the graph can be con-

trolled through a number of tools provided by our simulation system.

The proposed transformational techniques and tools support the crea-

tion of net algorithms that are parallel in space and process one data set.

They also support the creation of asynchronous pipelines that are parallel

in time and process a flow of data sets [76]. The method provides for the

creation of both regular asynchronous pipelines as well as irregular asyn-

chronous pipelines, whose stages differ from each other. When designing

a pipeline, the original control flow is eliminated, the pure data flow is

extracted, and the network is divided into pipeline stages.

Each pipeline stage is represented with a subnet that implements the

required functionality, performs certain operations and interact with

neighbor stages-subnets by data exchange and handshaking mechanism.

Synchronization of the subnets is localized and performed by means of a

request / acknowledgment mechanism, which is implemented by moving

the tokens along arcs, which connect the subnets of neighbor pipeline

stages. The synthesis of the asynchronous pipeline is performed in a reg-

ular way by the method, which explores the basic single-block model

and is described in Chapter 5 of this book.

Fig. 8.19 shows a net modular algorithm graph that asynchronously

implements the TTA true audio codec [71, 78]. The blue rectangular ver-

tices of the graph represent whole modules (functions) instead of simple

214

statements. The input of this algorithm is a data stream of audio frames.

Our method transforms this net algorithm into a two-stage asynchronous

pipeline that is shown in Fig. 8.20.

Figure 8.19. Graph of asynchronous net algorithm of audio coder TTA

Figure 8.20. Graph of asynchronous 2-stage pipeline for audio coder TTA

215

The first stage of the pipeline runs in parallel with the second stage

that is a hybrid filter. Table 8.2 reports parameters of the pipelined asyn-

chronous audio encoder TTA, which are measured when encoding an

excerpt from a melody by Italian baroque composer Tomaso Giovanni

Albinoni. The two-stage net pipeline yields the acceleration factor of

3.4 against a non-parallel implementation. It should be noted that

non-pipelined net algorithm and graph shown in Fig. 8.19 yields a

smaller acceleration factor of 2.2.

Table 8.2

Parameters of asynchronous pipeline implementing the TTA audio

compressor

Parameter Value

Number of variables of all types 40

Number of vertices in the graph of net algorithm 41

Number of edges in the graph of net algorithm 83

Total number firings of graph vertices 5053

Total number of tokens at the edges of graph 7806

Вычислительная сложность алгоритма 47615

Critical path on data flow graph of net algorithm 13829

Parallelization factor 3.4

8.6 Experimental results

The model, method and techniques described here are used to develop

a VHDL-based, high-level synthesis system called Ahiles [61]. The sys-

tem inputs are a behavioral VHDL description, transition probabilities

for branch statements of the description, an optimization task, and func-

tional unit descriptions. The outputs are a register transfer level (RTL)

structure composed of the structure parameters and the data path and the

finite state machine (FSM).

Firstly, AHILES compiles the design specification and transforms the

behavioral description to a special behavioral model. The system uses an

internal format to speed up the design process and to allow the genera-

tion of high-quality designs. Still in the internal form, the description is

diagnosed and analyzed, then presented in the control and data flow

graphs. Ahiles then solves the scheduling, allocation, and binding tasks

216

and generates the data path and finite state machine in the internal form.

Reverse translation maps the register transfer level structure into

VHDL text.

We can link the VHDL design to several VHDL libraries and units.

Ahiles was written mainly in C and runs on an IBM PC platform. I ob-

tained the results described below on a PC 486/50.

VHDL compiler parameters appear in Table 8.3. For large designs,

the compiler throughput is more than 200 lines per second. The average

size of the design internal form is only 1.4 times greater than the size of

the source VHDL text.

Table 8.4 shows DiffEq’s parameters for the net-based and list sched-

uling. In each case, the net-based scheduling technique (in this case,

Ahiles) introduced the smaller number of control steps.

Table 8.3

Parameters for the Ahiles VHDL compiler

Parameter
Benchmark

Bubble Gcd Gcdf Kalman Pid

VHDL text (lines) 119 50 60 220 724

VHDL text (bytes) 3009 2089 2844 7966 23138

Internal form (bytes) 5570 2573 2925 12393 30280

Compilation time (s) 0.71 0.49 0.77 1.45 2.53

Throughput (lines/s) 168 102 78 149 286

Throughput (lines/s) 4238 4263 3694 5382 9145

Table 8.4

Synthesis results for DiffEq using various techniques within Ahiles

Parameter
Technique

Ordinary Chaining Multicycling Pipelining

Clock cycle (ns) 120 120 60 60

Number of ALUs 2 2 1 2

Number of multipliers 1 1 1 1(p)

Control steps (list) 5 5 9 6

Control steps (net based) 5 4 8 6

Number of registers 8 8 8 7

Number of multiplexors 10 9 8 11

Number of multiplexor inputs 25 23 23 27

217

0 40 140

0.07

Time

P
ro

b
ab

il
it

y

Figure 8.19. Frequency function for the net (+) and sequential (*) schedule

execution time

Fig. 8.19 displays graphically the advantage net scheduling provides

over sequential scheduling in the case of variable execution time of func-

tional unites: Its frequency function peaks earlier and at a smaller proba-

bility level.

Table 8.5 reports the results that Ahiles obtained for five benchmarks.

Bernard Courtois and Polen Kission of the Techniques of Informatics

and Micro-electronics for Computer Architecture (TIMA) Laboratory

provided the Bubble, Gcdf, and Pid benchmarks. I borrowed the Gcd and

Kalman benchmarks from the works of Bergamaschi, and Morison and

Newton. Due to equivalent transformation of the source behavioral de-

scriptions and new scheduling techniques, Ahiles minimized the number

of the finite state machine states. The system either maps behavioral de-

scription operators to the data path functional units or introduces them

into the finite state machine.

Fig. 8.20 shows an example of a pipelined net schedule Ahiles has

generated. Functional units are pipelined [53], therefore we split multi-

plication operators into parts, one for each stage of the pipeline. Each

part precedes its successor. For DIFFEQ the net schedule of maximum

concurrency with two-stage pipelined multiplication is presented in

Fig. 8.20. A net schedule of less concurrency is synthesized by the net

218

scheduling technique with constraints on the cost and number of the

functional units as well as on the number of pipeline stages.

Table 8.5

Synthesis results for Ahiles

Parameter
Benchmark

Bubble Gcd Gcdf Kalman Pid

Number of states 20 2 5 16 23

Number of ALUs 0 1 1 1 1

Registers/bits 7/104 2/32 2/64 18/138 13/389

RAMs 1 0 0 3 0

ROMs 0 0 0 3 1

Multiplexor/input 4/13 4/8 4/8 14/36 8/33

Collectors 0 0 0 5 9

Structure (lines) 416 164 184 1000 723

Structure (bytes) 12383 4647 5241 31550 22938

Time (s) 6.03 4.79 4.84 12.04 7.15

 -

 -

 exit +

*2

*1 1 3 4

4

10 2

6

9

 < +

 + +

*1 5

8

11

*1 7

*2 7

*2 5

Figure 8.20. Net schedule Ahiles generated for a system with two ALUs and one

pipelined multiplier. The designators *1 and *2 indicate the first and second stage

of the pipelined multiplier

219

8.7 Conclusion

A new model of solving the scheduling and allocation tasks in high-

level synthesis systems has been proposed. The net scheduling tech-

niques that are developed in this chapter can synthesize the optimal net

schedules on two criteria: the minimum execution time, and the mini-

mum cost. The net schedule existence problem is formulated as a com-

bined logical equation solving problem. An efficient technique for solv-

ing the logical equations of certain type has been proposed. The net

schedule can be either directly used for digital system synthesis, or can

be a source for generating sequential schedules with chaining, multicy-

cling, and pipelining, which use pipelined and non-pipelined functional

units.

As the obtained results show, net-based scheduling systems like

Ahiles can produce synchronous designs more efficiently than the known

sequential-scheduling techniques. At the same time, net-scheduling

mainly targets the design and optimization of asynchronous systems,

both hardware and software. The synchronization mechanisms may vary

in a wide range. Net scheduling is extremely useful for modeling, syn-

thesis and optimization of software for computer networks.

220

REFERENCES

1. AHG report on editorial convergence of MPEG-4 reference software,

ISO/IEC JTC1/SC29/WG11 MPEG2003/9632, July 2003.

2. Aiken, A. Optimal loop parallelization / A.Aiken and A.Nicolau // in

Proc. of the 1988 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, 1988.

3. Bakshi, S. and Gajski, D. D. Component selection for high-

performance Pipelines / S. Bakshi and D. D. Gajski // IEEE Trans.

VLSI Syst., vol. 4, no. 2, pp. 181-194, 1996.

4. Banerjee, S. Macro pipelining based scheduling on high performance

heterogeneous multiprocessor systems / S.Banerjee, T. Hamada, P.

Chau and R. Fellman // IEEE Trans. Signal Processing, vol. 43, no. 6,

pp. 1468-1484, June 1995.

5. Barford, P. Critical Path Analysis of TCP Transactions / P. Barford,

M. Crovella // IEEE/ACM Transactions on Networking, vol. 9, 2001,

No. 3, pp. 238-248.

6. Bezati, E. Synthesis and optimization of high-level stream programs /

E. Bezati, S.Casale-Brunet, M. Mattavelli, and J. Janneck // in Proc.

of the 2013 Electronic System Level Synthesis Conference, 2013, pp.

1–6.

7. Brunet, S. Profiling of dataflow programs using post mortem causa-

tion traces / S. Brunet, , M. Mattavelli and J. Janneck // in Signal Pro-

cessing Systems (SiPS), 2012 IEEE Workshop on, Oct 2012, pp.

220–225.

8. Chang, P. A Decomposition Approach for Balancing Large-Scale

Acyclic Data Flow Graphs / P. Chang, C.S. Lee // IEEE Transactions

on Computers, vol. 39, No. 1, 1990, pp. 34-46.

9. Chao, L.-F.A. Rotation scheduling: a loop pipelining algorithm / L.-

F.A. Chao, LaPaugh, and E.-M. Sha // Trans. Comp.-Aided Des. In-

teg. Cir. Sys., vol. 16, no. 3, pp. 229–239, Mar 1997.

221

10. Cong, J. An Efficient and Versatile Scheduling Algorithm Based on

SDC Formulation / J. Cong and Z. Zhang // Design Automation

Conference (DAC), Jul. 2006.

11. Corrado, B. Flow Diagrams, Turing Machines and Languages with

Only Two Formation Rules / B. Corrado, G. Jacopini // Communi-

cations of the ACM. – 1966, 9 (5): 366–371.

12. Demicheli, G. Hardware synthesis from C/C++ models / G. Demi-

cheli // in Design, Automation and Test in Europe, Conference and

Exhibition 1999, pp. 382–383.

13. Dijkstra, E.W. Letters to the editor: go to statement considered

harmful / E.W. Dijkstra // Communications of the ACM. – 1968, 11

(3): 147–148.

14. Drechsler, R. A genetic algorithm for variable ordering / R.

Drechsler, B. Becker, N. Gockel // IEE Proceedings, 143(6), 1996,

pp. 364-368.

15. Eichenberger, A.E. Stage Scheduling: A Technique to Reduce the

Register Requirements of a Modulo Schedule / A.E. Eichenberger

and E.S. Davidson // in Proc. 28th Int. Symp. on Microarchitecture,

1995, pp. 338-349.

16. Eker, J. CAL Language Report: Specification of the CAL Actor

Language / J. Eker and J. Janneck, // University of California-

Berkeley, December 2003.

17. Gao, L. A software pipelining algorithm in high-level synthesis for

fpga architectures / L. Gao, D. Zaretsky, G. Mittal, D. Schonfeld,

and P. Banerjee // in Proceedings of the 10th International Sympo-

sium on Quality Electronic Design, ISQED 2009, 2009, pp. 297–

302.

18. Girczyc, E.M. Loop windinga data flow approach to functional

pipelining / E.M. Girczyc // in Proc. of the IEEE ISCAS, May 1987,

pp. 382–385.

19. Goodman, J.R. and Hsu, W.C. Code Scheduling and Register Allo-

cation in Large Basic Blocks / J.R. Goodman and W.C. Hsu // in

Proc. Int. Conf. on Supercomputing, 1988, pp. 442-452.

http://portal.acm.org/citation.cfm?id=1147025
http://portal.acm.org/citation.cfm?id=1147025
http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf
http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Communications_of_the_ACM

222

20. Goossens, G. An efficient micro-code compiler for applications

specific DSP processors / G. Goossens, J.Rabaey, J. Vandewalle

and H.D. Man // IEEE Trans. Computer-Aided Design, vol. 9, pp.

925–937, June 1990.

21. Henkel, J. An Approach to Automated Hardware/Software Parti-

tioning Using a Flexible Granularity that is Driven by High-Level

Estimation Techniques / J. Henkel, R. Ernst // IEEE Transactions on

VLSI Systems, vol. 9, No. 2, 2001, pp. 273-289.

22. Hollingsworth, J. Critical Path Profiling of Message Passing and

Shared-Memory Programs / J. Hollingsworth // IEEE Transactions

on Parallel and Distributed Systems, vol. 9, No. 10, 1998, pp. 1029-

1040.

23. Hu, X. Minimizing the number of delay buffers in the synchroniza-

tion of pipelined systems / X. Hu, R.G. Harber and S.C. Bass //

Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 13, no. 12, pp. 1441-

1449, Dec1994.

24. Hwang, C.-T. Pls: A scheduler for pipeline synthesis / C.-T. Hwang,

Y.-C. Hsu and Y.-L. Lin // Trans. Comp.-Aided Des. Integr. Cir.

Sys., vol. 12, no. 9, pp. 1279–1286, September 1993.

25. Hwang, K.S. Scheduling and hardware sharing in pipelined data

paths / K. S. Hwang, A. E. Casavant, C.-T. Chang, M. A. d’Abreu //

Proc. ICCAD-89, November 1989, pp. 24–27.

26. Javaid, H. Rapid design space exploration of application specific

heterogeneous pipelined multiprocessor systems / H. Javaid, A. Ig-

njatovic and S. Parameswaran // Trans. Comp.-Aided Des. Integ.

Cir. Sys., vol. 29, no. 11, pp. 1777–1789, Nov 2010.

27. Juarez, E. A System-on-a-chip for MPEG-4 Multimedia Stream

Processing and Communication / E. Juarez, M. Mattavelli and D.

Mlynek // IEEE International Symposium on Circuits and Systems,

May 28-31 2000, Geneva, Switzerland.

28. Jun, H.-S. Design of a pipelined datapath synthesis system for digi-

tal signal processing / H.-S. Jun and S.-Y. Hwang // Trans. Comp.-

223

Aided Des. Integ. Cir. Sys., vol. 12, no. 3, pp. 292–303, September

1994.

29. Kahn, G. The semantics of a simple language for parallel program-

ming / G. Kahn // Information Processing, pp. 471–475, 1974.

30. Kahn, D. B. M. G. Coroutines and networks of parallel processes /

D. B. M. G. Kahn // Information Processing, 1977, pp. 993–998.

31. Karp, R.M. Turing Award Lecture: Combinatorics, complexity and

randomness, Communications of the ACM, vol. 29, no. 2, pp. 98-

109, Feb. 1986.

32. Knuth, D.E. The art of computer programming: Fundamental algo-

rithms / D.E. Knuth // Addison Wesley, 1968, Vol. 1. – 735 p.

33. Knuth, D.E. The art of computer programming: Seminumerical al-

gorithms / D.E. Knuth // Addison Wesley, 1969, Vol. 2. – 724 p.

34. Knuth, D.E. The art of computer programming: Sorting and search-

ing / D.E. Knuth // Addison Wesley, 1973, Vol. 3. – 844 p.

35. Ko, D.-I. The pipeline decomposition tree: an analysis tool for mul-

tiprocessor implementation of image processing applications / D.-I.

Ko and S.S. Bhattacharyya // in Proc. CODES+ISSS '06: 4th Int.

Conf. on Hardware/software codesign and system synthesis, 2006,

pp. 52-57.

36. Kobayashi, S. Task Scheduling Algorithm with Corrected Critical

Path Length / S. Kobayashi and S. Sagi // ISS, vol. J81-D-I, No.2,

pp. 187-194.

37. Kuhn, P. Instrumentation Tools and Methods for MPEG-4 VM: Re-

view and a New Proposal / P. Kuhn // Tech. Rep. M0838, ISO/IEC,

Mar. 1996.

38. Kwok, Y.-K. Dynamic Critical-Path Scheduling: An Effective

Technique for Allocating Task Graphs to Multiprocessors / Y.-K.

Kwok, I. Ahmad // IEEE Transactions on Parallel and Distributed

Systems, vol. 7, No. 5, 1996, pp. 506-521.

39. Lee, E.A. Synchronous data flow / E.A. Lee and D.G. Messer-

schmitt // Proceedings of the IEEE, vol. 75, pp. 1235–1245, 1987.

http://portal.acm.org/citation.cfm?id=5658&coll=portal&dl=ACM
http://portal.acm.org/citation.cfm?id=5658&coll=portal&dl=ACM

224

40. Leiserson, C.E. Optimizing synchronous systems / C.E. Leiserson

and J.B. Saxe // Journal of VLSI Computer Systems, vol. 1, no. 1,

pp. 41–67, 1983.

41. Liu, L. An Efficient Parallel Critical Path Algorithm / L. Liu, D. Du

and H.-C. Chen // IEEE Transactions on Computer Aided Design of

Integrated Circuits and Systems, vol. 13, No. 7, 1994, pp. 909-919.

42. Lucarz, C. Dataflow/actor-oriented language for the design of com-

plex signal processing systems / C. Lucarz, M. Mattavelli, M.

Wipliez, G. Roquier, M. Raulet, J. Janneck, I. Miller, D. Parlour //

Proc. Conf. on Design and Architectures for Signal and Image pro-

cessing, November 2008, pp.1-8.

43. Lucke, L. Data-Flow Transformations for Critical Path Time Reduc-

tion in High-Level DSP Synthesis / L. Lucke, K. Parhi // IEEE

Transactions on Computer Aided Design, vol. 12, No. 7, 1993, pp.

1063-1068.

44. Malik, S. Performance optimization of pipelined logic circuits using

peripheral retiming and resynthesis / S. Malik, K.J. Singh, R.K.

Brayton and A. Sangiovanni-Vincentelli // Trans. Comp.-Aided

Des. Integ. Cir. Sys., vol. 12, no. 5, pp. 568–578, May 1993.

45. Mermet, J.P. ed., Fundamentals and Standards in Hardware De-

scription Languages. Boston: Kluwer Academic Publishers, 1993.

46. Mittal, S. A Survey of Value Prediction Techniques for Leveraging

Value Locality / S. Mittal // Concurrency and Computation, 2017.

47. Mattavelli, M. Implementing Real-Time Video Decoding on Mul-

timedia Processors by Complexity Prediction Techniques / M. Mat-

tavelli and S. Brunetton // IEEE Transactions on Consumer Elec-

tronics, vol. 44, 1998, pp. 760-767.

48. Mattavelli, M. Methods to explore design space for MPEG RVC

codec specifications / M. Mattavelli, S. Casale-Brunet, A. Elguindy,

E. Bezati, R. Thavot, G. Roquier and J. Janneck // Signal processing

Image Communication, Elsevier, 2013.

https://www.academia.edu/33619227/A_Survey_of_Value_Prediction_Techniques_for_Leveraging_Value_Locality
https://www.academia.edu/33619227/A_Survey_of_Value_Prediction_Techniques_for_Leveraging_Value_Locality

225

49. Mattavelli, M. The Reconfigurable Video Coding Standard, [Stand-

ards in a Nutshell] / M. Mattavelli, I. Amer, M. Raulet // Signal Pro-

cessing Magazine, IEEE 27 (3) (2010) 159 –167.

50. Nurvitadhi, E. Automatic pipelining from transactional datapath

specifications / E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu // Trans.

Comp.-Aided Des. Integ. Cir. Sys., vol. 30, no. 3, pp. 441–454,

March 2011.

51. Oh, S. Speculative loop pipelining in binary translation for hard-

ware acceleration / S. Oh, T.G. Kim, J. Cho and E.Bozorgzadeh //

Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 27, no. 3, pp. 409–

422, March 2008.

52. Parhi, K. VLSI Digital Signal Processing Systems: Design and Im-

plementation / K. Parhi // Wiley Interscience, 1999.

53. Park, N. Sehwa: A software package for synthesis of pipelines from

behavioral specifications / N. Park and A.C. Parker // IEEE Trans.

Computer-Aided Design, vol. 7, pp. 358–370, March 1988.

54. Paulin, P.G. Force-directed scheduling for the behavioral synthesis

of ASIC’s / P. G. Paulin, and J. P. Knight // IEEE Trans. Computer-

Aided Design, vol. 8, pp. 661–679, June 1989.

55. Pearl, J. Heuristics: Intelligent Search Strategies for Computer Prob-

lem Solving / J. Pearl // New York, Addison-Wesley, 1983. – 382 p.

56. Potasman, R., Lis, J., Aiken, A. and Nicolau, A. Percolation based

synthesis / R. Potasman, J. Lis, A. Aiken and A.Nicolau // in Proc.

27th Design Automation Conf., 1990, pp. 444–449.

57. Prihozhy, A. Theory of equivalent transformation of algorithms in

VLSI CAD / V. Mischenko, A. Prihozhy // Minsk: Navuka i techni-

ka, 1991. – 260 p.

58. Prihozhy A. Methods of equivalent transformation of logical algo-

rithms in VLSI CAD / A. Prihozhy // Vesti Academy of Sciences of

Belarus, ser. f.-m.s., 1992, №2, с.86-92.

https://en.wikipedia.org/wiki/Judea_Pearl
https://en.wikipedia.org/wiki/Judea_Pearl

226

59. Prihozhy, A.A. High-Level Synthesis Methodology / A. Prihozhy //

Minsk, Inst. Eng. Cybernetics, National Academy of Sciences, Bel-

arus, 1993. – 47 p.

60. Prihozhy, A.A. AHILES: Performance Driven High-Level Synthe-

sis from VHDL Description / A.А. Prihozhy, A.N. Smolsky // Int.

Conf. “Design Methodologies for Microelectronics”, Slovakia, Bra-

tislava, 1995, pp.45-52.

61. Prihozhy, A. Net scheduling in high-level synthesis / A. Prihozhy //

IEEE Design & Test of Computers, 1996 spring, pp. 24-33.

62. Prihozhy, A.A. Use of VHDL-Based Design Methodology and the

AHILES System for Education in Belarus / A. Prihozhy // Chapter

in book “Microelectronics Education”, World Scientific, 1996,

pp.217-220.

63. Prihozhy, A.A. If-Diagrams: Theory and Application / A.A. Pri-

hozhy // Proc. of the European Conference PATMOS'97. – UCL,

Belgium, 1997. – P. 369 – 378.

64. Prihozhy, A.A. Parallel Computing with If-Decision-Diagrams /

A.A. Prihozhy, P.U. Brancevich // Proc. of the Int. Conference

PARELEC’98. – Poland, Technical University of Bialystok, 1998. –

P. 179 – 184.

65. Prihozhy, A. Asynchronous Scheduling and Allocation, in Proceed-

ings of the Conference DATE 98 / A.A. Prihozhy // IEEE Computer

Society, Paris, France, 1998, pp.934-935.

66. Prihozhy A. Mathematical methods and software for high-level

structural-parametric synthesis of digital systems / A. Prihozhy //

Thesis Doctor Habilitation: 05.13.11. – Minsk, 1998. – 496 с.

67. Prihozhy, A.A. Digital System High-Level Synthesis Technology /

A. Prihozhy, R.M. Merdjani, S.V. Zemlyanik // Proc. Int. Conf. “In-

formation Technologies for Education, Science and Business”,

Minsk, Belarus,1999, pp.145-149.

68. Prihozhy, A.A. Automatic Parallelization of Net Algorithms / A.A.

Prihozhy, R. Merdjani, F. Iskandar // Proc. Int. Conf. on Parallel

227

Computing in Electrical Engineering – PARELEC’2000. Canada,

2000, IEEE Computer Society Press, pp. 24-28.

69. Prihozhy, A. High-Level Synthesis through Transforming VHDL

Models / A.A. Prihozhy // in Book “System-on-Chip Methodologies

and Design Languages”, Kluwer Academic Publishers, 2001,

pp.135-146.

70. Prihozhy, A. High-level Synthesis through Transforming VHDL

Models / A. Prihozhy // System-on-Chip Methodologies and Design

Languages, Kluwer Academic Publishers, 2001, pp.135-146.

71. Prihozhy, A., Techniques for Optimization of Net Algorithms / A.

Prihozhy, D. Mlynek, M. Solomennik and M. Mattavelli //

PARELEC 2002 – Parallel Computing in Electrical Engineering,

IEEE CS Press, 2002, pp. 211-216.

72. Prihozhy, A. Data Dependences Critical Path Evaluation at C/C++

System Level Description / Prihozhy, A., Mattavelli, M. and

Mlynek, D. // Chapter in Book “Integrated Circuit and System De-

sign. Power and Timing Modeling, Optimization and Simulation”,

LNCS 2799, Springer, 2003, pp.569-579.

73. Prihozhy, A.A. Evaluation of Parallelization Potential for Efficient

Multimedia Implementations: Dynamic Evaluation of Algorithm

Critical Path / A. Prihozhy, M. Mattavelli, D. Mlynek // IEEE

Trans. on Circuits and Systems for Video Technology, Vol. 15, No.

5, May 2005, pp.593-608.

74. Prihozhy, A.A. If-Decision Diagram Based Modeling and Synthesis

of Incompletely Specified Digital Systems / A.A. Prihozhy, B.

Becker // Electronics and communications, Special Issue on Elec-

tronics Design. – Kyiv, 2005, pp. 103 – 108.

75. Prihozhy, A. Design of Parallel Implementations by Means of Ab-

stract Dynamic Critical Path Based Profiling of Complex Sequential

Algorithms / A. Prihozhy and D. Mlynek // in Book “Integrated Cir-

cuit and System Design”, LNCS 4148, Springer, 2006, pp.1-11.

76. Prihozhy A. Methodology for transformation of program code to

improve parameters of parallel implementations of audio codecs /

http://www.springerlink.com/content/978-3-540-39094-7/
http://www.springerlink.com/content/978-3-540-39094-7/
http://www.springerlink.com/content/aq3rhn46q7507601/?p=1b7b432d660449869de192882a3f9a0d&pi=0
http://www.springerlink.com/content/aq3rhn46q7507601/?p=1b7b432d660449869de192882a3f9a0d&pi=0
http://www.springerlink.com/content/aq3rhn46q7507601/?p=1b7b432d660449869de192882a3f9a0d&pi=0

228

A. Prihozhy, M. Solomennik, D. Mlynek // – Electronics and Com-

munication, Vol. 31, Kyiv, 2006.

77. Prihozhy, A. Pipeline synthesis and optimization of FPGA-based

video processing applications with CAL / A.-H. Ab Rahman, A.

Prihozhy and M. Mattavelli, // EURASIP Journal on Image and

Video Processing, vol. 2011:19, pp. 1–28, 2011. [Online].

Available: http://dx.doi.org/10.1186/16875281-2011-19.

78. Prihozhy A. Optimization Methodology for Complex FPGA-based

Signal Processing Systems with CAL / A. Ab-Rahman, H. Amer, A.

Prihozhy, C. Lucarz, M. Mattavelli // Int. Conf. on Design & Archi-

tectures for Signal and Image Processing - DASIP’2011, Tampere,

Finland, Nov. 2-4, 2011. – France, ECSI, IEEE.

79. Prihozhy, A. Synthesis and Optimization of Pipelines for HW Im-

plementations of Dataflow Programs / A. Prihozhy, E. Bezati, H.

Rahman, M. Mattavelli. // IEEE Trans. on CAD of Integrated Cir-

cuits and Systems, Vol. 34, No. 10, 2015, pp. 1613-1626.

80. Prihozhy A. Heuristic genetic algorithm for optimizing computa-

tional pipelines / A. Prihozhy, A. Zhdanouski, A. Karasik, M. Mat-

tavelli // Doklady BGUIR, 2017, № 1, с. 34-41.

81. Prihozhy, A.A. Semantic model for high-level synthesis of dataflow

pipelines / A.A. Prihozhy, O.N. Karasik, O.M. Frolov // Open Se-

mantic Technologies for Intelligent Systems, Proceedings of Inter-

national Conference, February 2017. – Minsk, BSUIR, 2017, pp.

415-418.

82. Prihozhy, A. Efficient Dynamic Optimization Heuristics for Data-

flow Pipelines / A. Prihozhy, S. Casale-Brunet, E. Bezati, M. Mat-

tavelli. // 2018 IEEE International Workshop on Signal Processing

Systems (SiPS), 21-24 Oct. 2018, IEEE, pp. 337-342.

83. Ravasi, M. High-level Algorithmic Complexity Evaluation for Sys-

tem Design / M. Ravasi, M. Mattavelli // International Journal on

System Architectures, vol. 48/13-15, Elsevier Publisher, 2003, pp.

403-427.

http://dx.doi.org/10.1186/16875281-2011-19
https://ieeexplore.ieee.org/document/8598386/
https://ieeexplore.ieee.org/document/8598386/

229

84. RSA Data Security, Inc. PKCS #1: RSA Encryption Standard. Ver-

sion 1.4, June 1991.

85. Shenoy, N. Retiming: Theory and practice / N. Shenoy // VLSI

Journal Integr., vol. 22, no. 1-2, pp. 1–21, 1997.

86. Sun, W. FPGA pipeline synthesis design exploration using module

selection and resource sharing / W. Sun, M. Wirthlin, and S. Neu-

endorffer // Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 26, no. 2,

2007, pp. 254–265.

87. True Audio Codec Software [Electronic resource]. - 2018. – Mode

of access: http://www.true-audio.com. - Date of access: 11.11.2018.

88. Verhaegh, W.F.J. Improved force-directed scheduling in high-

throughput digital signal processing / W.F.J. Verhaegh, P.E.R. Lip-

pens, E. H.L. Aarts, J.H.M. Korst, J. Van Meerbergen and A. van

der Werf // Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 14, no. 8,

pp. 945–960, Aug 1995.

89. Weinhardt, M. Pipeline vectorization / M. Weinhardt and W. Luk //

Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 20, no. 2, pp. 234–

248, Feb. 2001.

90. Wipliez, M. Software code generation for the RVC-CAL language /

M. Wipliez, G. Roquier, and J. Nezan // Journal of Signal Pro-

cessing Systems, pp. 1–11, 2009.

91. Wong, Y.-C. A Parallelism Analyzer for Conservative Parallel Sim-

ulation / Y.-C. Wong, S.-Y. Hwang and Y. Lin // IEEE Transactions

on Parallel and Distributed Systems, vol. 6, No. 6, 1995, pp. 628-

638.

Научное издание

ПРИХОЖИЙ Анатолий Алексеевич

АНАЛИЗ, ПРЕОБРАЗОВАНИЕ
И ОПТИМИЗАЦИЯ ДЛЯ ВЫСОКОПРОИЗВОДИТЕЛЬНЫХ

ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

Текст на английском языке

Подписано в печать 19.03.2019. Формат 6084 1/16. Бумага офсетная. Ризография.
Усл. печ. л. 13,37. Уч.-изд. л. 10,45. Тираж 100. Заказ 91.

Издатель и полиграфическое исполнение: Белорусский национальный технический универси-
тет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя

печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.

	Пустая страница
	Пустая страница

