A. A. Prihozhy

ANALYSIS, TRANSFORMATION
AND OPTIMIZATION FOR HIGH PERFORMANCE
PARALLEL COMPUTING

Minsk
BNTU
2019

UDC 004.272.2

Prihozhy, A. A. Analysis, transformation and optimization for high
perfomance parallel computing / A. A. Prihozhy. — Minsk: BNTU, 2019. —
229 p. — ISBN 978-985-583-366-7.

This book studies hardware and software specifications at algorithmic level from the
point of measuring and extracting the potential parallelism hidden in them. It investigates
the possibilities of using this parallelism for the synthesis and optimization of high-
performance software and hardware implementations. The basic single-block flow model is
a result of the algorithm transformation, and is a basis for developing efficient methods of
synthesis and optimization of parallel implementations. It supports the generation and op-
timization of computational pipelines and concurrent net algorithms, which lead to higher
performances of the computing systems.

This book is useful in training of scientific researchers and graduate students. It is also
useful for teaching students and undergraduates in computer science at universities.

Tables 34. Figures 117. Bibliography 91.

Recommended for publication by the Scientific
and Technical Council of Belarusian national technical university
(Record Ne 1, 18.01.2019)

Reviewers:
Head of the Department of information management systems,
Belarusian national university, Dr. Prof. V. V. Krasnoproshin;
Professor of the Info-communication technologies department,
Belarusian university of informatics and radio-electronics,
Dr. Prof. A. A. Boriskevich

ISBN 978-985-583-366-7 © Prihozhy A. A., 2019

© Belarusian national
technical university, 2019

CONTENT

PREFACE........ e 9
INTRODUCTION ..ottt 10

Chapter 1. EVALUATION OF COMPUTATIONAL
COMPLEXITY, CRITICAL PATH AND PARALLELIZATION

POTENTIAL OF ALGORITHMS.......coiiiiiiiiiecee s 13
1.1. Metrics of algorithmsccccviiiiiiiiee e 13
1.1.1. Computational complexity of algorithm.ccccceevennnne. 13
1.1.2. Critical path analysis problem...........ccccccovviiiiiiiiiiiecies 14
1.1.3. Parallelization potential of algorithm.cccccoeiiinnnnnnn. 17
1.2. Methodology of algorithm critical path evaluation. 17
1.2.1. Data Flow Execution Graph.........ccccocveveveiireneseeneseeiennens 19
1.2.2. Computational complexity of data flow execution graph.20
1.2.3. Critical path on data flow execution graph.ccccecvene.e. 23
1.2.4. Parallelization potential and feasible acceleration. 25
1.3. Evaluation of computational complexity and critical path
on data flow execution graph.cccoeveiiininnneeee 26
1.3.1. Explicit evaluation of critical path.cccccoceiiiiiiiinnnn 26
1.3.2. Dynamic evaluation of critical path.c.ccccooiviiiiiienns 28
1.4. Tool for estimation of algorithm parallelization potential............ 28
1.4.1. Instrumenting and mapping C-code onto C++-code............ 28
1.5. Reduction of critical path and increase of parallelism................. 34
1.5.1. Reduction by transformation of C/C++-code............c.co..... 34
1.5.2. Preliminary transformation of 100ps.cccceeeieiiinnninn 37
1.5.3. Extraction of computations from control structures. 38

3

1.5.4. Transformation of eXPressions..........c.cvevvererereneeieeieeenenns 40

1.5.5. Effectiveness of transformations.ccoceeeee v evviee e, 41
1.6. Evaluation accuracy and limitations.c.ccccoeveveiviieicciennns 43
OO0 [od 1153 o) o PR 44

Chapter 2. PARALLELIZATION POTENTIAL
OF MEANINGFUL HARDWARE / SOFTWARE

APPLICATIONS ...t 45
2.1. Parallelization potential of two-dimensional WAVELET
(o0 o[oSS 45
2.2. Parallelization potential of RSAREF cryptographic toolkit 49
2.3. Parallelization potential of MPEG-4 video codec.............cccu...... 51
2.3.1. MPEG-4 Vide0 COUEC.......ccccveriirireierirsieie e sie e 51
2.3.2. S0UICE VIide0 SEQUENCE......ccceeiveireeie e steeie et sre e 55
2.3.3. Profiling computational complexitycccoecvvviveveniennenne. 55
2.3.4. Profiling critical path ... 57
2.3.5. Profiling parallelization potential..............ccccoviiiiiiiniinnns 61
2.4, CONCIUSION ... 66
Chapter 3. TRANSFORMATION OF ALGORITHM TO BASIC
SINGLE-BLOCK MODELcooiiiiiieececcee e 67
3.1. Algorithm transformation flowcccccovviiiiic i, 67
3.2. Preliminary transformation of algorithmc.cccooiiiinennn, 71
3.3. Basic single-block flow model............ccooviiiiiiiniiiccene 74
3.4. Transformation of loops for basic single-block model 79
3.5. Transformation of nested branching code to basic single-
DIOCK MOMEL ... 85
3.6. Efficiency of basic single-block model..............ccccooviiiiiiiiinnnns 90
3.7, CONCIUSION ...t 100

Chapter 4. ANALYSIS OF BASIC SINGLE-BLOCK MODEL 102
4.1. Goals Of aNalYSIS........ccooiririiiiecc e 102
4.2. Analysis of structured basic single-block model........................ 102

4.2.1. Evaluating conditional variables using Boolean
EXPIESSIONS ...ttt 103

4.2.2. Relations among values of primary Boolean variables....... 105

4.2.3. Pairs of orthogonal conditional variables 106
4.2.4. Estimating metrics of basic single-block model 108
4.3. Advanced analysis of basic single-block model......................... 111

4.3.1. Feasibility functions for pairs of primary Boolean
VAFTADIES. ... 112

4.3.2. Feasibility functions and pairs of orthogonal variables115
4.4. Formal method of basic single-block model analysis................ 118
4.4.1. Tautology problem for a pair of conditional variables....... 118
4.4.2. Partial tautology problem for orthogonal variables........... 118

4.4.3. Contradiction procedure and SAT problem
for orthogonal variablesccccoviviiiiiiic i, 119

4.4.4. Problem solving over minimization of partial functions...... 120
4.4.5. Orthogonal subsets of the set of conditional variables....... 122

4.5. Analysis of basic single-block model with control flow

FEEADACK. ...t 122

4.6. CONCIUSTONviiiiieis st 127
Chapter 5. SYNTHESIS AND OPTIMIZATION

OF COMPUTATIONAL PIPELINES ..ot 129

5.1. Computational PIPElNEScccovrieiriririre e 129

5.2. Pipelining of algorithms ... 130

5.3. Pipelining data flow programsccoceveniiinnienienne e 134

5

5.4. Modeling pipelines with relations and graphs.............cccccccveneene 134
5.4.1. Relations and graphs on sets of operators, variables

and PIPEliNE-STAgES.cveveieee e 134
5.4.2. Number of pipeline stages versus stage time...........c.ccoo..... 139
5.4.3. As soon as possible (ASAP) and as late as possible
(ALAP) pipeline SChedulesccccoviieiiiicicie e 140
5.5. Time constrained optimization of pipelingscc.ccoccevvivennns 140
5.5.1. A set of pipelines with the same stage timecccccveveeee. 140
5.5.2. Evaluation of overall pipeline registers Sizecccocvouen. 142
5.5.3. Optimization task: objective function and constraints......... 143
5.6. Least cost search branch and bound technique for pipeline
OPHIMIZATION ... 144
5.6.1. Pipeline schedule search tree..........cccocevvevevciiv s, 144

5.6.2. Incomplete mapping of operators onto pipeline stages....... 146
5.6.3. Updating overall registers size lower bound....................... 146
5.6.4. Computing earliest and latest pipeline stages of operator..148

5.6.5. Operators assignment conflict...........ccccccooveveviiiicviincnen, 149
5.6.6. Least cost search branch and bound minimization
of overall pipeline registers Size..........ccoovvvviniiiieieicieeie 149
5.7. Heuristic technique for optimization of pipelines...................... 151
5.7.1. Dynamic evaluation of earliest and latest stages
OF OPEIALON ...t 152
5.7.2. Dynamic estimation of overall registers size lower
DOUNG ... 153
5.7.3. Dynamic ordering of OPerators..........cc.cverereriereeieiesieninns 154
5.7.4. Heuristic technique for pipeline optimization...................... 157
5.7.5. Tuning heuristic factors...........cccovvvieiii e 158

5.8, CONCIUSION .ottt ettt ettt e e e e e e ees 159

Chapter 6. OPTIMIZATION OF PIPELINES

FOR REMARCABLE APPLICATIONS. ..ot 160
6.1. Bayer filter based on improved linear interpolation.................. 160
6.2. Forward 88 discrete cosine transform...........ccocovevvereivvnnnn. 164
6.3. Experimental results for random middle size designs................ 166
6.4. Experimental results for random large size designs.................. 168
6.5, CONCIUSION ... s 168

Chapter 7. GENETIC ALGORITHM FOR TUNING

OPTIMIZATION HEURISTICS.....co ot 170
7.1. Heuristics for solving optimization problems..........c..cccccceevenin. 170
7.2. Motivation of tuning heuristiCscccovvvveiiiicicce e 172
7.3. Genetic algorithm of tuning heuristics...........c.ccocveierciiiienn. 174

7.3.1. BASICS ..vvveeeiesieeieeie sttt 174
7.3.2. GENELIC OPEratioNScc.ecvviieiiecrieiie e 174
7.3.3. Genetic algorithm ... 178
7.4. Two modes of exploiting the genetic algorithmccccoo... 179
7.4.1. Solving optimization problem...........cccccovvviveviiieiie i 179
7.4.2. Evaluation of cumulative distribution functions.................. 179
7.4.3. Evaluation of cumulative distribution functions.................. 181
7.5. Experimental resultsccccovvvveiiiicie i 181
7.5.1. Test benches for pipeline optimization............c.ccccceecvreennnne 181
7.5.2. Optimization of NEUFISTICSccoovviiviriiiee e 182

7.5.3. Cumulative distribution probability functions of heuristic
FACTOIS .. 185

7.5.4. Tuning genetic algorithm ... 186

7.5.5. Effectiveness of genetic algorithm...........cc.coeviiiiiiinnnn 187
7.6. CONCIUSION ... s 188
Chapter 8. NET ALGORITHMS........ccooiiiiiieiseeseeee s 189
8.1. Sequential scheduling of algorithms...........ccccoeviiiicicicn 189
8.2. Net scheduling of algorithmscccccvvveviiiii i 193
8.2.1. Net SChedUIEcccoviiieee 193
8.2.2. Optimizing a net SCheduleccooviviineieiececee 196
8.2.3. Tackling the existence problemc.ccocviviiiiciiiiinnns 201
8.3. Generating a net schedule............cccooeiviiiiiiiii e 206
8.4. Transition from net schedule to sequential schedule.................. 208
8.5. Graph language and tool for creation and simulation
of sequential and net algorithmsccccccveveiieciicc s, 209
8.6. Experimental resultsccccovevivii i 215
8.7. CONCIUSION ...ttt 219
REFERENCES. ...ttt 220

PREFACE

An algorithmic description of a solution of an applied, scientific or
technical problem is given, for which it is necessary to obtain a high-
performance software implementation on a multiprocessor or multi-core
system, or a hardware implementation on an FPGA or ASIC. How to
perform the mapping of the source algorithm onto an efficient parallel
implementation? How to discover, measure, extract and optimally im-
plement the hidden parallelism is the main objective of this book. This
book develops a technology for analyzing, transforming, optimizing and
mapping hard-to-parallel algorithms and programs to pipeline and net-
work implementations. The algorithm analysis is based on the profiling
of the program in order to measure the computational complexity, the
critical path and the potential parallelism on realistic input data. The
transformation performs parallelism extraction from the program, pre-
serving the original functionality. The synthesis and optimization im-
proves the structure and parameters of computational pipelines and net-
work computing schedules.

This book will be useful for scientific researchers, engineers, PhD
students and undergraduates. It is mostly based on author’s publications
written during more than 25 years period and presents state of the art in
scientific direction under consideration. The author’s works have been
published by such well known publishers as IEEE, Kluwer Academic
Publishers, Springer and many others.

My gratitude is large to my partners and friends Dr. Jean Mermet and
Dr. Bernard Courtois (France), as well as to Dr. Marco Mattavelli, Dr.
Daniel Mlynek, Dr. Alain Vachoux, Dr. Masimo Ravasi, Dr. Ab Al Hadi
Bin Ab Rahman, Dr. Simone Casale-Brunet and Dr. Endri Bezati (Swit-
zerland) for collaboration, joint work and joint publications.

The author acknowledges the colleagues of computer and system
software department, the colleagues of the faculty of information tech-
nologies and robotics, and the scientific research sector of the Belarusian
National Technical University, who have helped in preparing the manu-
script and in getting approval to publish this book.

Anatoly Prihozhy
Minsk, December, 2018
prihozhy@yahoo.com

mailto:prihozhy@yahoo.com

INTRODUCTION

This book has a coherent logical thread, revealing the topic stated in
the title. It outlines the models and methods of analysis, transformation
and optimization of algorithms and programs for effective high-
performance parallel execution on multiprocessor systems.

Firstly, we explore the metrics of algorithms and programs, providing
the estimation of the hidden, but potentially retrievable and implementa-
ble dataflow parallelism. We consider three metrics, namely, computa-
tional complexity, critical path and the parallelization factor on the graph
of program execution. This graph is formed dynamically during the exe-
cution of the program code on specific source data. These data reflect the
most realistic conditions for the application of the algorithm, and not the
conditions of the “worst case”, which is crucial for an objective and reli-
able assessment. In order to measure the values of metrics, we develop a
model and method for instrumenting and extending the program code of
an algorithm, create appropriate tools, and perform measurements on a
number of important algorithms for processing video and audio infor-
mation, as well as on cryptographic algorithms.

After the potential parallelism has been measured, and the expediency
of paralleling the algorithm is justified, the program code transformation
stage begins in order to extract the data flow. This book describes a set
of rules for the transformation of various kinds of statements, control
structures of the programming language and super positions of them, to
the basic single-block flow model that is built on a single loop. One part
of the control instructions is deleted, the other part is split. As a result,
the data flow becomes extremely dominant in the presentation of algo-
rithm. The proposed method provides the extraction of a dataflow from
difficultly parallelizable algorithms.

The basic single-block flow model makes operators less dependent on
one another and freer with respect to the permutation. However, it makes
it difficult to analyze the transformed code with respect to identifying
mutually exclusive branches, compared to the source code. The analysis
method proposed in the book uses the theory of Boolean functions and
formal logic. The search for mutually exclusive operators that are under
conditional if-then instructions is equivalent to checking the orthogonal-
ity of Boolean conditional variables, which in turn is equivalent to

10

checking the tautology of Boolean expressions. Analysis of algorithms
with feedback in the control flow due to presence of loop statements is
performed by the method of mathematical induction.

The basic single-block flow model of an algorithm is an efficient
source of synthesis and optimization of computational pipelines. It is a
source of generating a series of relations and graphs on sets of operators
and variables. The graph of operator conflicts that arise when operators
are assigned to pipeline stages, allows us to solve the problem of mini-
mizing the number of stages for a given constraint on the operation time
of one pipeline stage. Another important parameter is the size of the
buffers used to push data through the pipeline. The total size of the buff-
ers should be minimized. Two algorithms optimize the pipeline: accurate
and heuristic. The exact algorithm is capable of finding the global opti-
mum for a small-size pipeline. The heuristic algorithm is capable of find-
ing a near-optimal solution for a large-size pipeline. The developed
software has allowed to synthesize and optimize pipelines used in practi-
cally significant applied areas. Experiments performed on large algo-
rithmic descriptions taken from real practice and generated by random
number generators showed that the proposed heuristic pipeline optimiza-
tion algorithm yields significantly better results than such algorithms like
ASAP and ALAP.

The quality of the optimization results obtained by the heuristic algo-
rithm substantially depends on the composition of the heuristics and the
weight of each of them in the integrated heuristic, which is used to select
the preferred solution when searching for the optimal parallel implemen-
tation of the algorithm. The problem of setting up heuristics for a specif-
ic paralleling problem and a specific paralleling algorithm is solved in
this book by using a genetic algorithm. We construct chromosomes, a
fitness function, a generation and population of chromosomes, selection,
and crossover and mutation genetic operations over chromosomes to de-
termine the significance of each heuristic in the paralleling algorithm.
The use of the genetic algorithm is illustrated by the example of a heuris-
tic algorithm for optimizing computational pipelines. Experiments have
shown that the genetic algorithm can significantly improve the quality of
synthesized pipelines.

The basic single-block flow model of the algorithm is a source of
synthesis and optimization of network computing schedules and network

11

algorithms. We give a definition of a network schedule, describes a
method of estimating the execution time and implementation cost of the
schedule over the cliques of the graph of sequential execution of opera-
tors and over the cliques of the graph of parallel execution of operators.
Further, we formulates and solve the problem of the existence of a net-
work schedule for a given level of parallelism. The schedule is optimized
on the minimum of execution time, or on the minimum of consumed
computing resources. The book describes an instrumental system that
supports a graphs-description language, allows to interactively create
network algorithm graph-descriptions, performs the simulation of the
graph-descriptions, and optimizes the network schedules.

All models and methods of analysis, transformation and optimization
of algorithms for parallel efficient execution are illustrated with a num-
ber of examples. The developed software tools are applied to several
practically significant hardware and software applications. In particular,
they are applied to two-dimensional WAVELET codec, RSAREF cryp-
tographic toolkit, MPEG-4 video codec, Bayer filter, 8x8FDCT, and
middle-size and large-size random designs.

12

1. EVALUATION OF COMPUTATIONAL COMPLEXITY,
CRITICAL PATH AND PARALLELIZATION POTENTIAL
OF ALGORITHMS

1.1. Metrics of algorithms

This chapter presents metrics for evaluating the computational com-
plexity, critical path and parallelization potential of algorithms that are
represented and executed as a computer program. The model metrics aim
at the estimation and increase of the upper bound of the algorithm execu-
tion speed on a parallel computing platform. They are particularly tai-
lored for application to network, multimedia, cryptographic, scientific
and other complex algorithms.

1.1.1. Computational complexity of algorithm

The computational complexity theory [31] classifies computational
problems according to their difficulty, and relating the complexity clas-
ses to each other. A computational problem is understood to be a task
that is in principle amenable to being solved by an algorithm, and there-
fore may be solved by a computer. The theory introduces mathematical
models of computation to study the computational problems and quanti-
fying their computational complexity, i.e., the amount of resources need-
ed to solve them, such as time and storage.

The analysis of computational complexity of an algorithm aims at an-
alyzing the amount of resources needed by a particular algorithm. Usual-
ly, this involves determining a function that relates the length of an algo-
rithm's input to the number of steps the algorithm takes, or the number of
storage locations it uses. An algorithm is said to be efficient when this
function's values grow slowly compared to a growth in the size of the
input. Different inputs of the same length may cause the algorithm to
have different behavior. Best, worst and average case trends are often of
practical interest. The function describing the performance of an algo-
rithm is usually an upper bound, which is determined from the worst
case inputs to the algorithm.

The term analysis of algorithms was introduced by Donald Knuth
[32-34]. Algorithm analysis provides theoretical estimates for the re-

13

https://en.wikipedia.org/wiki/Models_of_computation
https://en.wikipedia.org/wiki/Computational_complexity
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Upper_bound
https://en.wikipedia.org/wiki/Donald_Knuth

sources needed by any algorithm which solves a given computational
problem. These estimates provide an insight into reasonable directions of
search for efficient algorithms.

The theoretical analysis of algorithms determines the complexity
function for arbitrarily large input, and uses big O notation (big-omega
notation) and Big-theta notation. Asymptotic estimates are preferable
because different implementations of the same algorithm may differ in
efficiency. Exact (not asymptotic) measures of efficiency can sometimes
be computed but they usually require certain assumptions concerning the
particular implementation of the algorithm, called model of computation.

Nowadays, processing and compression algorithms, communication
protocols and multimedia systems have reached an extremely high level
of sophistication. Architectural implementation choices based on design-
er feeling or intuition without objective measures and verifications be-
come extremely difficult or impossible tasks.

The increasing complexity of the algorithms has lead to the need of
specifications and more intensive validations of such system descriptions
by means of C/C++ software implementations. These implementations
are often huge and virtually impossible to be analyzed and manipulated
without the aid of automated tools and appropriate methodologies. In
many cases the understanding of the algorithms and the evaluation of
their complexity and parallelization potential, are fundamental steps for
correct architectural implementation choices.

Another important issue is that the interest in the network, multime-
dia, cryptographic and other fields is restricted to evaluations and
measures under real input conditions, and not through strict worst case
analysis that would lead to consider pathological cases far from the in-
terest of real efficient implementation solutions.

It is also desirable to understand and measure the algorithm com-
plexity and the parallelization potential at the highest possible algorith-
mic level. Such understanding at the very early stage is fundamental in
order to be able to take meaningful and efficient partitioning decisions
and bring them to actual efficient parallel implementations.

1.1.2. Critical path analysis problem

The problem of identifying one of the longest paths in a circuit or in a
14

https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Computational_problem
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big-theta_notation
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Model_of_computation

program is called a critical path problem [41]. The critical path analysis
is an efficient mechanism used at several levels of system design, includ-
ing circuit-, logic-, architecture-, algorithmic-, and system-levels. At sys-
tem level, the process of hardware/software partitioning is a complex
optimization problem [21]. The final solution depends on a variety of
design constraints/goals like performance, power consumption, imple-
mentation cost. The critical path analysis can be used for the detection of
more efficient hardware/software partitions and their implementation
parameters.

At circuit level, the length of critical path plays a key role in setting
the clock cycle time and improving the architecture performance [41].
The critical path length is computed as the longest signal propagation
delay in the circuit. In [41] the speed up of the critical path computation
is achieved by means of parallel processing.

In designing VLSI or systems on chips architectures a complex com-
putational task is represented as a directed task graph. The concept of
critical path on the graph is used in [8] for solving the optimal buffer
assignment problem by means of formulation of integer linear program-
ming problem and decomposing the graph into a number of sub-graphs.

In high-level synthesis [43], the static data flow graph model is wide-
ly used for solving such tasks as scheduling, allocation and binding. Dur-
ing scheduling, the achievable iteration period is limited by the critical
path time on the graphs. Some transformations are proposed in [43] on
the static graphs in order to reduce the critical path time.

The idea described in [91] is to insert parallelism analysis code into
the sequential simulation program. The execution of a discrete event
simulation follows causality constraints, and the relationships between
the events can be described by an event precedence graph. When the
modified sequential program is executed, the time complexity of the par-
allel simulation is computed.

In [5] the critical path analysis is presented as a method for detailed
understanding of when and how delays are introduced in data transfers in
the Internet. By constructing and profiling the critical path, it is possible
to determine what fraction of the total transfer latency is due to packet
propagation, delays at the server and at the client, network variation etc.

In message passing and shared-memory parallel programs [22],
communication and synchronization events result in multiple paths

15

through a program’s execution. The critical path of the program is simp-
ly defined as the longest time-weighted sequence of events from the start
of the program to its termination. The parallel computations are de-
scribed by the program activity graph. The critical path of a parallel pro-
gram is the longest path through the graph.

The critical path profiling is a metrics explicitly developed for paral-
lel programs [22] and proved to be useful for several optimization goals.
The critical path profile is a list of procedures and the time each proce-
dure contributed to the length of the critical path. Critical path profiling
is a way to identify the component in a parallel program that limits its
performance. It is an effective metric for tuning parallel programs and is
especially useful during the early stages of tuning a parallel program
when load imbalance is a significant bottleneck. It also helps to find out,
which components should be prioritized to terminate the program in
time. Where an operation has to be completed on time, critical path anal-
ysis helps us to focus on the essential activities to which attention and
resources should be devoted. Work [22] describes a runtime non-trace-
based algorithm to compute the critical path profile of the execution of
message passing and shared-memory parallel programs. This work also
presents an online algorithm to compute a variant of critical path, called
critical path zeroing, which measures the reduction in application’s exe-
cution time after the elimination of a selected procedure.

The critical path analysis also gives an effective basis for the schedul-
ing of computations. On multiprocessor system, task scheduling is im-
portant to achieve good performance. The work presented in [36] pro-
poses a task scheduling algorithm that allocates tasks followed by cor-
recting the critical path. The technique described in [38] schedules non-
cyclic non-branching task graphs, analyzing dynamically the critical
paths in current schedule. Papers [61, 71] define the net schedule concur-
rency level with a set of pairs of operations to be executed in parallel.
The techniques based on the minimization of critical path length that is
estimated as the maximum clique weight of the sequential and parallel
operator graphs constitute the most efficient approach to the generation
of concurrent schedules.

16

1.1.3. Parallelization potential of algorithm

The algorithmic complexity and parallelization potential that is hid-
den in an algorithm does not depend on the type of underlying hardware
architecture and compiler technology which are used for the complexity
evaluation. It depends on the algorithm itself and on input data that has
to be processed to output data. This book focuses on the methodology for
the measure of the critical path as evaluation of the parallelization poten-
tial of algorithms / architectures that are described /modeled using a high
level programming or hardware description language. Despite the ap-
proach could in principle be applied to any programming language, the
implementation using an automatic instrumentation stage presented here
has been studied and developed for C language.

1.2. Methodology of evaluating algorithm critical path

This chapter presents a methodology for evaluating the critical path
on the Data Flow Execution Graph (DFEG) of algorithms specified as C
programs. It proposes an efficient dynamic critical path evaluation ap-
proach that generates dynamically a data flow execution graph. Such an
approach includes two key stages: (1) the instrumentation of the C code
and mapping it into a C++ code version, (2) the execution of the C++
code under real input data and dynamically evaluating the actual critical
path. The methodology and tools of analyzing algorithms / programs aim
at the estimation and increase of the upper bound of the execution speed
and parallelization potential of algorithms. The methodology is particu-
larly tailored for application to multimedia, cryptographic and other
complex algorithms. Critical path analysis and the subsequent algorith-
mic development stage is a fundamental methodological preliminary step
for the efficient definition of architectures when the objective is the im-
plementation of the multimedia algorithms on parallel homogeneous and
heterogeneous platforms.

Summarizing the previous results, we can conclude that the majority
of already developed methodologies and tools aim at the critical path
profiling for tuning existing parallel programs executed on basic ma-
chines (Fig. 1a). In this paper, the objective is to propose a critical path
model metrics that can be obtained using automatic evaluation tools such

17

as the one described in [75, 83] in order to be able to find out in which
degree a given algorithm described in the C language satisfies the paral-
lel implementation conditions (Fig. 1b). Analyzing the measures of the
critical path obtained from simulation results using an automatic instru-
mentation tool, the most promising algorithms, from the parallelization
point of view, can be selected among many alternatives. Moreover, the
equivalent transformation of algorithms reducing the critical path and
increasing the possible acceleration of the future parallel architecture can
be performed.

The following principles constitute a basis for the methodology of the

critical path evaluation:

1. The critical path is defined on the C-code’s data flow execution
without taking into account the true control flow;

2. The critical path length and the system parallelization potential are
defined in terms of the complexity of C language basic operations
(including read and write operations). The parameters of the ma-
chine executing the instrumented C-code during evaluating the
critical path are not taken into account

3. In the definition of the critical path, the Data Flow Execution
Graph results from the partial computation of the C-code using
true input data. Therefore, such Data Flow Execution Graph is
used for the critical path definition instead of the traditional static
Data Flow Graph.

a) TTTTTTTTTTTTA b) TTTTTTTTTTTTA

I Parallel code : 1 Sequential code |

! 4 I_ _____ 1 ______ 4
Critical path Critical path
profiling evaluation

| Criticalpath | | Criticalpath |

1 length and critical 1 ! length and 1

1 path profile (basic | i parallelization |

i machine . , potential (future

I 1 I 1

architecture)

Figure 1.1. Critical path profiling (a) of parallel code on event graphs versus critical path
evaluation (b) of sequential code on data dependences graphs

18

1.2.1. Data Flow Execution Graph

The DFEG is represented as a finite non-cyclic directed weighted
graph constructed on the two types of node. The first type includes
name-, address-, and scalar value-nodes. The second type includes oper-

ator-nodes. The name- and address-nodes are represented as and the

value-nodes are represented as III The operator-nodes are denoted
using the usual C-language notation: =, [], ++, --, +, *, %, ==, /=<, >,
+=, /=, read (r), write (w) and others. The graph nodes may be connected
by two types of arc: the data dependence arc denoted — and the condi-
tional dependence arc denoted . The data dependence arc connects
input names, addresses and values with an operator and connects an op-
erator with its output value or address. The conditional dependence arc
connects a test value with an operator or value covered by a conditional
instruction. A graph node without incoming arcs is called an initial node
and a graph node without outgoing arcs is called a final node. A DFEG
fragment for if (c) d*=2; C-code is shown in Fig. 1.2. It contains four
value-nodes, one operator-node, three data and one conditional depend-
ence arcs.

An example C-code for recurrent computations is presented in Fig.
1.3. The static DFG for the code is shown in Fig. 1.4. The corresponding
dynamic DFEG for the first iteration of the loop is shown in Fig. 1.5.
The array components are treated as separate scalar elements. The DFEG
includes all types of name-, address-, and value-nodes as well as the var-
ious operator-nodes (deref is an implicit dereference operator).

c d 2

1

d

Figure 1.2. Example DFEG fragment for if (c) d*=2; C-code
19

#define L 10
void main () {
float X[L] = {0.6F,0.1F,0.9F,0.3F,0.8F,0.5F,0.7F,0.2F,0.4F,0.7F};
float Y[L] = {0.3F,0.8F,0.4F,0.2F,0.1F,0.9F,0.5F,0.7F,0.1F,0.6F};
float Z[L]; Z[0] = 0.5F;
for (inti=1; i<L; i++) {intil=i-1;
float& 70=7[i1]; float& X0=X[il]; float& YO=Y[il];
float& z1=7[i]; float& X1=X[i]; float& Y1=VYTi];
if ((Z0+X0*0.7F+Y0*0.3F+0.5F) < ((X1/X0)*0.1F+(Y1/Y0)*0.9F))
Z1=X0*0.4F-Y0*0.3F+X1*0.2F-Y1*0.1F+Z0; else
Z1=X0*0.1F-Y0*0.2F+X1*0.3F-Y1*0.4F+Z0;

}

}
Figure 1.3. An example C-code for recurrent computations

1.2.2 Computational complexity of data flow execution graph

The complexity of static DFG is traditionally evaluated as a sum of
node (in particular operator-node) weights. If we assume that the weight
of each operator-node equals 1, then the static complexity of the DFG
presented in Fig. 1.4 equals 81. It is obvious this is the complexity of the
algorithm description rather than the computational complexity of the
algorithm.

The computational complexity of the algorithm can be evaluated on
DFEG. The DFEG is weighted with the node complexities. All the com-
plexities are accumulated at the operator-nodes and represent each C-
operator by a fragment in the DFEG as shown in Fig. 1.6. A read opera-
tor is associated with each incoming arc of the operator-node and a write
operator is associated with its outgoing arc. The complexity of the frag-
ment in Fig. 1.6 is equal to 4 basic operators.

Similarly, assume that each basic operator complexity be equal to 1.
Table 1.1 represents the C-language operator complexities. When the
basic operator complexities are different, the table can be easily modified
to map the critical path length on any target architecture.

The results of the complexity evaluation of the algorithm DFEG
fragment shown in Fig. 1.5 are reported in Table 1.2. The overall com-
plexity is of 97 basic operators. The implicit dereference operator com-
plexity is assumed here to be equal to 0.

20

B EE | EE Ee
¥ J J J J

lﬂ [oxma] [o7] fymr] [oa] [Dvion] [oe]
PR R

.
v 3

Figure 1.4. The static DFG for the C-code shown in Fig. 1.3. The algorithm description
complexity equals 81 operator-nodes. The static critical path is shown in bold.
The critical path length equals 14 operator-nodes

21

118 27

g

Figure 1.5. The DFEG fragment for C-code shown in Fig. 1.3. The nodes generated
during first iteration of the loop are presented. The critical path is in bold.
The computational complexity of C-code is estimated through the number of nodes
in DFEG. These are name-, value-, and operator-nodes. The data dependences
are represented by lines and the conditional dependences are represented by dashed lines

22

1.2.3 Critical path on data flow execution graph

In literature [43, 52], the concept of static critical path is defined on
DFG as a simple critical path and a loop critical path. The objective is to
minimize the iteration period during scheduling and resource allocation
in high-level VLSI synthesis by means of unfolding, retiming, and pipe-
lining transformations.

The essential drawback of this concept is that the minimum execution
time and computational complexity of the overall algorithm cannot be

estimated and exploited.
read
e

g2

wr I te

Figure 1.6. Evaluation of the complexity of a%=b; C-code

read

Table 1.1

Complexity and critical path length of C language operators

Operation Operator Complexity Critical path
Assignment = 1 1
Reference & 2 2
Dereference * 2 2
Arithmetic +,-, %1% 3 2
Arithmetic- +=, -5, *=, /=, %= 4 3
assignment
Subscript [3 2
Increment (dec- ++, -- 3 3
rement)
Unary minus - 2 2
and others

23

Table 1.2
Evaluation of the complexity of graph shown in Fig. 1.5

Operator Operator complexity | Number of operators | Total complexity
= 1 7 7
1 3 8 24
< 3 2 6
++ 3 1 3
* 3 8 24
/ 3 2 6
- 3 3 9
+ 3 6 18
=97

The critical path on the DFEG is defined as a sequence of the graph
nodes with the maximal sum of weights connecting an initial node with a
final node. The internal critical path length on the graph fragment shown
in Fig. 1.7 equals 3 because two read operations are executed in parallel.
Similarly, Table 1.1 represents internal critical path lengths of the C-
language operators.

a b
ritical i
path %=
% write
v |
a

Figure 1.7. Evaluation of the critical path on a%=b; C-code

In Fig. 1.5, address- and value-nodes are weighted with external criti-
cal path lengths. The critical path on the DFEG for the first iteration of
the loop is shown in bold.

The critical path length equals 28. The maximum path length between
Z[0] and Z[1] value-nodes equals 19. The nodes describe data depend-

24

ences between neighbor iterations of the loop and influence of the over-
all critical path length on the C-code that allows several iterations of the
loop. It should be mentioned that the portion of the overall critical path
in the DFEG fragment is not the same as shown in bold.

1.2.4 Parallelization potential and feasible acceleration

The C-code computational complexity together with the critical path
length in DFEG defines the parallelization potential of the algorithm:

Parallelization_Potential = Complexity / Critical_Path_Length.

The algorithm parallelization potential aims at searching for an effi-
cient parallel implementation of the C-code. It describes the possible ac-
celeration that can be achieved due to a parallel implementation of the
algorithm instead of the sequential implementation, but it does not de-
scribe the way of construction of such a parallel architecture. Various
parallel implementations are possible for the same C-code. The accelera-
tion due to parallelization depends on input data. Different input data
imply different possible acceleration of the C-code. The parallelization
potential is an upper bound for a non-pipelined architecture. Intermediate
parallelization can be considered depending on the constraints on com-
puting resources.

The estimated acceleration can be used in two ways:

e For creating a parallel version of the algorithm

e For reducing the C-code complexity and its critical path or devel-
oping a better C-code (algorithm)

The parallelization potential estimates the degree of possible reduc-
tion of the execution time due to parallelization of the overall computa-
tions associated with the given C-code and input data. Note that the defi-
nition of parallelization potential becomes illegal in case the description
of complexity and critical path on static DFG such as defined in [43, 52]
is used:

e The static DFG in [43, 52] is a very specific model not capable of
representing most of algorithm descriptions in C-codes, assuming
in particular there are no mutually exclusive branches on DFG

o The description complexity of DFG can be a basis for the estima-

25

tion of the algorithm computational complexity in specific non
numerous applications

e The static critical path time represents the iteration period and is

not capable of evaluating and reducing the overall execution time
of algorithms in the general case.

For the C-code shown in Fig. 1.3 and for the DFEG’s fragment pre-
sented in Fig. 1.5, the algorithm complexity for the first iteration is equal
to 97 and the critical path length is equal to 28. Therefore, the parallel-
ization potential of the C-code portion is equal to 3.5.

1.3 Evaluation of computational complexity and critical path
on data flow execution graph

1.3.1 Explicit evaluation of critical path

One approach to evaluating the critical path length consists in the pre-
liminary generation of the DFEG by means of performing partial compu-
tations on the C-code’s DFG (Fig. 1.8) under certain meaningful input
data. The partially computed flow graph finally contains the operators
associated with the scalar operands (values, addresses and variables) and
does not contain elements associated with the true control structures. All
scalar operands and operators remain in the DFEG.

Given the complexity and internal critical path length of each opera-
tor-node in the DFEG, we can evaluate the external critical path for each
address-, value- and operator-node in DFEG using the following simple
recursive technique:

1. If val is an initial name-, address- or value-node then its external
critical path length cpl(val)=0.

2. If val is a value- or address-node and op 1,...,op_r are operator-
predecessors of val (Fig. 1.9b), then its critical path length cpl(val)
= max(cpl(op_1), ..., cpl(op_1)).

3. If op is an operator-node and val 1,...,val_k are value-address-
predecessors of op (Fig. 1.9a), then the operator critical path
length is cpl(op) = cplint(op)+ max(cpl(val 1),...,cpl(val k)),
where cplint(op) is the op operator’s internal critical path length.

26

Input data |

1 1
1 1
]]
L — === L 1

X Data Flow
 Execution _Graph
! (DFEG)

Critical path
evaluation

| Critical path & !
! parallelization
. potential I

1

Figure 1.8. Critical path evaluation by means of explicit generation of DFEG

cpl(val_1) cpl(val_k) @ @

val 1 .| val k
cpl(op_1) cpl(op_r)

@ cplint(op) wal

cpl(op) cpl(val)

Figure 1.9. The graph fragment (a) for evaluating the critical path for an operator
and the graph fragment (b) for evaluating the critical path for a value (address)

The technique itself is very efficient, although it cannot be practically
used. Its drawback is that the DFEG can result to a large graph that is
27

difficult to handle. Fig. 1.5 illustrates the evaluation of critical path on
the explicitly generated DFEG. The evaluation procedure starts at the
initial nodes and step by step using the above listed rules computes the
external critical path length for each address- and value-node. The criti-
cal path for the Z[1] value-node is the overall critical path on this DFEG.

1.3.2 Dynamic evaluation of critical path

Since the number of nodes in the DFEG is equal to the number of op-
eration calls during the program’s execution, explicitly building the
graph is not practical for long running programs. One way to overcome
this limitation is to develop a technique that does not require building the
graph. Such a technique is based on the flow shown in Fig. 1.10. Firstly,
the C-code is instrumented by overloading all explicit and implicit opera-
tors [83] and is transformed into an equivalent C++-code, in terms of the
operators applied to the input data. Secondly, the C++-code is executed
under the given input data, computing output data and evaluating the
complexity, critical path and parallelization potential of the algorithm.

In the C++-code, an additional cpl variable is associated with each ac-
tual scalar var variable (a separate variable, a scalar element of an array,
a scalar element of a structure and so on) of the C-code (Fig. 1.11).

The execution of a C-code operation also results in computing a new
value of the associated variable. The cpl variable describes the external
critical path length for the main var variable. The computation of cpl is
coupled with the computation of var. The performance of op operator
results in computing the value of var, re-computing the algorithm com-
plexity, and computing the cpl for var.

1.4 Tool for estimation of algorithm parallelization potential
1.4.1 Instrumenting and mapping the C-code onto a C++-code

The dynamic evaluation of the critical path as described in the previ-
ous section is useful if the program can be appropriately instrumented
and mapped using automatic tools into an equivalent version of the code,
thus avoiding annoying and resource consuming code rewriting.

28

. Equivalent :
| instrumented |
: C++-code :

C++-code
execution

I Critical path & :
Output | parallelization 1
data i potential |

Figure 1.10. Dynamic evaluation of the critical path by means of instrumenting
and executing the C-code

cpl(var_1) var 1 v | var k cpl(var_K)

e cplint(op)

var

cpl(var) = cplint(op) + max(cpl(var_1), ... ,cpl(var_k)))

Figure 1.11. General scheme for the dynamic evaluation of the critical path

29

This section provides an example of how such mapping can be im-
plemented. More details of one possible implementation of such non
trivial mapping can be also found in [83]. During the mapping of the
source C-code into a C++-code version, the following parts of the C-
code have to be instrumented to evaluate the parallelization potential of
the algorithm:

Data types and data objects
Operators

Control structures
Functions.

So as to correctly accomplish the evaluation, global and local addi-
tional variables and objects can be used in the instrumented C++-code.
Global variable declarations can be as follows:

static unsigned long Algorithm_Complexity = 0;
static unsigned long Critical_Path_Length = 0;
static Critical _Path _Stack CPS_;

where Critical_Path_Stack is a class implementing the mechanism of
processing of conditional dependences associated with the nested control
structures. An additional class object and its internal data elements can
be associated with each scalar variable of the C-program. The C++-code
in Fig. 1.12 will be used in this Section to illustrate and explain the key
solutions taken during mapping the C-code into an equivalent C++-code.

The basic types of the C language such as char, int, float, double,
signed char, unsigned char, short int, long int, unsigned short int, and
others can be mapped into the classes with similar names CHAR, INT,
FLOAT, DOUBLE, SIGNEDCHAR, UNSIGNEDCHAR, SHORTINT,
LONGINT, UNSIGNED SHORTINT and others in the C++ language.
The structure of the INT class in C++ for the int basic type of C is shown
in Fig. 1.13. The val data element of the int type represents a variable in
the source C-code. The cpath data element of the unsigned long (double)
type describes the external critical path length for the val variable.

The class functions overload the operators on the data elements.
Fig. 1.12 illustrates the way in which variables i and il of type int (Fig.
1.3) can be replaced with the same name objects of class INT.

30

#define L 10
void main()
CRITICAL_PATH_TURN_ON
FLOAT X[L]={0.6F, 0.1F, 0.9F, 0.3F, 0.8F, 0.5F, 0.7F, 0.2F, 0.4F, 0.7F};
FLOAT Y[L]={0.3F, 0.8F, 0.4F, 0.2F, 0.1F, 0.9F, 0.5F, 0.7F, 0.1F, 0.6F};
PointerPrin<FLOAT> Xp=X; PointerPrin<FLOAT> Yp=Y;
FLOAT Z[L]; PointerPrihn<FLOAT> Zp=Z; Zp[0]=0.5F;
for(INT i=1; PUSH_LOOP(i<L); i++, POP1) { INTil=i-1;
FLOAT& Z20=Zp[il]; FLOAT& X0=Xp[il]; FLOAT& YO0=Yp[il];
FLOAT& Z1=7p[i]; FLOAT& X1=Xp[i]; FLOAT& Y1=Yp[il];
if(PUSH_IF((ZO + X0*0.7F + Y0*0.3F + 0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F)))
Z1=70 + X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F; else
Z1=70 + X0*0.1F - YO*0.2F + X1*0.3F - Y1*0.4F; = POP1;

CRITICAL_PATH_TURN_OFF

}

Figure 1.12. Example of a possible C++ instrumentation of the C-code shown in Fig. 1.3

class INT {
int val,
unsigned long cpath;
public:
constructor & destructor functions
functions for overloading operators
critical path stack functions
other functiors

¥

Figure 1.13. Example of possible mapping of the C’s int basic data type to the INT
classin C++

template <class IT> class PointerPrih {
IT*val;
unsigned long cpeth;
public:
constructor & destructor functions
functiors for overloading operators on pointers
critical path stack functions
) other functions

Figure 1.14. Example of a possible instrumentation of the C’s pointers in C++
31

Declarations of pointers to basic types char, int, float, double, etc. in
C-code can be replaced by the PointerPrih classes defined for CHAR,
INT, FLOAT, DOUBLE, and other instrumented types. The single tem-
plate presented in Fig. 1.14 can generate all the classes, where IT denotes
an instrumented type.

An array of elements of a basic type in the C-code can be mapped to
an array of objects of the corresponding instrumented class in the C++-
code. In order to be able to count operations on the arrays including the
[] subscript operation, a mechanism of instrumented pointers can be
used. An appropriate instrumented pointer can be introduced for each
array in the C++-code. All the operations to be executed on the array in
the C-code are associated with the pointer in the C++-code. For example,
the X, Y, and Z arrays of float type in Fig. 1.3 can be replaced with the
X, Y, and Z arrays of objects of the FLOAT class in Fig. 1.12. Moreo-
ver, the Xp, Yp, and Zp instrumented pointers of the Pointer-
Prin<kFLOAT> class are introduced in the C++-code. After that, all array
operations are executed on the pointers. Other composite types of C lan-
guage can be instrumented in the similar way in C++ language.

All the operations on addresses and values that will be performed dur-
ing the C-code execution stage are instrumented during transition from
the C-code to the C++-code. Each operator in the C-code is overloaded
by an appropriate class function in the C++-code (Fig. 1.15). The opera-
tors on the C-types are replaced with operators on the C++-classes. The
overloading functions are defined for groups of close operators.

The true control structures are not taken into account during evaluat-
ing the critical path. The only influence of the structures on the DFEG is
through the conditional dependences. A critical path stack is introduced
in the instrumented C++-code in order to find out the dependences. The
external critical path length of the declared or temporary T test variable
is an element of the stack record.

A new record is added to the stack by the functions PUSH_LOOP
(T), PUSH_IF(T), and PUSH_SWITCH(T) presented in Table 1.3 and
overloaded for each instrumented basic type by means of the member
function push(cpath) of the _CPS_ object of the Critical_Path_Stack
class. Functions PUSH_LOOP and PUSH_IF return a value of the bool
type. The difference between the functions is that PUSH_IF adds a rec-
ord to the stack in any case not depending on its return value.

32

Object 1 Object_2 ! Critical path stack
i e val 1 ! e val ! ! e cpath
! e cpath | ! e cpath |

Overloading function:

e Main computations taken from the C-code

e Additional computations evaluating the
complexity and critical path

! Result object
Poe vl :
1 e cpath !

Figure 1.15. Overloading a binary operator by a class function

Table 1.3
PUSH and POP macros/functions on the critical path stack
N Function/Macro Return type Description
1 PUSH_IF(Test) bool pushin _CPS_
2 PUSH_SWITCH(Se) type of Se pushin_CPS_
3 PUSH_LOOP(Test) bool push in _CPS_ when true
4 PUSH(CPlen) void push CPlenin _CPS_
5 POP(N) void pop N records of _CPS_
6 POP1 void pop 1 record POP(1)
7 POP_(Expr) type of Expr POP(1) and transmit Expr
8 POP_(N, Expr) type of Expr POP(N) and transmit Expr

The PUSH_LOOP function updates the stack when the return value
equals true and does not update the stack when the value equals false.
The return value type of PUSH_SWITCH function is the same as the
basic type of T argument. The function always adds a record to the stack.

The top records are removed from the stack by the macros/functions
presented in Table 1.3. The macros/function POP(N) belongs to the criti-
cal path stack object _CPS_, where N is the number of records to be re-
moved. The value of N equals 1 for loop- if- and switch-statements. It

33

can be greater than 1 for break- continue- and return-statements. A con-
ditional ternary (T ?TE:FE) operator is instrumented as
POP_(PUSH_IF(T) ? TE : FE) where TE and FE are expressions exe-
cuted when test expression T is evaluated to true and false respectively,
and POP_ removes exactly one record from the stack and transmits the
operator value. In general case, a goto statement makes the use of PUSH
and POP functions illegal. The goto statements can be eliminated from
the C/C++-code by equivalently transforming the unstructured program
to a structured one. The mapping rules between C and C++ code versions
for control structures are shown in Table 1.4, where Stat is a statement.

Fig. 1.16 presents an example of the mechanism of interaction of the
instrumented control structures (Fig. 1.12) and the overloaded operators
by means of the critical path stack. It is easy to see that the top cpath
value is always larger than the previous ones in the stack.

The C-function bodies do not constitute a boarder for the data and
conditional dependences among external and internal variables. The de-
pendences are transmitted from the external environment to the function
body and from the function body to the external environment by means
of function’s arguments and the return value of instrumented types.

The critical path can be evaluated for any part (parts) of the C-code.
They should be described as a separated region by two macros:
CRITICAL_PATH _TURN_ON and CRITICAL_PATH_TURN_OFF.

The C++-code that is out of the region simply transmits the variable
critical path lengths. Thus, the critical path on the key functions of C
code can be evaluated.

1.5 Reduction of critical path and increase of parallelism
1.5.1 Reduction by transformation of C/C++-code

The true control structures of the C-code are an obstacle in the direct
implementation of parallelization potential and possible acceleration [69,
70]. The transformation methodology is a mechanism of searching for an
appropriate architectural implementation [7, 16, 19]. It allows the reduc-
tion of execution time (iteration period, control steps and clock cycles) at
the same constraints on resources and approaches the actual acceleration
to the upper bound.

34

Table 1.4

Mapping of C control structures to C++ instrumented structures

Control structure in C

| Instrumented structure in C++

if, ?:, switch, while, do, for

if (TestExpr) ThenStat

if (PUSH_IF(TestExpr)) ThenStat
POP1;

if (TestExpr) ThenStat else ElseStat

if (PUSH_IF(TestExpr)) ThenStat else
ElseStat POP1;

Var = (TestExpr) ? TrueExpr :
FalseExpr;

Var = POP_((PUSH_IF(TestExpr)) ?
TrueExpr : FalseExpr);

switch (Select) {
case IntVall: Statl break;
case IntVal2: Stat2 break;

default: Statn
}

switch (PUSH_SWITCH(Select)) {
case IntVall: Statl break;
case IntVal2: Stat2 break;

default: Statn
} POP1;

while (TestExpr) Stat

while (PUSH_LOOP(TestExpr)) {Stat
POP1:}

do Stat while (TestExpr)

PUSH(0) do Stat POP1; while
(PUSH_LOOP(TestExpr))

for (Init; Cond; Step) Stat

for (Init; PUSH_LOOP(Cond); Step
POP1) Stat

break, continue, return, goto

for (Init; Cond; Step) {Statl if (Test-
Expr) {Stat2 break;} Stat3}

for (Init; PUSH_LOOP(Cond); Step
POP1) {Statl if (PUSH_IF(TestExpr))
{Stat2 POP(2); break;} POP1; Stat3}

for (Init; Cond; Step) {Statl if (Test-
Expr) {Stat2 continue;} Stat3}

for (Init; PUSH_LOOP(Cond); Step
POP1) {Statl if (PUSH_IF(TestExpr))
{Stat2 POP(2); continue;} POP1;
Stat3}

TypeFun NameFun (Argl,..., Argk)
{Statl if (TestExpr) {Stat2 return
Expr;} Stat3}

TypeFun NameFun(Argl,...,Argk)
{Statl if (PUSH_IF(TestExpr)) {Stat2
return POP_(1,Expr);} POP1; Stat3}

goto Label;

The unstructured program is trans-
formed to an equivalent structured one

35

Instrumented C++-code Critical path stack Overloading functions

for (...; PUSH_LOOP(...); __,| Testvariable 1
..,POP1){ critical path Overloaded operators *,
. +, -, /, ... in the current
if (PUSH_IF(...)) — 3 Tsfitt;g'agltiz ——most enclosed control
{... }else P W structure
{...} POPI;
} Top
NIV AN

Figure 1.16. Generation of the conditional dependences using the critical path stack

Two types of transformation are investigated in the context of archi-
tectural synthesis. The transformations of the first type aim at the reduc-
tion of the critical path. The critical path evaluation tool helps to localize
the transformations. The transformations of second type aim at breaking
the true control structures in order to increase the effectiveness of behav-
ioral synthesis and scheduling techniques. The transformation methodol-
ogy allows the architectural implementation of parallelization potential
by means of C-code transformation. The transformations promote the
approach of DFG to DFEG.

The equivalent transformation of the source program is also a way of
achieving the reduction of the critical path length and the increase of the
parallelization potential of the C-code. No specific coding style is needed
during creation of the source C-code, although the transformation itself
may require specific code forms. The control and data flow transfor-
mation rules which are useful in the context of DFEG-based critical path
reduction are as follows:

e Restructure, split, and transformation of statements
Extraction of computations from control structures

e Algebraic transformation of arithmetic, logic and other type of ex-
pressions

o Merge of expressions and statements

e Unfolding loops and others.

36

Although most of the transformation rules have been previously con-
sidered in literature, these should be analyzed again in the context of dy-
namic global critical path definition and reduction on DFEG. For in-
stance, the unfolding, retiming, and pipelining transformations aim at the
reduction of iteration period on static DFG which cannot be less than the
iteration bound [52]. Moreover the global critical path analysis helps to
find places for the efficient application of the transformation rules.

It can be noted that the procedure of increase of the parallelization
potential of a C/C++-code is an iterative process. Firstly, the source C-
code is transformed and rebuild. Then it is instrumented and mapped to a
C++-code version using an automatic tool. After the execution of the
C++-code using real input data as stimuli, evaluation of the critical path,
estimation of the possible acceleration, and localization of further trans-
formations, the intermediate C-code can then be transformed again in
order to perform the next iteration.

1.5.2 Preliminary transformation of loops

In order to be able to apply other transformation rules to the C/C++-
code, the loop statements should be preliminary transformed by means of
moving the iteration scheme into the loop body. The for-loop

for (T; D;S) {B}
can be transformed to

for(T; ;) { _C =D; if(C){B S} else break; }
The while-loop

while (D) {B}
can be mapped to

while (true) {_C =D; if (C) {B} else break; }
The while-loop

37

do B while (D);
can be transformed to
do B _C =!D; if(_C) break; while (true);

After these transformations, the extraction of computations from con-
trol structures, and other types of transformation are possible.

1.5.3 Extraction of computations from control structures

An efficient way of accelerating the computations is the extraction of
operators from control structures and performing them in advance and in
parallel. The extraction can follow the preliminary transformation of
loops. Fig. 1.17 illustrates the extraction mechanism and transformation
rules on the C-code presented in Fig. 1.3. The extraction implies the in-
troduction of additional variables and computations. The critical path
length for the first iteration of the loop is reduced from 28 to 16 while
the complexity increases from 97 to 143 basic operations (Fig. 1.18).
The maximum path length between the Z[i-1] and Z[i] value-nodes is
equal to 9. The parallelization potential of the first iteration loop increas-
es from 3.5t0 8.9.

#define L 10
void main () {
float X[L] = {0.6F,0.1F,0.9F,0.3F,0.8F,0.5F,0.7F,0.2F,0.4F,0.7F};
float Y[L] ={0.3F,0.8F,0.4F,0.2F,0.1F,0.9F,0.5F,0.7F,0.1F,0.6F};
float Z[L]; Z[0]=0.5F;
for(inti=1; ;) {int_Cl =i<L; intil=i-1;
float& Z0=2[i1]; float& X0=X[i1]; float& YO=YT[il];
float& Z1=7[i]; float& X1=X[i]; float& Y1=Y[i];
if(_C1) {
int _C2_= (Z0+X0*0.7F+Y0*0.3F+0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F);
float _Zil = X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F + Z0;
float _Zi0_= X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F + Z0;
if(_C2_) Z1=_Zil1_; else Z1=_Zi0_; i++;
} else break;
}
}

Figure 1.17. Transformation of the C/C++-code shown in Fig. 1.3 (transformation
of the for-loop and extracting computations from the if-then-else-statement)

38

Figure 1.18. The DFEG fragment (first iteration of the loop) for the transformed C/C++-
code shown in Fig. 1.17. The transformation is done by means of reconstruction
of the loop-statement and extraction of computations from if-statements. The graph
complexity implies the introduction of additional variables and computations.
The critical path length is in bold.

Fig. 1.19 presents the instrumented C++-code that performs the same
basic computations as the source C-code and additionally providing its
parallelization potential as result of the program execution grown com-
pared to the non-transformed graph. The critical path shown in bold is
reduced. The longest path between Z[i-1] and Z[i] nodes is also in bold.

39

#define L 10
void main()
CRITICAL_PATH_TURN_ON
FLOAT X[L]={0.6F, 0.1F, 0.9F, 0.3F, 0.8F, 0.5F, 0.7F, 0.2F, 0.4F, 0.7F};
FLOAT Y[L]={0.3F, 0.8F, 0.4F, 0.2F, 0.1F, 0.9F, 0.5F, 0.7F, 0.1F, 0.6F};

PointerPrihn<FLOAT> Xp=X; PointerPrin<FLOAT> Yp=Y;
FLOAT Z[L]; PointerPrih<FLOAT> Zp=Z; Zp[0]=0.5F;
for(INTi=1; ;){ INT_C1_=i<L; INT i1=i-1;

FLOAT& Z0=Zp[i1]; FLOAT& X0=Xp[il]; FLOAT& YO0=Ypl[il];
FLOAT& Z1=Zp[i]; FLOAT& X1=Xpl[il; FLOAT& Y1=Ypli];
if(PUSH_LOOP(_C1))) {
INT _C2_=(Z0 + X0*0.7F + Y0*0.3F + 0.5F) < ((X1/X0)*0.1F + (Y1/Y0)*0.9F);
FLOAT _Zil_=2Z0 + X0*0.4F - Y0*0.3F + X1*0.2F - Y1*0.1F;
FLOAT _Zi0_=Z0 + X0*0.1F - Y0*0.2F + X1*0.3F - Y1*0.4F;
if(PUSH_IF(_C2)) Z1= Zil ; else Z1= Zi0_; POP1,;
i++; POP1;
} else break;

CRITICAL_PATH_TURN_OFF

Figure 1.19. Equivalent instrumented C++-code for the source code reported in Fig. 1.17
(Transf_1)

1.5.4 Transformation of expressions

The transformation of expressions is an efficient way of rebuilding
the DFG and the DFEG of the C/C++-code. The objective of expression
transformation is to rebuild the DFG in such a way as to reduce the
number of operations on the critical path.

Fig. 1.20 presents a very simple transformation of expressions in the
C/C++-code shown in Fig. 1.19. The transformation consists in changing
the order of operation executions by means of using parenthesis. The
transformed DFEG for the first iteration of the loop is presented in
Fig. 1.21. The critical path length and the complexity of the loop’s first
iteration is the same as for the DFEG presented in Fig. 1.18. In the mean-
time, the maximum path length between the Z[i-1] and Z[i] value-nodes
decreases from 9 to 5 basic operations. This implies the reduction in the
total critical path length for many iterations of the loop.

40

INT _C2_=(Z0+(X0*0.7F + YO*0.3F + 0.5F)) < ((X1/X0) *0.1F + (Y1/Y0) *0.9F);
FLOAT _Zil_= Z0 + (X0*0.4F - YO*0.3F + (X1*0.2F - Y1*0.1F));
FLOAT _Zi0_= Z0 + (X0*0.1F - YO*0.2F + (X1*0.3F - Y1*0.4F));

Figure 1.20. Transformation and instrumentation of expressions (Fig. 1.18)
in the C/C++-code (Transf_2)

1.5.5 Effectiveness of transformations

Table 1.5 provides a comparison of the parallelization potential of
three different C-codes (and instrumented C++-codes) with the same
functionality. The number of executed iterations of the loop is the same
and equals 10.

It is easy to see that the extraction of computations from control
structures and the transformation of expressions imply significant in-
crease in the algorithm execution acceleration and in the parallelization
potential. The Transf_1 performed by means of extraction of computa-
tions reduces the critical path length by 2.16 compared to the source
code. The Transf_2 performed by means of reordering of operator execu-
tions in expressions additionally reduces the critical path length by 1.44.
The overall reduction constitutes 3.11.

In the meantime, some transformations can imply the increase in the
C-code complexity. Thus, the extraction of computations in Transf 1
implies the increase in C-code complexity by 1.3. The reasons are as
follows:

e The reorganization of the C-code introduces additional variables

and operators (operator executions)

e The extraction of computations from the if-statements implies the
execution of operators in any case not depending on the value of
test expressions; if the operators were under the control structures
it would not be necessary to execute some of them.

41

!w-

deref

deref =
v
Y[1l

|

Figure 1.21. The DFEG illustrates reduction of the overall critical path length by means
of transforming expressions. The reduction is obtained by reordering operators.
The critical path is in bold. The distance between Z[i-1] and Z[i] nodes constitutes
5 operator-nodes instead of 9 operator-nodes in the previous DFEG

Table 1.5
Parameters of the source and transformed C/C++-code
Algorithm Complexity Critical Paralleliz_ation Feasibl_e
path potential acceleration
Source 802 171 4.7 1.00
Transf_1 1039 79 13.2 2.16
Transf 2 1039 55 18.9 3.11

42

1.6 Evaluation accuracy and limitations

There are some assumptions implemented in the current dynamic crit-
ical path evaluation tool version. One of them is that a value-node in the
explicitly generated DFEG can have more than one incoming arcs with
weights (intermediate critical path lengths) to which the max-operation is
applied. All the weights could be computed simultaneously in a parallel
implementation version of the tool. But the implemented tool version
runs on a single-processor machine and executes the instrumented C++-
code sequentially. Since only one additional critical path variable is as-
sociated with each main scalar variable, all the weights at the incoming
arcs cannot be stored and processed simultaneously. The weights are
processed sequentially, as the instrumented C++-code is being executed.
As a result the execution of the max-operation is broken into several
steps which can imply some slight inaccuracy in the critical path
measure.

The second assumption is that the C-code should not contain a varia-
ble representing several other different variables whose lifetimes are not
intersected. The critical path length for this single variable would differ
from the critical path length for the several separate variables due to the
use of the max-operation. This is a source of inaccuracy in the critical
path evaluation.

There are few limitations on the evaluation technique. One of the
most significant takes place for data that are interpreted in different way
by means of different types. For instance, the following two declarations

long Ivar []={1, 3,5, 7, 9, 15};
char* cvar = (char¥*) Ivar;

cannot be legally instrumented and processed as
LONG Ivar[] ={1, 3,5, 7,9, 15},
PointerPrih<CHAR> cvar = (CHAR*) lvar;

However, the mentioned inaccuracies and limitations do not consti-
tute a significant burden for most of the evaluations performed on com-
plex multimedia algorithms. Some alternative implementation of the op-
erators overloading capable of removing such limitations are under

43

study. The critical path evaluation tool has been successfully used for
large programs such as Wavelet algorithm implementations, the MPEG-
4 Optimized Reference Software, and the Cryptographic toolkit [72, 84]
and others, without requiring any code rewriting.

1.7 Conclusion

This chapter has presented a methodology for the measure of the par-
allelization potential of complex algorithms. The measure is based on the
dynamic evaluation of the data flow execution graph and is performed by
mapping a C-program into an instrumented C++ version, and then exe-
cuting the equivalent C++ program under real input data. By combining
critical path evaluations with code transformation techniques, an efficient
methodology can be built for exploring parallel implementations of the
algorithm, thus detecting efficient architectures the algorithm can be
mapped to. The mapping from the C description to a C++ instrumented
description that provides critical path measures can be done by an auto-
matic software tool, avoiding resource consuming code rewriting.

Analyzing the obtained measures, for each methodological iteration,
the most promising algorithms in terms of parallelization potential can be
selected among many possible alternatives. Applying transformations to
the algorithm and reducing the critical path length, thus further increas-
ing the degree of parallelization, result very effective for the definition of
efficient implementation architectures. The critical path length signifi-
cantly influences the results of scheduling the implementations at several
kinds of constraints on computational resources. The schedule cannot be
faster than the critical path length. A systematic methodology for reduc-
tion of the critical path length guarantees more powerful scheduling re-
sults and implicitly provides improvements in the trade off “complexity—
delay” that is common for software development, high-level synthesis
and architecture design in various application fields.

44

2. PARALLELIZATION POTENTIAL OF MEANINGFUL
HARDWARE / SOFTWARE APPLICATIONS

2.1. Parallelization potential of two-dimensional
WAVELET codec

Impressive results on the parallelization potential have been obtained
for the two-dimensional Wavelet codec implementations proposed in
[83]. Tables 2.1, 2.2 and 2.3 report experimental results obtained on
three versions of DFEG that are dynamically generated on different C-
codes with the same functionality:

o DFEG of the original C-code as it was created (Case I)

o DFEG of Case | without nodes that describe control computations

on the two dimensional array representing an image (Case 1)

e The transformed C-code of Case Il and its DFEG (Case IlI).

In Case | a portion of the C-code is responsible for global iterative
traversal of the two dimensional array representing an image. In Case Il
the array is considered as a set of directly addressed and accessed sepa-
rate scalar variables. The control computations associated with the itera-
tive global traversal can be eliminated. An architecture which imple-
ments distributed on pixels computations can be generated. In Case Ill a
C-code is obtained by means of transforming several expressions consti-
tuting the wavelet core.

The algorithm computational complexity increases as the image size
grows. It constitutes from 79 to 493 million operations for Case | and
from 30 to 187 million operations for Cases Il and I1l. The average num-
ber of operations executed per pixel equals 257 in Case I, and equals 97
operations in Cases Il and Ill. The data flow computations to be incorpo-
rated in the C-code implementation constitute 37.9%, and the control
flow computations constitute 62.1%.

The increase in the image size implies the increase in the critical path
length. The length varies in the range from 2.55 up to 6.17 thousand op-
erations in Case I, in the range from 168 up to 196 operations for case Il
and in the range from 144 to 168 operations in Case I1l. After the equiva-
lent transformation of WAVELET C-code and modifying its DFG (Case
I11), the critical path length has been reduced by 16.7% compared to
Case Il.

45

The parallelization potential depends on the image size and varies in
the range from 30932 up to 79896 in Case I, varies in the range from
177938 up to 953426 in Case Il and varies in the range from 207594 up
to 1112331 in Case IlI.

Table 2.1

Experimental results for WAVELET (Case I)

Image Algorithm parameters
N Width Height Algorith.m Critical Paralleliz_ation
complexity path potential
1 640 480 78,876,895 2,550 30,932
2 800 600 123,272,013 3,146 39,184
3 1024 576 151,470,377 3,416 44,341
4 1152 864 255,635,992 4,470 57,189
5 1280 1024 336,716,669 5,172 65,104
6 1600 1200 493,277,958 6,174 79,896
Table 2.2
WAVELET without control computations (Case 11)
Image Algorithm parameters
N Width Height Algorithr_n com- Critical Paralleliz_ation
plexity path potential
1 640 480 29,893,590 168 177,938
2 800 600 46,711,523 168 278,045
3 1024 576 57,395,520 168 341,640
4 1152 864 96,855,102 168 576,519
5 1280 1024 127,568,960 196 650,862
6 1600 1200 186,871,523 196 953,426
Table 2.3
Transformed C-code of WAVELET (Case I111)
Image Algorithm parameters
N Width Height Algorithr_n com- | ~itical path Paralleliz.ation
plexity potential
1 640 480 29,893,590 144 207,594
2 800 600 46,711,523 144 324,386
3 1024 576 57,395,520 144 398,580
4 1152 864 96,855,102 144 672,605
5 1280 1024 127,568,960 168 759,339
6 1600 1200 186,871,523 168 1,112,331

46

Figures 2.1, 2.2 and 2.3 visualize the data reported in Tables 2.1, 2.2,
and 2.3 and represent the trends in the Wavelet’s complexity, critical
path, and possible acceleration due to parallelization.

O Complexity * 5E7 @ Critical path * 1E3 O Acceleration * 1E4
10+
9.
8.
74 p=
6.
5.
44
3.
2.¢
1.—
0.|

640x480 [i

1280x1024 HH
1600x1200 i

Figure 2.1. Algorithm complexity, critical path length, and acceleration due
to parallelization versus image size for WAVELET with control computations (Case I)

O Complexity * 2E7 B Critical path * 5E1 O Acceleration * 1E5
10+

1024x576 ki
1280x1024 [HH
1600x1200 HHHHE

Figure 2.2. Algorithm complexity, critical path length, and possible acceleration versus
image size for WAVELET without control computations (Case 1)

47

As an image consists of a lot of pixels, the parallelization per pixel is
a very important metrics characterizing the WAVELET algorithm. It is
easy to see that the parallelization per pixel is equal to the complexity
per pixel divided by the critical path length:

ParallelizationPerPixel = Parallelization_Potential / Image_Size =
= Complexity / (Critical_Path_Length * Image_Size) =
= (Complexity / Image_Size) / Critical_Path_Length.

If the WAVELET’s parallel computations are assumed to be the two
dimensional computations distributed on the pixels, we may ask the
guestion, how many computations are common for neighbor pixels? If
the critical path length were the same for each pixel and were equal to
the complexity per pixel, we could conclude there are no common com-
putations for neighbor pixels. Fig. 2.4 shows parallelization per pixel
versus image size and proves that the common computations constitute
more than 90% in Case I, constitute from 42% to 50% in Case Il, and
constitute from 33% to 42% in Case Ill. In Case Ill, the parallel compu-
tations are the most distributed.

@ Complexity * 2E7 @ Critical path * 5E1 O Acceleration * 1E5
12

10+

640x480 I

800x600
1024x576
1152x864
1280x1024 [HHHHHHHH
1600x1200

Figure 2.3. Algorithm complexity, critical path length, and possible acceleration versus
image size for transformed code of WAVELET (Case IlI)

48

0.7
0.6
051
0.44
0.31
0.24

0.1 4= —
04 = - = = -
= o © < < o
<5 o N~ ©0 N o
N (=) Te) [°e] o N
B &I 0OIZ 3 Z kS = <
< o N n o o
[l (e o — @ o
— — N ©
— —

Figure 2.4. Parallelization per pixel versus image size (Cases I, 11, and I11)

2.2. Parallelization potential of RSAREF cryptographic toolkit

The RSAREF is a cryptographic toolkit [72, 84] designed to facilitate
rapid development of Internet Privacy-Enhanced Mail (PEM) implemen-
tations. RSAREF supports the following PEM-specified algorithms: (1)
RSA encryption and key generation, as defined by RSA Data Security's
Public-Key Cryptography Standards (PKCS), (2) MD2 and MD5 mes-
sage digests and (3) DES (Data Encryption Standard) in cipher-block
chaining mode. The RSAREF is entirely written in C.

With RDEMO the cryptographic operations of signing, sealing, veri-
fying, and opening files, as well as generating key pairs can be per-
formed. Three series of experiments have been made: (1) Sign a file with
private key, (2) Generate random DES key, encrypt content, and encrypt
signature with DES key (seal a file) and (3) Generate RSA public/private
key pair. Experimental results are presented in Tables 2.4 - 2.7. The pos-
sible acceleration due to parallelization potential of the C-code varies
from 42.21 up to 136.93. Fig. 2.5 and Fig. 2.6 describe the algorithm
complexity, critical path length and degree of parallelization versus the
file and key sizes.

49

Table 2.4
Experimental results for RSAREF (sign a file)

Content size . . . Parallelization
(Bytes) Algorithm complexity Critical path potential
281 21,804,816 502,000 43.44
621 21,826,260 509,660 42.83
971 21,846,076 517,582 42.21
Table 2.5
Experimental results for RSAREF (seal with sign)
Content size Algorithm Critical Parallelization
(Bytes) complexity path potential
281 26,781,944 502,685 53.28
621 29,553,488 510,345 57.91
971 32,455,414 518,267 62.62
Table 2.6
Experimental results for RSAREF (seal without sign)
Content size Algorithm Critical Parallelization
(Bytes) complexity path potential
281 4,978,890 77,491 64.25
621 7,728,936 77,491 99.74
971 10,611,022 77,491 136.93
Table 2.7
Experimental results for RSAREF (key-pair generation)
Key size Algorithm Critical Parallelization
(bits) complexity path potential
508 0.6E9 13.8E6 43.89
767 3.0E9 90.0E6 33.41
1024 21.9E9 806.4E6 27.12

50

0 Complexity * 1IE6 @ Ciitical path* 1E4 O Acceleration * 1t
15.

101

281 621 971

Figure 2.5. Algorithm complexity, critical path length, and possible acceleration versus
file size for seal

O Complexity * 2E9 B Ciritical path * 1E7 O Acceleration *1E1

121
10;

for @ ml s

508 767 1024

ON B O ®

Figure 2.6. Algorithm complexity, critical path length, and possible acceleration versus
key size for key pair generation
2.3. Parallelization potential of MPEG-4 video codec
2.3.1. MPEG-4 video codec

The computational complexity, critical path, and parallelization po-
tential profiles measured on the algorithm partition tree or any other par-

51

titioning constitute an effective basis for timing and performance analy-
sis of feasible parallel algorithm implementations. The results of metrics
measuring enable to correctly select partitions that need accurate optimi-
zations or that can produce considerable implementation speed-ups by
means of parallel implementations. An example of results that enable
correctly analyzing the critical functions of a complex video coding algo-
rithm is reported. The results obtained on the measurement of the critical
path and parallelization potential profiles of the MPEG-4 video codec
and subsequent timing and performance analysis of the C/C++-code
functions tree discover the ways of efficient code reconstruction and im-
plementation definition.

The complex algorithm that is under analyses in this chapter is a
software implementation of a part of MPEG-4 Video tools [38] as speci-
fied by the MPEG-4 Video standard (ISO/IEC 14496-2) reference soft-
ware. This is an optimized enhanced compression codec (document
M9632 in 65" meeting, July, 2003, Trondheim, Norway) based on the
simple profile for representing visual data: video, still textures, synthetic
images, etc. In this version, there are enhanced features: advanced error
detection and correction services on top of H.263. H.263 is a standard
video-conferencing codec optimized for low data rates and relatively
low motion.

One new part that has been developed is a new video codec. This is
joint work with the ITU who were defining an H.26L codec (follow on
beyond H.261 and H.263). The work has been done by Joint Video Task-
force (JVT) working group and has become a new MPEG-4 video stand-
ard as part 10, i.e. ISO/IEC 14496-10 and is called Advanced Video
Coding or AVC and is technically identical to the ITU-T H.264 standard.

Fig. 2.7 shows the typical structure of the Moving Picture Experts
Group (MPEG) encoder. Motion estimation and compensation are key
parts of video compression. They help remove temporal redundancies in
images. The MPEG standard depends on two basic algorithms. Motion-
compensated coding uses block-based motion vector estimation and
compensation to remove temporal redundancies. Block discrete cosine
transforms reduce spatial redundancy.

The MPEG standard uses three types of pictures that depend on the
mode of motion prediction. The intra (I) picture serves as the reference
picture for prediction. Block discrete cosine transforms code the intra

52

http://en.wikipedia.org/wiki/Codec
http://en.wikipedia.org/wiki/H.264

pictures, and no motion estimation prevents long range error propaga-
tion. Coding the predicted (P) pictures uses forward prediction of mo-
tion. Each image is divided into macro blocks of size pixels and search
blocks of the same size in the prior reference | frame or P frame. A sec-
ond type of picture is the bidirectional interpolated (B) picture. Both
forward and backward motion predictions are performed with respect to
the prior or future reference | or P frames.

The two main types of motion estimation use pel-recursive algorithms
or block matching algorithms. Pel-recursive algorithms predict the mo-
tion field at the decoder based on how neighboring pixels decoded in the
current frame relate to pixels in the prior frame. Exhaustive search within
a maximum displacement range leads to the absolute minimum for the
energy of the prediction error and is optimal in this sense. Motion-
compensated video coding relates the intensity of each pixel in the cur-
rent frame to the intensity of some pixel in a prior frame. It links these
pixels by predicting the motion of objects in the scene.

Rate control

Prediction Buffer
Error
Image +
—»@—» DCT |—| zZ —{ O > VLC

ompen
“sation -

v

Original Motion

Picture > imati
Memory Estimation Motion information

Figure 2.7. Block diagram of the MPEG encoder: DCT is discrete cosine transform, ZZ
is zigzag scanning, Q is quantizer, VLC is variable length coding, 1Q is inverse quantizer,
1ZZ is inverse zigzag scanning, and IDCT is inverse discrete cosine transform

53

The experimental results have been obtained for the following con-
figuration of the EMPEG-4 video encoder software: the Microsoft Visual
Studio 6.0 platform, the VM5+ rate control, the MVFAST in N4554 fast
motion search, no error resilient, and the disabled post-filter.

The profiling is performed for the C/C++-code functions tree of the
MPEG-4 video encoder shown in Fig. 2.8. The intra encoding is applied
to the first frame and inter encoding is applied to the subsequent frames.

main

| ReadVonGeneric CodeBaseVol

A 4

| GetVVonBounded | @@ | WriteVonGeneric |

A

| VobnShaneMotText |<—| VonCode |—>| VobPaddina |

| VooMotionCompensate "7 \

! | RcO2 MB init |
| SubVOP | | MotionEstimation |
/ A 4
| Interpolatelmace | | MotionEstimatePicture > FindMB |
/

. A 4
FindSubPel | FullPelMotionEstMB |

A\ 4
Ch Mod
| SAD Block | / \

SAD Macroblock | FindMB |

Figure 2.8. The tree of key functions of MPEG-4 encoder reference software
(inter encoding)

54

2.3.2. Source video sequence

The video coder is performed on the following input sequence of
frames: the Foreman source video sequences, 100 input/output frames,
the CIF (352x288) and QCIF (176x144) picture sizes, the YUV (4:2:0)
format, the I-PPP coding type, and 8 bits per pixel.

2.3.3. Profiling computational complexity
The video encoder computational complexity profile that is measured

in the number of C/C++ operations is reported in Table 2.8 and Fig. 2.9.
The number of calls is additionally reported for each function.

Table 2.8

Computational complexity and critical path of MPEG-4 encoder

Own Number Share (%)

Function computational | of func- in overall

complexity tioncalls | complexity
main 9930795562 1 100.00
CodeBaseVol 9930773442 99 100.00
ReadVopGeneric 75274848 99 0.76
GetVopBounded 153268929 99 1.54
WriteVopGeneric 135777114 99 1.37
VopProcess 9566444136 99 96.33
VopCode 9491144637 99 95.57
VopShapeMotText 1873222888 99 18.86
VopMotionCompensate 195466324 99 2.37
SubVOP 125453097 99 1.97
RCQ2_MB_init 234913737 99 1.26
VopPadding 110013453 99 1.11
MotionEstimation 6940357262 99 69.89
Interpolatelmage 692083854 99 6.97
MotionEstimatePicture 6243294170 99 62.87
FindSubPel 2897497781 182720 29.18
FindMB 69872128 36544 0.70
FullPelMotionEstMB 3273115389 39204 32.96
ChooseMode 259256052 39204 2.61
MBMotionEstimation 3013192869 39204 30.34
SAD_Block 1839728800 3728588 18.53
SAD_Macroblock 981290638 470111 9.88
FindMB 74958048 39204 0.75
ObtainRange8 9205936 156816 0.09

55

Billions

0

gafiueyuielqo
gINpuld
Hao|qoloeN~avS
0l avs
uonewnps3uonoNgiAl
3pONBSO0UD
giis3uononediind
gInpul4

[eddnspuld
aInaIdarewns3uonopn
abeuwsrejodiay
uojewns3uono
Buippeddop
WirgNTzooy
dOAans
alesuadwonuonop dop
e 1onadeygdop
apondop
$520014dop
JLBUSD dOABIIN
papunogdopien
JlsuUsnydoppesy
[oA@segepoD

urew

Figure 2.9. Own computational complexity of MPEG-4 encoder functions

MotionEstimation

VopPadding

SubVOP

VopMotionCompensate

RCQ2_MB_init

VopShapeMotText

WriteVopGeneric

GetVopBounded

Others

20 30 40 50 60 70 80

10

Figure 2.10. Computational complexity profiling of MPEG-4 video codec

56

Others

SAD Macroblock
SAD Block
ChooseMode

FindSubPel
Interpolatelmage ;

0 5 10 15 20 25 30 35

Figure 2.11. Computational complexity profiling of MotionEstimation

The encoder overall computational complexity equals 9°930°773°442
operations for 99 frames. MotionEstimation (69.89%) and
VopShapeMotText (18.86%) are the most computational complexity con-
suming composite functions (Fig. 2.10).

The results of computational complexity profiling of MotionEstima-
tion are shown in Fig.2.11 The basic functions of MotionEstimation
which mostly contribute to the computational complexity are:
FindSubPel (29.18%), SAD_Block (18.53%), SAD_Macroblock (9.88%)
and Interpolatelmage (6.97%).

2.3.4. Profiling critical path

The video encoder critical path profile that is measured in the number
of C/C++ operations is described by Table 2.9 and Fig. 2.12. We distin-
guish the own critical path of each function and the share of a function in
the overall critical path of the encoder. The overall critical path of en-
coder is equal to 6°054°211 operations. MotionEstimation is the most
contributing (83.42%) composite function in the overall path (Fig. 2.13).
The basic functions which have significant share in the overall critical
path are (Fig. 2.14): FindSubPel (37.21%), SAD_Macroblock (18.57%),
VopShapeMotText (11.81%) and SAD_Block (4.60%).

57

Table 2.9

Own critical path and share in overall critical path of MPEG-4 en-
coder functions

Oown Share in Share in
Function critical overall criti- %
path cal path

main 6054211 6054211 100.00
CodeBaseVol 6054211 6054211 100.00
ReadVopGeneric 101378 0 0.00
GetVopBounded 101732 101444 1.68
WriteVVopGeneric 152065 0 0.00
VopProcess 6050363 5952722 98.32
VopCode 6050357 5952722 98.32
VopShapeMotText 2209971 714819 11.81
VopMotionCompensate 7417 8145 0.13
SubVOP 101577 442 0.01
RCQ2_MB_init 57979 30 0.00
VopPadding 15563 18 0.00
MotionEstimation 5819926 5050491 83.42
Interpolatelmage 2233 95 0.00
MotionEstimatePicture 5819849 5050287 83.42
FindSubPel 2533334 2252627 37.21
FindMB 557468 0 0.00
FullPelMotionEstMB 3292285 2712966 44.81
ChooseMode 76274 68397 1.13
MBMotionEstimation 3188680 2617335 43.23
SAD_Block 313592 278560 4.60
SAD_Macroblock 1434231 1123982 18.57
FindMB 68 0 0.00
ObtainRange8 109719 97496 1.61

The comparison of the two profiles on the computational complexi-
ty and critical path proves that there are functions like SAD_Block
whose share in the overall complexity (18.53%) is larger than their
share (4.60%) in the overall critical path. It also proves that there are
functions like MotionEstimation and FindSubPel whose share in the
overall critical path (83.42% and 37.21% respectively) is larger than
their share (69.89% and 29.18% respectively) in the overall complexi-
ty. If the goal is to reduce the critical path such functions should be
considered and transformed, first of all, in order to increase their paral-

lelization potential.

Millions

gabueyulelqo
ginpul4
doolgoloe N AYS
3oold™ avs
uonens3uchoNgIN
apojpesooyD
gis3auonoinRdling
ginpuly

eddnspuld
alnjpidajews3uololn
abewayejodiaju]
uoneus3uonoln
Buippeddop

N gINT 200N
dONdng
ajesuadwouonopdop
p@lpopwadeysdop
apondop
ssadoiddop
auauasydo AN
pepunogdopien
oususndoppeay
jop@sEgapOD

ueuw

Figure 2.12. Own critical path of MPEG- encoder functions

MotionEstimation

VopShapeMotText

GetVopBounded

100

80

60

40

20

Figure 2.13. Critical path profiling of MPEG-4 video codec

59

Others ﬁ

Others

ObtainRange8

FindSubPel

SAD_Macroblock
SAD_Block S
ChooseMode F

35 40

Figure 2.14. Critical path profiling of MotionEstimation

Some results of more detailed analyses of the critical path are report-
ed in Table 2.10 and are shown in Fig. 2.15. A comparison of the own
critical path, critical path profile, and critical path zeroing is given for
video encoder functions. For some functions like FindSubPel the critical
path share of 88.92% is almost the same as the own critical path (100%).
For other functions like VopShapeMotText the critical path contribution
of 32.35% is significantly less than the own critical path. It means the
own path and the overall path are not significantly intersected.

Table 2.10
Own critical path share in overall critical path and critical path
zeroing
Function Own critical Sh_a_re in overall Critic_al path
path, % critical path, % zeroing, %
GetVVopBounded 100 99.72 0.35
VopShapeMotText 100 32.35 7.56
MotionEstimation 100 86.78 49.47
FindSubPel 100 88.92 64.64
FullPelMotionEstMB 100 82.40 68.05
ChooseMode 100 89.67 89.61
SAD_Block 100 88.83 88.19
SAD_Macroblock 100 78.37 71.02
ObtainRange8 100 88.86 62.09

Millians

SAD_Macroblock

SAD_Block

OhtainRanges

Critical path
Critical path contribution
Critizal path zeroing
wvopShapemotText
MotionEstimation
FindsubPel
FullPeltotionEsthB
ChoosetMode

GetvopBounded

Figure 2.15. Own critical path, share in overall critical path, and critical path zeroing
in MPEG-4 video codec functions

The critical path zeroing characterizes a possible reduction in the
overall critical path due to reduction in the own critical path of a func-
tion. The amount of reduction varies in a wide range. For example, the
critical path zeroing of function SAD_Macroblock is 71.02% at the share
in the overall critical path of 78.37%. It means the most part of share can
be potentially reduced due to the reconstruction of function
SAD_Macroblock. Contrary, the critical path zeroing of function
VopShapeMotText is 7.56% at the critical path share of 32.35%. Alt-
hough the share is not too high against the own critical path, it is difficult
to reduce it significantly.

2.3.5. Profiling parallelization potential

Table 2.11 presents the own parallelization potential of each function
(column 2) and the parallelization potential of a function in the functions

61

tree (column 3). They are estimated over the computational complexity
(Table 2.8), critical path length and the share in the overall critical path
(Table 2.9) of each function of the functions tree. The overall paralleliza-
tion potential of the whole algorithm is 1640. The video encoder own
parallelization potential profile with respect to the key functions of
MPEG-4 video codec (Fig. 2.16), which consume the highest amount of
computational complexity estimates the feasible acceleration of the fu-
ture distributed architecture. The own parallelization potential defined as
the computational complexity divided by the own critical path varies
from 684 (SAD_Macroblock) to 309934 (Interpolatelmage) and to
1102324 (FindMB).

Table 2.11

Parallelization potential of MPEG-4 video encoder functions

Own Parallelization
Function parallelization potential in

potential functions tree
main 1640.31 1640.31
CodeBaseVol 1640.31 1640.31
ReadVopGeneric 742.52 infinity
GetVopBounded 1506.60 1510.9
WriteVopGeneric 892.89 infinity
VopProcess 1581.14 1607.07
VopCode 1568.69 1594.42
VopShapeMotText 847.62 2620.6
VopMotionCompensate 26353.83 442231.5
SubVOP 1235.05 4181769.9
RCQ2_MB_init 4051.70 7830457.9
VopPadding 7068.91 6111858.5
MotionEstimation 1192.52 1374.2
Interpolatelmage 309934.55 7285093.2
MotionEstimatePicture 1072.76 1236.22
FindSubPel 1143.75 1286.3
FindMB 125.34 infinity
FullPelMotionEstMB 994.18 1206.47
ChooseMode 3399.01 3790.5
MBMotionEstimation 944.97 1151.24
SAD_Block 5866.63 6604.4
SAD_Macroblock 684.19 873.0
FindMB 1102324.24 infinity
ObtainRange8 83.90 94.42

62

Thousands

B -

7

5 -

A4

4

34

2|
.

04

SubvoP
SAD_Macroblock

FindSubPel
SAD _Block

CodeBasevol [
GetvopBounded
Writer opG eneric
YopShapeh ofText
YopPadding
M otinnE stimation
ChooseMade

Figure 2.16. Parallelization potential of MPEG-4 video codec key functions

Another important characteristic of a function is the parallelization
potential in the functions tree that is defined as the computational com-
plexity divided by the share of the function in the overall critical path. As
the critical path share is less than the own critical path, the parallelization
potential in the functions tree is always not less than the own paralleliza-
tion potential. Its value varies from 873 (SAD_Macroblock) till infinity
(ReadVopGeneric, WriteVopGeneric, FindMB). The infinity value is
obtained due to the zero share of the function in the overall critical path.

Growth of parallelization potential versus number of frames. Table
2.12 describes the growth of computational complexity, critical path and
parallelization potential depending on the number of encoded video
frames. Increasing the number of frames twice implies the growth of the
complexity about twice (Fig. 2.17). The critical path length grows signif-
icantly slowly. The critical path length has grown by 38.4 times for 99

63

frames against 1 frame. It means, the parallelization among computations
of consecutive frames of the same video sequence is possible.

Fig. 2.18 shows the degree of parallelization versus number of
frames. The algorithm of encoding 10 frames can be 2.297 time parallel-
ized against the algorithm of encoding 1 frame. On 20 frames the encod-
ing algorithm can be 2.449 times parallelized over encoding 1 frame. For
99 frame the parallelization potential grows to 2.618 time. It is interest-
ing that the parallelization potential of 2.626 for 50 frames is larger than
that for 99 frames. It depends on the video sequence.

Table 2.12
Computational complexity, critical path and parallelization potential
of MPEG-4 video encoder versus number of frames

Number of Computational - Parallelization po-
frames complexity Critical path tential
1 98678728 157492 626.56
2 196200376 175382 1118.70
3 297762503 239334 124413
4 399369531 311858 1280.61
5 499918543 374486 1334.95
6 600758570 433265 1386.58
7 700916076 481945 1454.35
8 802059492 567969 1412.15
9 901871124 627270 1437.77
10 999191080 694366 1439.00
12 1200758747 819560 1465.13
14 1401196194 969017 1446.00
16 1601740755 1089697 1469.90
18 1799544062 1183045 1521.11
20 2001069072 1303941 1534.63
30 3006092583 1927676 1559.44
40 3993971189 2544380 1569.72
50 4981470788 3027194 1645.57
60 5974901481 3735201 1599.62
70 6917099291 4343810 1592.40
80 7947724259 5164862 1538.81
90 8996846808 5717979 1573.43
99 9930773442 6054211 1640.31

64

100

80

60

40

20

Figure 2.17. Growth of overall computational cémplexity and critical path length
of MPEG-4 video encoder versus number of frames

2.5 *&

15

0.5

Figure 2.18. Growth of overall parallelization potential of MPEG-4 video encoder versus
number of frames

65

2.4. Conclusion

The methodology of measuring the parallelization potential of com-
plex algorithms that is presented in chapter 1, is applied to the reference
software of several meaningful applications: two-dimensional
WAVELET codec, RSAREF cryptographic toolkit, MPEG-4 video co-
dec and others. This chapter has presented the results of measuring the
computational complexity, critical path and level of parallelism which
are hidden in the C-code of the applications.

66

3. TRANSFORMATION OF ALGORITHM TO BASIC
SINGLE-BLOCK MODEL

3.1. Algorithm transformation flow

The idea of a step-by-step transformation of an algorithm [58, 63, 64,
66, 69, 70, 74, 76], which improves key parameters of complex sequen-
tial program code that is associated with an algorithm subsequent parallel
implementation (Fig. 3.1) lies in the basis of the parallelism extraction
method we develop in this chapter. Parallelism that is extracted from the
sequential code is implemented further in a functionally equivalent paral-
lel code or in a parallel hardware architecture. Extracting parallelism
which improves parameters of subsequent implementation is a complex
process that requires knowledge of key concepts about the static and dy-
namic properties of a program. The proposed method is based on the fol-
lowing key principles:

1. measurement of parameters of sequential code that predict param-
eters of subsequent parallel implementations;

2. step-by-step transformation of a serial code in order to improve
parameters of an equivalent parallel code;

3. mapping sequential code into an efficient parallel implementation
using a basic single-block flow model.

The measurement of parallelism hidden in sequential code is based on
metrics and object-oriented instrumentation technology proposed in [61].
The main metrics characterizing parallelism, laid out in a sequential pro-
gram, include the computational complexity of the program code, the
critical path on the data flow graph of the program execution (DFEG -
Data Flow Execution Graph), and the factor of maximum parallelization
potential. We give brief definitions of these concepts, following this
work. The computational complexity of a program code on a typical in-
put data set is measured in the number of basic operations (operators or
instructions) of the programming language, in which the code is written
and performed during the execution of the program. Operations of access
to data elements, including write operations to memory and read from

67

memory, can be taken into account together with logical and arithmetic
operations, comparison operations, etc.

~< - ~

/7" Source code of

’
1
\

\\\\ algorlthm 4//' \t\ |npu'[data ”/'
“““““ vV v T
N Estimation of computational complexity, | —>,'/ \‘\
critical path and maximal parallelization '\ Code parameters ,:'
1 factor R P
ll v S T
|
! Evaluating a profile of computational LemT T -~
| complexity and critical path on L >/’ Profileon
: functions tree _ functionstree
! 7 =" eel_ .- -7
1
1| Choose a code transformation rule and
.| application location, which reduce the P .
| computational complexity and critical <7 Listof
I path, and increase the parallelization | _)," transformation rules *
1| factor and speed up the implementation _ and application ~ /
! architecture b, points
| v 1
: Application of rule and transformation
| of code
\ 1
‘\‘ eI *'/\ \l,
¢ Transformed Making decision on
“w.__ oode .- continuation of
transformation

\Z

Figure 3.1. Algorithm parallelization flow by means of code transformation

Accounting for data exchange operations between parallel parts of the
code is not possible at an early design stage, since the decomposition of
the entire code into parallel parts will be carried out later.

68

Graph DFEG is an acyclic directed finite graph constructed on a set
of vertices that are variables or operators, taken part in program execu-
tion. A set of arcs represents data dependencies between input variables
and operators, and between operators and output variables, realized dur-
ing execution of the code. The graph is generated for one set of input
data. Changes in the input data entail, in general, changes in the size and
structure of the graph. In fact one program code can produce tremendous
number of different DFEGs. Implementation costs are associated with
vertices-operators and vertices-variables of the graph. The number of
vertices and their costs characterize the computational complexity of the
code on the given input data. The longest weighted path on the graph is
called the critical path. It characterizes the maximum execution time of
the code in case of its parallel implementation. The ratio of the computa-
tional complexity to the critical path of the code is the parallelization
potential factor. It characterizes the feasible maximum acceleration of
the parallel implementation against the sequential implementation.

The serial code transformation method, which improves the pa-
rameters of the subsequent parallel implementation, is built on two
components:

o transformation rules that can increase the parallelization factor of

the code;

o the method of localization of code fragments, the transformation
of which is most effective in reducing the computational complex-
ity and reducing the critical path.

The following transformation rules are most promising, since they
lead to the restructuring of control flow and data flow graphs that are
beneficial for resolving parallelism and increasing the code paral-
lelizability:

o splitting of control structures

e speculative computing of operators which are extracted from con-
trol structures;

e merging assignment operators and transforming expressions to re-
duce the maximum depth of expression trees

e unrolling of loops with static and dynamic iteration schemes and
others

Localization of the points of rules application in the program code is
carried out by building a computational complexity profile, a critical

69

path profile, and parallelization potential profile. The computational
complexity profile describes the contribution of each function in the total
computational complexity of the entire code, expressed ultimately as a
percentage. The critical path profile is a list of functions lying on the crit-
ical path and the contribution of each function to the total length of the
overall critical path of the program code. The potential parallelization
profile characterizes the level of feasible parallelization of each function
in the functions tree. In order to improve the parameters of the entire
code, functions and their components are revealed, which make the
greatest contribution to the computational complexity and critical
path, and these functions are purposefully transformed, increasing the
parallelization factor while maintaining the algorithm optimization
flow described in Fig. 3.1.

The method of mapping a sequential code to a parallel implementa-
tion provides a transition from the original sequential control flow to a
parallel control flow while maintaining the original data flow. In this
case, the system is divided into parts, taking into account the measured
and detected parallelism in the sequential code, by decomposing both the
operation part of the code and the data structures processed by the code.
The original sequential control flow often prevents the system from be-
ing divided into parallel subsystems. Our method transforms the initial
sequential control flow of the code and its parts to a basic single-block
flow model [69-71, 76]. The equivalent parallel code is represented by
means of basic primitives of the operating system, primitives of the MPI
library, and by other facilities.

The advantages of the developed method are manifested in the fol-
lowing fundamental possibilities.

e The same behavioral description can be reduced to a form ade-

guate to one or another parallel architecture;

o Limits of parallelization and limits of the system implementation
can be extended;

e The transformed behavioral description may be more effective in
terms of the applicability of the methods, strategies, and algo-
rithms for solving optimization problems of automatic paralleliza-
tion and scheduling.

e At the same constraints on a system parameter, it is possible to ob-
tain more favorable values of other parameters.

70

e The method extends capabilities for design space exploration re-
garding software implementations and regarding hardware imple-
mentations.

3.2. Preliminary transformation of algorithm

One of the key concepts of a sequential program that has a decisive
influence on the operation, properties and capabilities of models and
methods for the extraction of parallelism is the concept of a linear block
(basic block). A linear segment is a chain of operators sequentially exe-
cuted one after another, which does not include transitions over branch-
ing instructions.

It is difficult to extract parallelism from looping / branching pro-
grams that are built using a combination or superposition of while,
do-while, if, switch and other similar instructions, and perform pro-
cessing of data of arbitrary types, in particular, pointers. Methods for
the extraction of parallelism from programs in this category are little
developed or not studied at all.

The most important step in transformation process is the elimination
of multiple use of one variable by means of the introduction of new addi-
tional variables. Bellow we assume that single assignment requirement is
met by all variables in the program code.

The rules for transforming the source code to a basic single-block
model, that is introduced in this chapter, are constructed in such a way as
to make the transition to using a limited subset of constructs, which are
typical for an algorithm description language like C/C++. After that, they
eliminate all complex control structures from the code, and separate the
data flow from the control flow. As a result, the transformation of the
source code is carried out in two stages, each of which uses its own set of
transformation rules:

e Rules for transformation of sequential control flow for using a re-

stricted subset of control instruction of the programming language;

o Rules for data flow extraction by means of stepwise elimination of

original control structures and control flow.

The transition from a source code written in C language to a basic
single-block model is performed by applying the transformation rules
of the form

71

Left_part => Right part. (3.1)

In rule (3.1), Left_part and Right part represent program code
fragments that are semantically (functionally) equivalent in sense of
describing in different ways the same mapping of input data into
output data.

The rules use the notation as follows: V, V4,... are Boolean variables,
C, Cy,... are Boolean expressions, Q, ,Q1,... are instructions, S, S,...,R,
Ri,... are sequences of instruction, and L, Lg,... are labels of loops.

The rules for preliminary transformation of the control flow of the
original algorithm are shown in Fig. 3.2. They allow to transform such
control structures as if, switch, while, do-while, for, break, continue and
others. As a result it is possible to proceed to the use of a restricted sub-
set of the C/C++ language.

Rule Left part Right part
R1 while (C) {S} while (1) {if (C) { S } else break;
}
R2 do { S } while (C); while (1) { S if (\C) break; }
R3 for(S1; C; S2) { Sz } Sy; for (;;) { if (C) { S3 S2 } else
break; }

R4 S1if (C) { while (1) {S2}} V=1; while (1) {if (V) { S1 V=0; } if
(C) { Sz } else break; }

R5 S1if (C) { while (1) {S2}} V=1; while (1) {if (V) { S+ }if
('V|IC) { S2 V=0; } else break; }

R6 if (C1) { break; } if (C2) { if (C1||C2) { break; }
break; }
R7 if (C) { break; } S V=C; if (V) { S }if (V) { break; }
R8 for(S1; C1; S2) { Ssif (C2) Safor(;;) { { if (ICy1) break; Sz if
continue; Sa } (IC2) {S4};S2}
R9 while (1) { St if (C) continue; | while (1) { Sz if (1C) {S2} }
S2}
R10 if (C){S1}else{So} V1=C; V2=IC; if (V1) { S1 }if V2) {
So}
R11 if (V) {Q1...06 3} if(V){Qu} ... if(V){Qk}
R12 if (Vo) {if(V2){S}} V:i=V1 && Vo if (V) {S}
R13 if (V1) {V2=E;} V2= (V1 &&E) || (V1 && V2);
R14 switch (E) { case H1: S1 ... V=E; if (V==Hy1) { S1 } else ... if
case Hn : Sn default: Sn+1} (V==Hn) {Sn}else { Sn+1 }

Figure 3.2. Rules for preliminary transformation of C code
72

Rule R1 converts a while loop to a loop with an infinite iteration
scheme and a conditional break statement, which provides an exit
from the loop when it is executed sequentially with the sequence S of
operators. Rule R2 converts a loop do-while to a loop while with the
infite iteration scheme and operator break under a conditional
instruction, after executing the statements of the sequence S. Rule R3
converts the loop with an iteration scheme for to a loop with an infi-
nite iteration scheme and a body, that includes an additional operator
break under a conditional statement, body S3 of the original loop, and
part S2 of the original iteration scheme.

Rule R4 allows to put an if-instruction covering a loop with an infi-
nite iteration scheme and statements S; located before the if-instruction,
inside the loop body in case the loop body statements S2 do not change
the value of the expression C, introducing one additional Boolean varia-
ble V. Rule R5 is a generalization of the previous rule for the general
case; it allows to insert an if-instruction covering a loop with an infinite
iteration scheme and statements S2 that are located before the if-
instruction, inside the loop body.

Rule R6 merges two operators break, covered by conditional state-
ments, into one statement. Rule R7 allows the permutation of operator
break that is under an if-instruction with condition C, with sequence S of
statements located after break.

Rule R8 transforms operator continue covered by a conditional opera-
tor, which is a part of a loop body with iteration scheme for, to condi-
tional execution of a part of the loop body. Rule R9 transforms operator
continue covered by a conditional operator, to conditional execution of a
part of the loop body.

Rule R10 splits one conditional if-instruction into two short condi-
tional instructions; the passing condition of each of them is calculated by
an additional assignment instruction. Rule R11 splits one short if-
instruction with a sequence of statements, into an equivalent sequence of
simpler short if-instructions with one nested statement; such a transfor-
mation is admissible if the value of variable V is not changed by opera-
tors Qx,...,Qk1. Rule R12 reduces the system of two nested if-instructions
to one conditional resultant instruction. Rule R13 allows to get rid of a
short if-instruction, if it includes an assignment operator that works with

73

Boolean variables and expressions. Rule R14 transforms instruction
switch to a system of nested conditional statements.

We demonstrate the application of control flow conversion rules us-
ing the RSA cryptographic standard [84], namely, using the C-code of
function NN_DigitDiv that is shown in Fig. 3.3. The code can be classi-
fied as difficult to parallelize because its control flow is built from the
superposition of if and while instructions. Applying the rules from
Fig. 3.2 to the source code shown in Fig. 3.3, we obtain the preliminary
transformed code shown in Fig. 3.4. All control structures are split and
unified, the loops have an infinite iteration scheme in this code. Complex
expressions are split, assignment instructions are associated with one
logical, arithmetic, or other operator of the C language. Despite simplifi-
cations, the code contains 11 larger and 4 smaller linear basic blocks. It
is difficult to extract parallelism from so many nested basic blocks.

3.3. Basic single-block flow model

This chapter presents a basic single-block flow model (BSBM) of a
sequential algorithm in which the data flow is separated from the control
flow [69, 70]. The goal of building BSBM is to efficiently extract data
flow parallelism from difficult-to-parallel sequential looping-branching
algorithms of general form by means of reducing the original control
flow. The number of paths on the control flow graph of the algorithm,
which determines the complexity of analyzing the source sequential code
and synthesizing the parallel result code, grows exponentially depending
on the size of the graph and is determined mainly by the number of basic
blocks in the algorithm code. Reducing the number of basic blocks sim-
plifies the control flow graph from the point of view of parallelization
efficiency. The OBBM model includes only one basic block and pro-
vides real extraction of all types of parallelism from the original basic
blocks. In fact, the model provides for merging the data flows of indi-
vidual basic blocks into a single data flow of a single basic block while
preserving potential parallelism and possible acceleration for execution
on a multiprocessor system.

74

typedef unsigned long nnd;

typedef unsigned short nnfd;

#define nnhdb 16

#define mnnfd Oxffff

#define mnnd Oxffffffff

#define Ihf(x) (nnfd)((x)&mnnfd)

#define hhf(x) (nnfd)(((x)>>nnhdb)&mnnfd)
#define tohf(x) (((nnd)(x))<<nnhdb)

void NN_DigitDiv (nnd *a, nnd b[2], nnd c) {
nnd t[2], u, v;
nnfd aHigh, aLow, cHigh, cLow;
cHigh = hhf(c); cLow = Ihf(c);
t[0] = b[0]; t[1] = b[1];
/I Underestimate high half of quotient and subtract.
if(cHigh == mnnfd) aHigh = hhf(t[1]); else
aHigh = (nnfd)(t[1] / (cHigh + 1));
u = (nnd)aHigh * (nnd)cLow;
v = (nnd)aHigh * (nnd)cHigh;
if((t[0] -= tohf(u)) > (mnnd - tohf(u))) t[1]--;
t[1] -= hhf(u); t[1] -=v;
/I Correct estimate.
while((t[1]>cHigh)||((t[1]==cHigh)&&(t[0]>=tohf(cLow)))) {
if((t[0]-=tohf(cLow))>mnnd-tohf(cLow)) t[1]--;
t[1] -= cHigh;
aHigh++;

/I Underestimate low half of quotient and subtract.
if(cHigh==mnnfd)
alow = Ihf(t[1]);
else
aLow = (nnfd)((nnd)(tohf(t[1])+hhf(t[0]))/(cHigh+1));
u = (nnd)aLow * (nnd)cLow;
v = (nnd)aLow * (nnd)cHigh;
if((t[0]-=u) > (mnnd - u)) t[1]--;
if((t[0]-=tohf(v))>(mnnd-tohf(v))) t[1]--;
t[1] -= hhf(v);
/I Correct estimate.
while((t[1]>0)||((t[1]==0)&&t[0]>=c)) {
if ((t[0]-=c)>(mnnd-c)) t[1]--;
aLow++;

*a = tohf(aHigh) + aLow;

}
Figure 3.3. A fragment of C code for RSA

75

typedef unsigned long nnd;

typedef unsigned short nnfd;

#define nnhdb 16

#define mnnfd Oxffff

#define mnnd Oxffffffff

#define Ihf(x) (nnfd)((x)&mnnfd)

#define hhf(x) \
(nnfd)(((x)>>nnhdb)&mnnfd)

#define tohf(x) (((nnd)(x))<<nnhdb)

void NN_DigitDivl(nnd *a,
nnd b[2], nnd c) {

nnd t[2],u,v;

nnfd aHigh,aLow,cHigh,cLow;
int c1,c2,c3,c4,c5,c6,c7,c8,c9;
nnfd x1;

nnd x2,x7,x8,x9,x10,x11,x16,x17;
int x3,x4,x5,x6,x12,x13,x14,x15;

cHigh = hhf(c); /11
cLow = Ihf(c);

t[0] =b[0]; t[1] = b[1];
c1 = cHigh==mnnfd;

if(cl) {

aHigh = hhf(t[1]); 112
}else {

x1 = cHigh+1; 113

aHigh = (nnfd)(t[1]/x1);

u = (nnd)aHigh*(nnd)cLow;

v = (nnd)aHigh*(nnd)cHigh;

t[0]-= tohf(u);

x2 = mnnd-tohf(u);

c2 = t[0]>x2;

if(c2) t[1]--;

t[1]-=hhf(u);

t[1]-=v;

while(1) {
x3=t[1]>cHigh; 114
x4=t[1]==cHigh;
x5=t[0]>=tohf(cLow);
X6= Xx4&&X5;
¢3=x3||x6;
if(c3) {

t[0]-=tohf(cLow); 115
x7=mnnd-tohf(cLow);
c4=t[0]>x7;
if(c4) t[1]--;
t[1]-=cHigh;
aHigh++;

}else { break; }; 116

¢5 = cHigh==mnnfd
if(c5) {
aLow=Ihf(t[1]); ni
}else {
x8=tohf(t[1])+hhf(t[0]); // 8
x9=cHigh+1;
aLow=(nnfd)((nnd)x8/x9);

u = (nnd)aLow*(nnd)cLow;
v = (nnd)aLow*(nnd)cHigh;
t[0] -=u; x10 = mnnd-u;
c6 = t[0]>x10;
if(c6) t[1]--;
t[0]-=tohf(v);
x11=mnnd-tohf(v);
c7=t[0]>x11;
if(c7) t[1]--;
t[1]-=hhf(v);
while(1) {
x12=t[1]>0; 119
x13=t[1]==0;
x14=t[0]>=c;
X15=x13&&x14;
c8=x12||x15;
if(c8) {
x16=t[0]-=c; // 10
x17=mnnd-c;
c9=x16>x17;
if(c9) t[1]--;
aLow++;

}else {
break; /111

}

*a=tohf(aHigh)+aLow;

Figure 3.4. Preliminary transformed fragment of C code for RSA

76

A schematic representation of OBBM in the C language is given in
Fig. 3.5. Fig. 3.5a depicts the framework of the model at the level of a
single function. Here RType is a type of the function’s return value;
FName is a name of the function; FArgs are descriptions of the formal
arguments (parameters) of the function.

FDeclarations are local declarations within a function, including
declarations of data flow variables and control variables, whose values
are initialized. The entire operation part of the function is represented by
a single while loop with an infinite iteration scheme. In case of simple
algorithms, the loop may be absent altogether.

The body of the loop is unified. It is a sequence of single-type
constructions which are truncated conditional instructions if-then,
describing conditions Ci, C, ..., Ck of executing statements
Q1, Q2, ..., Q. The expressions Ci, Co, ..., Cx are represented by scalar
Boolean variables, the values of which can be calculated by the
preceding operators Qi.

If a constant representing the truth value is used instead of C;, the
execution of Q; is unconditional, and it can be released from the
condition by removing the if-instruction. Possible variants of statement
Qi are presented in Fig. 3.5b - 3.5g. It can be an assignment statement
with a unary or binary operator ®, a function call with actual
parameters e, ..., €n, break, return and others. The exit from the loop
is performed using break statement, the exit from the function is
performed using return statement, which returns the value of the
function, defined by expression expr.

What is new in BSBM to extract concurrency? Since several basic
blocks of the source code are executed within one iteration of the
equivalent BSBM, while only one basic block is executed in the
structured model, the total number of iterations in the BSBM loop is
always less against the structured model.

Since all operators of the source code are incorporated in BSBM, it
provides a complete analysis of data dependencies between the
operators, followed by identifying pairs of parallelizable operators, pairs
of orthogonal mutually exclusive operators, parallel branches in the
algorithm, and a critical path that allows determining the performance of
the parallelized code.

77

a) <RType> <FName>(<FArgs>) { b) v=ou

<FDeclarations> C) v=u®w;

while (1) { d) VvV ®=u;
if(C) { Q1 } e) v="f(ew....en);
if(C2) { Q2 } f) break;
if(Cs) { Qs } g) returnexpr;
if(C) { Qc}

}

}

Figure 3.5. Basic single-block model of a function in C

When analyzing dependencies, variable C; that represents the
exacution condition is added to the input operands of Qi. Due to the
extraction of external parallelism among basic blocks, the potential
parallelization factor of BSBM increases, the execution of the parallel
code implementation is accelerated, and the algorithm can be
effectively pipelined.

We illustrate BSBM with an example algorithm that finds the greatest
common divisor (GCD). The representation of the model in C language
is given in Fig. 3.6. It uses five variables CO, ... C4, which control the
execution of single loop with an infinite iteration scheme. The body of
the loop includes eight serialy executed statements. Half of them is
executed unconditionally, implicitly using value true instead of
conditional variables.

The variables and operators which calculate the values of these
variables determine the conditions for terminating GCD with return,
conditions for continuing calculations, and methods for recalculating
the values of integer variables X and Y. Due to the absence of
branching in the loop body and alignment of operators in one ruler,
the procedure of analyzing dependencies among operators and
parallelizing operators is an effective one. It is easy to see that the
following pairs of statements can be executed in parallel: (2,3), (2,4),
(2,5), (2,6), (2,7), (5,6), (5, 8), (6.7), (7.8).

78

3.4. Transformation of loops for basic single-block model

This chapter proposes a method [70, 71, 76] of the step-by-step trans-
formation of an arbitrary sequential algorithm presented in C or in other
algorithmic language to one loop of a basic single-block model. The
method guarantees the generation of a model code in a finite number of
steps for any source algorithm. The method is based on the application of
the following key transformations of the algorithm:

2.
3.
4.

int GCD (int X int) {

while (2) {
CO=X=Y; I/
if (CD) returnX, /2
C2=1C0; I3
if (C2) CL=X<Y; Ina
=2 &&CL, 115

CA=C2 &&ICI; 6
ifC)Y=Y-X: 7
if (C4) X=X~ Y- 8
}
}

Figure 3.6. Basic single-block model of GCD algorithm

insertion into the loop of operators that are located behind the
loop;

insertion into the loop of operators that are located before the loop;
merging two adjacent nested loops into one;

merging breaking statements while merging loops.

A nontrivial program code typically contains an arbitrary structure of
loops with various iteration schemes. In this loops structure, there are
usually pairs of loops that are executed sequentially and pairs of loops
nested one in other. We show that for any source system of loops, one
can obtain an equivalent system of nested loops with infinite iteration
schemes and break statements. Such a nested loops system can be further
transformed into BSBM.

79

The basic rules of transforming an algorithm code to BSBM make ex-
tensive use of while (1) {S} and for (;;) {S} loops with infinite iteration
schemes and a sequence S of statements. The transformation rules that
are proposed in previous section allow the loops of an arbitrary structure
to be converted into these iteration schemes.

The basic rules M1-M5 of transforming an algorithm to BSBM that is
presented in C/C++ are given in Fig. 3.7. Rule M1 ensures that state-
ments of sequence S; which is located behind the loop, are inserted into
the loop body that is constructed of sequences Si, S, and Ss of statements
and two break statements executed under conditions Vi and V.. Two
break statements are merged into one, and sequence S4 before the single
break. Additional conditional variable Vs is introduced.

Sequence S; of statements that are located in front of the loop with
the iteration scheme while (1) and body S, is inserted into the loop by
Rule M2. Sequence S; is put at the beginning of the loop body under the
if-instruction using a conditional variable V that is assigned value 1 be-
fore the loop and is assigned value 0 inside the loop. Due to such control
structure, sequence S; executes exactly once at the beginning of the first
iteration of the loop.

Rule M3 is an extension of rule M2. It inserts into the loop not only
the sequence S; of statements that located in front of the loop, but also
inserts the conditional if-instruction, which covers this loop. In this rule,
an additional conditional variable V and an additional break statement
are introduced.

Rule M4 is a further extension of rules M2 and M3. It inserts into the
loop which is located in else-part of the conditional instruction, every-
thing that is in front of and inside the conditional statement. The rule
shows that all statements that are located before and behind the loop can
be inserted into the body of the loop.

Rule M5 merges two adjacent nested loops into one. Due to the elim-
ination of one loop, the depth of the nested system of loops is reduced by
one. We assume that in the left part of the rule, variable V appears at the
moment when statements S; that are located before the inner loop are
inserted in the body of this inner loop. The initialization operator V =1
that is put at the previous location of statements S; is the only obstacle
for merging two loops into one loop.

80

Ne ®DparmenT 10 npeodpazoBaHus

®parmenT noce nmpeodpazoBaHus

M1 | while(1) { S1if(V1) break; Sz
if(V2) break; Sz} Sa

while(1) { St if('V1) { S2 } V3=V1||V2;
if(V3) { S4 break; } Ss }

M2 | Siwhile(1) {S2}

V=1, while(1) {if(V) {S1V=0;}S2}

M3 | S1if(C) { while(1) {S23}}

V=1; while(1) { if(V) { S1 V=0; } if(C) {
Sz } else break; }

M4 | S1if(Ca) { Sz} else { Ss
while(1) { S4 if(C2) break; Ss }
Se }

V2=1; while(1) { if(V2) { S1 V1=Cy;
if(V1) { Sz } else { S3 } V2=0; } if(V1) {
S4 if(C2) { Se break; } Ss } else break; }

M5 | while(Z) { V=L; while(2) { if(V)
{S1V=0; } S if(C) break; Ss }

V=1; while(1) {if(V) { S1V=0;} Sz
if(C) V=1; Ss }

}

Figure 3.7. Transformation rules for loops to obtain BSBM

Since the initialization statement executes after exit from the inner
loop due to the execution of break statement, we can replace break with
the initialization statement, eliminate the inner loop and the initialization
statement standing in front of the inner loop, and move forward the ex-
ternal loop. As a result, we obtain the right part of Rule M5.

Any algorithm in C language, that is preliminary transformed by
means of rules R1-R14 to an intermediate form, can then be transformed
by means of rules M1-M5 to BSBM with one loop. To explain our tech-
nigue of such a transformation, let us transform a system of nested loops
to one functionally equivalent loop, and transform a sequence of loops to
one equivalent loop.

Fig. 3.8 shows a technique of transforming two nested loops L1 and
L2 to one loop. Inner loop L2 consists of iteration scheme while(1), a
head sequence S; of statements, a berak statement under condition if(Cz),
and a tail sequence R, of statements (Fig. 3.8a). The outer loop L1
consists of iteration scheme while(1), a head sequence S; of statements, a
berak statement under condition if(C1), a sequence R, of statements, the
inner loop L2, and a tail sequence T, of statements. At the first step of
transformation the technique inserts all statements of the body of loop
L1, which are located before and behind L2, into loop L2 (Fig. 3.8b).
Comments /*L1*/ and /*L2*/ indicate the loops associated with break
statements.

81

La: while(1) { S1 if(C1) break; R1
La: while(1) { Sz if(C2) break; R2} T1

}
a)
L1 while(1) { V2=1;
L2: while(1) { if(V2) { S1 if(C1) break;/*L1*/ R1 V2=0;}

S2if(C2) { T1 break;/*L2*/ } R2

s
b)

V2=1; La: while(1) {
if(V2) { S1if(Ca) break; R1 V2=0;} Sz if(C2) { T1 V2=1;} else Rz

c)

Figure 3.8. Transformation of two nested loops to one loop

At the second step of transformation the technique splits the
initialization assignment “V>=1;” into two copies, which are located be-
fore L1 and within L2. Then it merges loops L1 and L2 into one result-
ing loop (Fig. 3.8c).

The proposed technique of transforming two nested loops is
generalized for arbitriraly number of nested loops using a method of
mathematical induction. The induction step assumes that n-1 nested
loops are merged in one loop, and proves that this resulting loop can be
converted to a general form and then can be merged with the n™ nested
source loop.

Fig. 3.9 presents a technique of transforming two sequential loops L1
and L2 to one loop. Loop L1 consists of iteration scheme while(1) and a
block, which includes a sequence S; of statements, a berak statement in
then-part of conditional statement with condition C;, and a tail sequence
R; of statements in else-part (Fig. 3.9a).

The second loop L2 has the same structure. At the first step of
transformation the technique inserts loop L2 into the body of loop L1.
Now loop L2 is located in then-part of if-statement before break
(Fig. 3.9b). At the second step (Fig. 3.9¢), the technique separates loop
L2 from the statements following it.

82

Li: while(1) { S1if(Cy) break; else {R1} }
L2: while(1) { Sz if(C2) break; else {R2} }
a)

L1: while(1) { S1if(Cy) {
L2: while(1) { Sz if(C2) {break; /*L2*/} else {R2} }
break; /*L1*/ } else {R1}
}
b)

L1: while(1) { S1if(Cy) {
L2: while(1) { S2 if(Cz) {break; /*L2*/} else {R2} }
} if(Ca) {break; /*L1*/} else {R1}

c)

L1: while(1) { V2=1,
L2: while(1) {if(V2) { S1 V2=0; }
if(C1) { S2if(C2) {break; /*L2*/} else {R2}} else break; /*L2*/

}
if(C1) {break; /*L1*/} else {R1}

}
d)

L1: while(1) { V2=1,
L2: while(1) { if(V2) { S1 V2=0; }
if(C1) { S2if(C2) {
if(C1) {break; /*L1*/} else {R1} break; /*L2*/ } else {R2}
} else { if(C1) {break; /*L1*/} else {R1} break; /*L2*/}
1
€)

L1 while(1) { V2=1,

L2: while(1) {if(V2) { S1 V2=0; }
if(C1) { S2 if(C2) {break; /*L1*/} else {R2}} else {R1 break; /*L2*/}
1

f)
Vo=1;
while(1) {
if(V2) { S1V2=0; }
if(Cy) { S2 if(C2) break; else {R2}} else {R1 V2=1;}

9)
Figure 3.9. Transformation of two sequential loops to one loop

83

At the third step (Fig. 3.9d), the technique insertes sequence S1 of
statements and conditional statement if(Cy) into the body of loop L2,
using an additional variable V.. It is assumed, statements S, and R, do
not change the value of C;.

At the fourth step (Fig. 3.9e), the if-statement located behind loop
L2 is inserted into then- and else parts of if-statement that is in loop
L2. At the fifth step (Fig. 3.9f), transformations are performed, which
simplify the body of loop L2. Condition if(C1) occors three times in
loop L2, due to this two branches may be eliminated, and two
subsequent break statements may be merged. At the sixth step
(Fig. 3.99), two nested loops can be directly merged.

The proposed technique of transforming two sequential loops is
generalized for many sequential loops using a method of mathematical
induction. The induction step assumes that n-1 sequential loops are
merged in one loop, and proves that this resulting loop can be
transformed to a general form and then can be merged with the n®
sequentoal source loop.

We illustrate the proposed transformation techniques by performing
the C-code transformation into BSBM of function NN_DigitDiv of the
cryptographic RSA standard, with a preliminary converted control flow
(Fig. 3.4). The partitioning of the body of function NN_DigitDiv into
seven large basic blocks B1, ..., B7 gives the skeleton, shown in
Fig. 3.10a. Fig. 3.10 presents eight steps of transformation of this
skeleton fragment. The following transformation rules are implemented
at these steps.

a) inserting basic block By into the body of loop Ly;

b) inserting basic block B4 and loop L into the body of loop L.,
comments that represent loop labels are associated with break
statements;

c) split of statement if(c1) and separate of loop L, from basic blocks
Bs, Ba;

d) split and insert of statement if(!c,) inside of loop Ly;

e) insert of statements B; and if(c,) break; inside of loop Ly;

f) insert of basic blocks B, B3, B4 inside of loop L;

g) elimination of loop Ly;

h) insert of basic block B, inside of loop L.

84

It is easy to see that the body of the resulting loop does not satisfy all
the requirements of BSBM (Fig. 3.5), as the transformation process is
not complete. Long conditional statements should be split into several
short conditional statements. For instance, conditional statement
“if (ul) {B1 ul =0;}” can be split into two simpler conditional state-
ment: “if (ul) {B1}” and “if (ul) {ul=0;}". The nested statements
“if (u2) {B2 if (c1) {B3} else {B4} u2 = 0;}” can be split into the state-
ments chain “if (u2) {B2} u3 = u2 && c1; u4 = u2 &&! cl; if (u3) {B3}
if (u4) {B4} if (u2) {u2 =0;}". As a result, all basic blocks of the source
code are finally located in the body of a single loop which contains one
basic block. For its construction, only two additional Boolean variables
ul and u2 are used, which do not affect the internal and external parallel-
ism of the basic blocks. The implicit dependences of basic blocks B2,
B3, B4, B5, B6 and B7 on conditional variables c1 and c2 in the source
code become explicit in BSBM, without reducing the amount of poten-
tial parallelism that is hidden in the original algorithm.

Fig. 3.11 shows the C-code which is obtained from the transformed
skeleton fragment presented in Fig. 3.10h by means of substituting actual
basic blocks in C instead of blocks symbols.

3.5. Transformation of nested branching code to basic single-block
model

In BSBM the control flow is represented in a different way against
the initial source code in C. Instead of nested general control structures it
is a single loop with a set of assignments and break statements in the
body, which are covered or uncovered with the short if-then statements.
Fig. 3.12 shows an algorithm that is represented with recursive function
Split, which is capable of splitting nested conditional instructions and
generating a purely linear basic block. The split of control structures and
the generation of BSBM preserve the original data flow in C-code, and
convert the original control flow to additional data flow.

Recursive function Split has two formal parameters: block p and ex-
pression ¢ describing the condition of executing the block. It assumes
that the source C-code is a structured program which uses the objects as
follows. The source code is represented as a block of statements.

85

a)

c)

€)

9

B1
L1: while (1) {
B2
if(c1) {Bs} else break;
} B4
L2: while (1) { Bs
if(c2) {Bs} else { B break;}

B1
La: while (1) { B2
if(c1) {Bs} else {Ba}
if(fcr) {
L2: while (1) { Bs
if(c2) {Bs} else {Br break; /*L2*/ }

break; /*L1*/
}
}

B1
Li: while (1) {
B2
if(c1) {Bs} else {Ba}
L2: while (1) {
if('ca) {
Bs
if(c2) {Bs} else {Br break; /*L1*/ }
} else break; /*L2*/
}
}

B1 u2=1;
Li: while (1) {
if(uz2) {
B2
if(c1) {Bs} else {B4}
u2=0;

3
if(ca) {
Bs
if(c2) {Bs} else {B7 break; }

} else uz=1;

}

b)

d)

h)

B1
L1: while (1) {
B2
if(c1) {Bs} else { B4
L2: while (1) { Bs
if(c2) {Bs} else {B7 break; /*L2*/ }
} break; /*L1*/
1

B1
La: while (1) { B2
if(c1) {Bs} else {Ba}
L2: while (1) {
if(lc1) { Bs
if(c2) {Bs} else {Br break; /*L2*/ }
} else break; /*L2*/

}
if(!c1) break; /*L1*/

B1
Li: while (1) { u2=1;
L2: while (1) {
if(uz2) { B2
if(c1) {Bs} else {Ba} u2=0;

}
if(lc1) { Bs
if(c2) {Bs} else {B7 break; /*L1*/ }
} else break; /*Lo*/
}
}

ui=1; uz=1,;
Li: while (1) {
if(us) {B1u1=0;}
if(u2) { B2
if(c1) {Bs} else {B4}
u2=0;

3
if(ca) {
Bs
if(c2) {Bs} else {B7 break; }

} else u2=1,

}

Figure 3.10. Transformation of C code fragment for RSA to Basic single-block model

void NN_DigitDiv3(
nnd *a, nnd b[2], nnd ¢) {
nndt[2],u,v;
nnfd aHigh,aLow,cHigh,cLow;
int ¢1,c2,c3,c4,c5,c6,c7,c8,c9;
int c10=1,c11=1;
nnfd x1;
nnd x2,x7,x8,x9,x10,x11,x16,x17;
int x3,x4,x5,x6,x12,x13,x14,x15;

while(1) {

if(cl11) {
cHigh=hhf(c); 11
cLow=lIhf(c); 112
t[0]=b[0]; I3
t[1]=b[1]; 114
cl=cHigh==mnnfd; /I'5
if(cl) {
aHigh=hhf(t[1]); 116
Yelse {
x1=cHigh+1; 17

aHigh=(nnfd)(t[1]/x1); 118

}
u=(nnd)aHigh*(nnd)cLow; //9
v=(nnd)aHigh*(nnd)cHigh; // 10

t[0]-=tohf(u); 1111
x2=mnnd-tohf(u); 1112
c2=t[0]>x2; //13
if(c2) t[1]--; /114
t[1]-=hhf(u); 1115
t[1]-=v; /116
c11=0; 1117
}
if(c10) {
x3=t[1]>cHigh; /118
x4=t[1]==cHigh; 1119
x5=t[0]>=tohf(cLow); 1120
X6=X4&&X5; 1121
€3=x3||x6; 1l 22
if(c3) {
t[0]-=tohf(cLow); /1123
x7=mnnd-tohf(cLowy); 124
c4=t[0]>X7; 1125
if(c4) t[1]--; 1126
t[1]-=cHigh; 1127

aHigh++;

}else {
c5=cHigh==mnnfd;
if(c5) {
aLow=Ihf(t[1]);
}else {

x8=tohf(t[1])+hhf(t[0]);

x9=cHigh+1;

aLow=(nnfd)((nnd)x8/x9);

u=(nnd)aLow*(nnd)cLow;
v=(nnd)aLow*(nnd)cHigh;

t[0]-=u;
x10=mnnd-u;
c6=t[0]>x10;

if(c6) t[1]--;
t[0]-=tohf(v);
x11=mnnd-tohf(v);
c7=t[0]>x11;

if(c7) t[1]--;
t[1]-=hhf(v);

}
c10=0;

}

if(1c3) {
x12=t[1]>0;
x13=t[1]==0;
x14=t[0]>=c;
x15=x13&&x14;
€8=x12||x15;
if(c8) {
x16=t[0]-=c;
x17=mnnd-c;
c9=x16>x17;
if(c9) t[1]--;
aLow++;
}else {
*a=tohf(aHigh)+aLow;
break;
}

} else
cl0=1;

}

}
Figure 3.11. C-code of basic single-block model for RSA

87

1128

1129

1130

1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
141
142
1143
1 44

/45

1146

147
1148
1149

1150

/151
1152
1153
1154
1155

1156

1157

The block can be an empty block or a block of instructions. The in-
struction can be if-instruction, assignment, break or other instruction.
The if-instruction consists of a condition, a then-part that is a block, and
optionally an else-part that is also a block. It is assumed that the right
part of assignment is an expression that is constructed of only one logi-
cal, arithmetic or other operator.

Function Split splits the nested and sequential conditional instructions
into a single branched purely linear basic block that is constructed of the
short if-then instructions with one operator in then-part and with the con-
dition that is represented with a simple Boolean variable. It uses predi-
cates as follows for analysis of the code:

e is_if(s) returns true if statement s is a conditional instruction, and

returns false otherwise;

e is_block(s) returns true if statement s is a block (list of instruc-

tions), and returns false otherwise;

function Split(block p, condition ¢) {
if (is_block(p)) {
while (p '=empty) {
Split(head(p),c); p := tail(p);
Split(p,c);

}
} else if (is_if(p)) {
ci :=cond(p); ct:=generate(); s:=build_and(c,ci,ct);
add(Result, s); split(then(p),ct);
if (has_else(p)) {
cn ;= generate(); sn := build_not(ci,cn); add(Result, sn);
ce := generate(); se := build_and(c,cn,ce);
add(Result, se); split(else(p),ce);
}
}else {
othif := build_if(c,p); add(Result, othif);
}
}

Figure 3.12. Recursive algorithm of split of nested conditional instructions
and generating the purely linear basic block

88

has_else(s) returns true if conditional instruction s has an else-
part, and returns false otherwise.

Function Split explores the following functions for analysis of blocks
and if-statements:

head(p) returns the first instruction of block p;

tail(p) returns the rest instructions of block p or returns empty;
cond(s) returns the conditional expression of if-instruction s.
then(s) returns then-part of if-instruction s.

else(s) returns else-part of if-instruction s.

The functions as follows are used in Split for synthesis of BSBM:

build_and(inl,in2,out) returns assign-instruction that is built of
Boolean operator and, Boolean input variables inl and in2 and
output variable out;

build_not(in,out) returns assign-instruction that is built of operator
not, input variable in and output variable out;

build_if(c,s) returns statement s if condition c is null, otherwise it
returns instruction if-then that is built of condition ¢ and instruc-
tion s in then-part;

Result is a global variable that represents a block of new instruc-
tions represented a a list that is generated by algorithm Split (ini-
tially the list is empty);

add(Result, s) concatenates instruction s at the end of list Result;
generate() returns a new Boolean variable.

A remarkable feature of BSBM is that the parallel-sequential entry of
the statements of the original basic blocks into the body of the single
loop of BSBM is a source of further parallelism extraction when using
other methods, rules and facilities of transformation. Since the majority
of statements of the BSBM’s loop are under the short if-then instruction,
rules for extracting operators from if-then are very attractive. The es-
sence of the rules is as follows. Let the operators of basic block B1 be in
then-part of the conditional if-then statement, whose test variable c1 gets
the value in basic block By, as shown in Fig. 3.13a. Obviously, in such a

89

code, operators from B1 can be executed no earlier than operators from
BO. Pairwise paralleling of operators from B0 and B1 is difficult.

Speculative execution is an optimization technique where a comput-
er system performs some task that may not be needed. In order to apply
such an execution to B1, we extract B1 from the if-then instruction,
introducing some additional variables v’y, ..., V', Which are duplicates
of resulting variables of B1, and add some reassignment statements in
then-part (Fig. 3.13b). After such a step, more operators of B1 can exe-
cute in parallel with operators of BO. The critical path of the loop body
becomes shorter.

2 Bo b) Bo
f(ci) { B: } o
1 1 if(lcl) {vi=ve’s. .ve=ve’; |

Figure 3.13. Extraction of basic block B1 from if-then for speculative execution

The application of the speculative execution rule (Fig. 3.13) to the
RSA skeleton shown in Fig. 3.10h and to the corresponding C-code
shown in Fig. 3.11 yields the BSBM code shown in Fig. 3.14. We move
basic block B3 ahead of instruction if (c1) and move the basic block B6
ahead of instruction if (c2) according to this rule. The new code hereinaf-
ter referred to as TRANSF is faster than the original code of the RSA
fragment, shown in Fig. 3.11.

3.6. Efficiency of basic single-block model

Let us perform a more thorough analysis of the static and dynamic
parameters of the basic blocks of all versions of the parallelism extrac-
tion model, such as the original (SOURCE), structured (STRUCT), basic
single-block (BSBM) and transformed basic single-block (TRANSF).

To estimate the static parameters of the bodies of all loops, as well as
then and else parts of all conditional operators of the source code, we
will consider them as independent basic blocks. To estimate the dynamic
parameters, we will execute all the code models on the same input data.

90

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_system
https://en.wikipedia.org/wiki/Computer_system

void NN_DigitDiv3(t[1]=t1; aHigh=aH,;

nnd *a, nnd b[2], nnd ¢) { }else {
nndt[2],u,v,t0,t1; c5=cHigh==mnnfd; /129
nnfd aHigh,aLow,cHigh,cLow; if(c5) {
nnfd aL,aH,x1; aLow=Ihf(t[1]); /130
int c1,c2,¢3,c4,¢5,¢6,c7,c8,c9; }else {
int c10=1,c11=1; x8=tohf(t[1])+hhf(t[0]); //31
nnd x2,x7,x8,x9,x10,x11,x16,x17; x9=cHigh+1; /132
int x3,x4,x5,x6,x12,x13,x14,x15; aLow=(nnfd)((nnd)x8/x9); // 33
while(1) { }
if(c11) { u=(nnd)aLow*(nnd)cLow;// 34
cHigh=hhf(c); 111 v=(nnd)aLow*(nnd)cHigh; // 35
cLow=lIhf(c); 112 t[0]-=u; 1136
t[0]=b[0]; t[1]=b[1]; 13,4 x10=mnnd-u; 1137
cl=cHigh==mnnfd; 115 c6=t[0]>x10; /138
if(cl) { if(c6) t[1]--; 1139
aHigh=hhf(t[1]); 116 t[0]-=tohf(v); 1140
Yelse { x11=mnnd-tohf(v); /141
x1=cHigh+1; 1ni c7=t[0]>x11; 1142
aHigh=(nnfd)(t[1]/x1); // 8 if(c7) t[1]--; 1143
} t[1]-=hhf(v); /144
u=(nnd)aHigh*(nnd)cLow; // 9 }
v=(nnd)aHigh*(nnd)cHigh; // 10 cl0=0; /I 45
t[0]-=tohf(u); 1111 }
x2=mnnd-tohf(u); 1112 if(1c3) {
c2=t[0]>x2; /113 x12=t[1]>0; /1 46
if(c2) t[1]--; 1114 x13=t[1]==0; 1147
t[1]-=hhf(u); t[1]-=v; /115,16 x14=t[0]>=c; /148
c11=0; 1117 x15=x13&&x14; 1149
} €8=x12|x15; /150
if(c10) { x16=t[0]-c; /151
x3=t[1]>cHigh; /118 x17=mnnd-c; /152
x4=t[1]==cHigh; 1119 €9=x16>x17; /153
x5=t[0]>=tohf(cLow); 1120 if(c9)t1=t[1]-1;else t1=t[1];//54
X6=X4&&X5; 1121 aL=alow+1,; 1155
€3=x3||x6; /22 if(c8) {
t0=t[0]-tohf(cLow); /123 t[0]=x16; // 55a
x7=mnnd-tohf(cLow); 1124 t[1]=t1; aLow=aL;
c4=t0>X7; 1125 }else {
t1=t[1]-cHigh; 1127 *a=tohf(aHigh)+aLow; // 56
if(c4) tl--; /1 26 break;
aH=aHigh+1, 1128 }
if(c3) { }else cl0=1; 11 57
t[0]=tO; 1 28a

1
Figure 3.14. Accelerated basic single-block model of C code fragment for RSA
91

Let us demonstrate the estimation of model parameters on the C-code
of the NN_DigitDiv function (model SOURCE) that is a part of the RSA
standard (the developers of this standard are Ronald Rivest, Adi Shamir
and Leonard Adleman, 1977) [84], the skeleton of which, that is built on
seven large basic blocks B1, ..., B7, is shown in Fig. 3.15a.

By transforming the fragment shown in Fig. 3.15a, we obtain a struc-
tured model STRUCT, presented in Fig. 3.15b. To do this, we have in-
troduced a variable N, which takes the value of a basic block number,
and have introduced a loop for, the iterations of which are repeated until
the value of N falls outside the range of basic block numbers.

At each iteration of the loop, the switch statement switches to the cor-
responding basic block, followed by statements that determine the hum-
ber of the next basic block which will be selected at the next iteration of
the loop. The basic single-block model BSBM of function NN_DigitDiv
is shown in Fig. 3.15c, and the result of its accelerating transformation
(model TRANSF) is shown in Fig. 3.14.

a) | B: c) |ui=1;
L1 while (1) { B2 uz=1,
if(ce) {Bs} else break; while (1) {
}Bs if(u) { B+ }
Lo: while (1) { Bs if(uy) {ur=0;}
if(c2) {Bs} else break; if(u2) { B2}
} By U3 = Up&&Cs;
Usg = Up&&!cy;
b) | for(N=1; N<8;) { if(us) { Bs }
switch(N) { if(us) { Ba }
case 1: By N=2; break; if(uz) {u2=0; }
case 2: By if(c1) N=3; else N=4; break; Us = Icy;
case 3: B, N=2; break; if(us) { Bs }
case 4: Bs N=5; break; Us = Us&&C2;
case 5: Bs if(c2) N=6; else N=7; break; U7 = Us&&!cy;
case 6: Bs N=5; break; if(us) { Bs }
case 7: B7 N=8; break; if(ur) { B7 break; }
} ifc)) {u2=1;}
} }

Figure 3.15. Transform of C/C++ code fragment for RSA to structured model

92

These four models SOURCE, STRUCT, BSBM and TRANSF are
executed on the following input data: the dividend is represented with
b[0] = 717576735 nad b[1] = 2379867, the divisor is c=12345678. The
obtained results are reported in Tables 3.1- 3.4.

Table 3.1
Dynamic parameters of the SOURCE model
Basic block Statements Exrecutions Complexity Critical path
1 5 1 5 5
2 1 0
3 2 1 2 2
4 8 1 8 8
5 5 43 215 215
6 6 42 252 252
7 1 1 1 1
8 1 0
9 3 1 3 3
10 11 1 11 11
11 5 71 355 355
12 5 70 350 350
13 1 1 1 1
) 233 1203 1203
Table 3.2
Dynamic parameters of the STRUCT model
Basic State- Execu- cIFi(iiC(?alll Comple- c—rri(;[?elll
block ments tions path xity path
for((N<14;) 1 234 1 234 234
switch(N) 1 233 1 233 233
1 5 1 2 5 2
2 1 0 1
3 2 1 2 2 2
4 8 1 6 8 6
5 5 43 3 215 129
6 6 42 4 252 168
7 1 1 1 1 1
8 1 0 1
9 3 1 2 3 2
10 11 1 6 11 6
11 5 71 3 355 213
12 5 70 3 350 210
13 1 1 1 1 1
P 699 1670 1207

93

The dynamic parameters of the SOURCE model (Table 3.1) and
STRUCT model (Table 3.2) are estimated in terms of basic blocks
(Fig. 3.4), and the dynamic parameters of the BSBM (Table 3.3) and
TRANSF (Table 3.4) models are described in more detail in terms of

individual statements.

The parameters of a basic block are the number of its statements, the
total number of their executions, the total computational complexity,
measured as the total number of statements executions, and the total
critical path length, while taking into account all the performances.

Table 3.3
Dynamic parameters of the BSBM model
Statement | Complexity C'r;:tﬁal Statement Complexity ng;ﬁal
1 1 1 30
2 1 31 1 1
3 1 32 1
4 1 33 1 1
5 1 1 34 1 1
6 35 1
7 1 1 36 1 1
8 1 1 37 1
9 1 1 38 1 1
10 1 1 39 1 1
11 1 40 1
12 1 41 1
13 1 42 1
14 1 43 1 1
15 1 44 1 1
16 1 45 43
17 1 46 71
18 43 47 71 71
19 43 48 71
20 43 43 49 71 71
21 43 43 50 71 71
22 43 43 51 70 70
23 42 42 52 70
24 42 53 70 70
25 42 42 54 70 70
26 42 42 55 70
27 42 42 56 1 1
28 42 57 42
29 1 1 5 1289 736

94

Table 3.4
Dynamic parameters of the TRANSF model

Statement | Complexity C;‘;ﬁal Statement | Complexity Crr)';lﬁal
1 1 1 30
2 1 31 1 1
3 1 32 1
4 1 33 1 1
5 1 1 34 1 1
6 35 1
7 1 36 1 1
8 1 1 37 1
9 1 1 38 1 1
10 1 1 39 1 1
11 1 40 1
13 1 4 1
14 1 43 1 1
15 1 4 1 1
16 1 45 43
17 1 46 71
18 43 47 71 71
19 43 48 71
20 43 43 49 71 71
22 43 43 51 70
23 4 52 70
25 4 54 70
26 4 54a 70 70
27 42 55 70
28 4 56 1 1
28a 4 4 57 42
29 1 1 > 1401 469

For each basic block of the STRUCT model, the local critical path is
also estimated. For each individual statement of the BSBM and
TRANSF models, the contribution to the total computational
complexity and the total critical path is estimated using the statements
precedence graph shown in Fig. 3.16. The SOURCE code has 13
detailed basic blocks, the STRUCT code has 15 blocks, including two
additional blocks which are for and switch statements. The OBBM
model code and the transformed model TRANSF code have a single
basic block. The total number of executions of basic blocks of the source

95

code is 233, the structured code is three times more (699). The only basic
block of BSBM and TRANSF models has 113 executions, which is
equal to the number of complete iterations of the single loop.

Figure 3.16. Statements precedence graph for basic single-block model
96

Static parameters of the models include the average number of
statements in a basic block, which is equal to 4.15 and 3.73 for SOURCE
and STRUCT respectively, and equal to 57 and 59 for BSBM and
TRANSF respectively. Dynamic parameters include the average number
of statements executions in a basic block. For models SOURCE and
STRUCT itis equal to 5.15 and 2.39 respectively, and equal to 11.41 and
12.40 for BSBM and TRANSF respectively. The increase in the average
number of statements executions against the static average number of
statements in SOURCE is due to the frequent long runs.

The reduction of this parameter is approximately five times higher for
BSBM and TRANSF, which is explained by the fact that the statements
of the single block are executed only when certain conditions are met.

Static and dynamic estimates of the average number of statements on
the critical path of the single basic block characterize the parallelization
potential of the models. Taking into account the frequency of execution
of basic blocks, these estimates give an evaluation of the total execution
time of the entire code.

Since the total number of executions of all basic blocks of the BSBM
is 113, we conclude that on average a 2.06 of basic blocks execute within
on iteration of single loop.

At the same time, the number of iterations in the single loop of
source code is 233, and the internal parallelism of the basic blocks of
the source code provides a parallelization factor of 1.38.

Let's give a comparison of the parallelism extraction models, using
the C-code of function NN_DigitDiv. Analyzing the skeleton of
SOURCE model that is presented in Fig. 3.15a, it is easy to see that two
while loops with labels L1, L2 separate the basic blocks B1, B4, B7 from
each other. Basic blocks B2 and B3 of loop L1 and basic blocks B5 and
B6 of loop L2 are separated by conditional instructions.

The basic blocks that are inside of a loop are also separated from the
basic blocks outside the loop. Thus, the statements of different basic
blocks of the source code are not mutually parallelizable.

It is easy to see that in STRUCT model shown in Fig. 3.15b, only
one basic block of the source code executes at the current iteration of
the loop. Consequently, the total number of iterations is equal to the
sum of the numbers of block executions plus one. Along with notice-
able overhead, this is a significant drawback of this model. It is im-

97

possible to perform and even more to parallelize two or more basic
blocks within one iteration of the loop, although parallelization within
basic block is possible. This is a serious obstacle for the subsequent
use of other methods and tools for the extraction of parallelism that
are based on the STRUCT model.

Both static and dynamic comparisons of parallelism extraction mod-
els are possible. The static comparison uses parameters of the control
flow graphs and the data flow graphs of the models codes. The most im-
portant static parameters are the size of the graph, the length of the criti-
cal path on the graph, and others. The disadvantage of the static compari-
son is the inability to take into account the behavioral properties of the
models in the process of solving typical problems.

As a consequence, the dynamic parameters of the models are prefera-
ble. The first dynamic parameter is the computational complexity
CCompl(M) of the model M, which is measured in the number of execut-
ed operations of the programming language (or in the sum of the weights
of the operations) on the sets of input data that are most typical at solv-
ing the problem. The second important dynamic parameter is the length
of the critical path CPath(M) on the data flow graph, which is expanded
during code execution. The third parameter can be calculated over the
dividing the first parameter by the second one, it is a factor of potential
parallelism PFactor(M) of model M that is calculated as

PFactor (M) =CComPIM) 2 M) - 3.2)

The fourth parameter is the acceleration Accel(M) of model M against
model SOURCE that is considered as a reference model. It does not de-
pend on the computational complexity of both M and SOURCE. The
acceleration can be calculated using the operation of dividing the critical
path length of SOURCE by the critical path length of M:

98

It is obviously, the smaller the length of the critical path, the larger
the factor of parallelization potential of the model, and the higher the
acceleration it yields.

Table 3.5 reports the parameters of models SOURCE, STRUCT,
BSBM and TRASF which are measured on function NN_DigitDiv. The
transition from SOURCE to STRUCT has increased the computational
complexity from 1203 to 1670 statements executions, or by 40.5%. The
transition from SOURCE to BSBM has implied lower growth of the
computational complexity from 1203 to 1289. The transition from
BSBM to TRASF has increased the computational complexity to 1401 or
8.7% higher. As for the critical path, the trend here is completely oppo-
site to the computational complexity. The length of the critical path in
the STRUCT model remains almost the same as in the SOURCE model
(1207 against 1203). In the BSBM and TRASF models it is reduced
against SOURCE from 1203 down to 736 and further down to 469, or by
38.8% and 60.0% respectively.

Table 3.5
Parameters of parallelism extraction models of RSA
Tapamerp SOURCE | STRUCT | OBBM | TRASF
BrrunciaurenbHas CJI0XKHOCTh 1203 1670 1289 1401
Kputnueckuii myTh 1203 1207 736 469
I‘f:;y‘ﬂq’“u“em pacriapaje- 1.00 1.38 1.75 2.99
Yckopenue 1.00 1.00 1.64 2.57

The parallelization factor is an integrated indicator that takes into ac-
count changes both in computational complexity and in the critical path.
The parallelization factor of STRUCT, BSBM and TRASF models in-
creased by 1.38, 1.75 and 2.99 times compared to the original SOURCE
model. It should be noted that in the STRUCT model, the growth is ex-
plained by increase in the computational complexity, the acceleration of
computations has not occurred.

In contrast, in the BSBM and TRASF models, an acceleration of 1.64
and 2.57 times is achieved due to the extraction of parallelism.

Thus, the BSBM model with one basic block is organized in such a
way, that the potential parallelism of operators is not reduced by the

99

dominance of the sequential execution of control structures. The parallel-
ism has effectively extracted by the split and eliminate of sequential con-
trol structures from the code.

3.7. Conclusion

A method of extraction of parallelism from a difficult to parallelize
sequential algorithm is proposed. It uses a set of transformation rules and
applies them step-by-step to the source code. The selection of the rules
and choosing of the preferable code fragments, which have to be trans-
formed, is performed in such a way as to obtain better parameters of the
equivalent parallel code.

The transformation of the control flow of the source algorithm and its
basic blocks ensure the extraction of the most important types of
parallelism from hard-to-parallel loop /branching programs, which
process arbitrary data types and are built using while, do-while, if, switch
and other statements.

A basic single-block flow model (BSBM) of the algorithm, that is
constructed of a single loop whose body includes a single basic-block,
provides real extraction of parallelism of many types from the source
code. The model provides efficient techniques for analyzing
dependencies among statements, identifying pairs of parallelizable
operators, pairs of orthogonal mutually exclusive operators, and parallel
paths in the algorithm. It allows for efficient estimation of the
computatioinal complexity, critical path length and parallelization factor
of the code.

A step-by-step transformation method of an arbitrary sequential algo-
rithm to the basic single-block flow model is proposed. It guarantees ob-
taining a model code in a finite number of steps for any source algo-
rithm, based on universal transformation rules such as inserting operators
before and after a loop, merging sequential and nested loops in one loop,
eliminating loops’ continue statements and merging break statements
into one break, and others.

A technique of evaluating the static and dynamic parameters (includ-
ing the level of hidden parallelism) of algorithm models has been devel-
oped. It is applied to the source, structured, single-block and transformed
single-block models. The influence of the parameters of the basic blocks

100

on the parameters of the whole models, including the degree of implicit
potential parallelism of blocks and models is shown.

A detailed comparison of parameters of the four parallelism extrac-
tion models on the RSA standard is carried out. It proves the possibility
of a significant reduction in the critical path length, of an increase of the
parallelization factor, and an increase in the acceleration factor of the
basic single-block flow model, and further modifications of this model
against the known models.

101

4. ANALYSIS OF BASIC SINGLE-BLOCK MODEL
4.1. Goals of analysis

The main goal of analysis is the precise estimation of the computa-
tional complexity, critical path and parallelization potential of the basic
single-block model. The estimation crucially depend on finding out data
dependences among statements within one iteration of the loop and be-
tween consecutive loop iterations. In its turn, data dependences analysis
cannot be performed without finding the statements which are mutually
exclusive, and which of them are not. Mutually exclusive statements
cannot be data dependent.

In this work, the algorithm (program code) transformation and analy-
sis techniques are essentially base on single assignment model of a vari-
able. It requires that each variable to be used once, although it may have
several producers and several consumers. All producers must belong to
mutually exclusive branches of nested conditional statements within one
iteration of the loop and among several loop iterations.

4.2. Analysis of structured basic single-block model

The structured program improves the clarity, quality, and develop-
ment time of an algorithm [11, 13]. It is constructed by use of the struc-
tured control flow constructs of selection (if-then-else), repetition (while
and for), block structures, and procedures and functions. It explicitly de-
fines all pairs of mutually exclusive operators over branches of nested if-
then-else statements.

Example 4.1. Fig. 4.1 presents an example C/C++ code of structured
program that is constructed of one loop and three branching statements.
The loop contains data flow feedback. All pairs of mutually exclusive
operators can be easily seen. All of them belong to one iteration of the
loop. These cannot be seen for different loop iterations. Fig. 4.2 shows
the equivalent basic single-block model that is a result of transformation
of the source code. The iteration scheme of the loop is quite simple, but
the number of short if-then statements equals 17 that is much larger than
the number of if-then-else statements in the source code. It is difficultly

102

https://en.wikipedia.org/wiki/Block_(programming)

to find out in the basic single-block model what pairs of operators are
mutually exclusive and what of them are not.

void DataFlowFeedback(float *A, float *B, float *C, int n) {
float a0, b0, c0, d1, d0 = 0.0f;
for (inti=0;i<n;++){
a0 = A[i];
b0 = BJi];
if (a0 == h0) {
c0 =0.0f;
}else {
dl=a0 - bO;
if (b0<0) c0=d1+1.0f;
else {
if (d0>0) c0=d1-1.0f;
else c0=do;

}
do =di;
}
C[i] = c0;
}

Figure 4.1. Example C/C++ structured looping/branching code with dataflow feedback

Given two if-then statements “if (tj) Si”” and “if (tj) S;”, how to find out,
wither S; and S; are mutually exclusive or not? It is clear that everything
depends on the Boolean conditional variables t; and t;. In addition to val-
ue false (0), each of them can take value true (1). If both variables can
take value 1 simultaneously, then S; and S; are not mutually exclusive.
Therefore, Si and S; are mutually exclusive if the pair (t;, tj) can only take
values 00, 10 and 01.

4.2.1. Evaluating conditional variables using Boolean expressions

Let T be a set of conditional Boolean variables occurred in if-then
statements of the basic single-block model. The conditional variables
determine the control flow of the single loop body. Let B be a set of oth-
er Boolean variables of the model which are used for evaluating the con-

103

ditional variables. The set of primary Boolean variables is denoted as P.
The basic single-block model evaluates these variables mostly using re-
lational operators.

void DataFlowFeedback(float *A, float *B, float *C, int n) {
float a0, b0, c0, d1, d0=0.0f;
inti=0;
bool 10, t1, t2, t3, t4, 15, 16, 17, 18, 19, 110, t11, t12, t13;
while (true) {

t0=i<n; J/n
t1=1t0; 112
if(tl) break; 113
if (t0) a0 = A[i]; 114
if (t0) b0 = BI[i]; 115
if (t0) t2=a0==h0; 116
if (t0) t3="112; 17
t8 = t0 && t2; 118
if (t8) c0=0.0f; 119
t9 =10 && t3; /110
if (t19) d1=a0 - ho; /111
if (19) t4=b0<0; 1112
if (19) t5="1t4; /113
t10 =t9 && t4; /114
if (t10) cO=d1+1; 1115
t11 =t9 && t5; /1 16
if (t11) t6=d0>0; 117
if (t11) t7=1t6; 1118
112 =111 && t6; 1119
if (t112) cO=d1-1; 1120
t13 =t11 && t7; /121
if (t13) ¢0 =do; 1122
if (19) d0=d1,; 1123
if (t0) CJi] = c0; Il 24
if (t0) ++i; 1125

}

Figure 4.2. Example structured basic single-block model with dataflow feedback

Intermediate Boolean variables of set B \ P are evaluated over prima-
ry variables, and conditional variables are evaluated over primary and
intermediate variables.

104

Example 4.2. There are 8 conditional Boolean variables in the basic
single-block model shown in Fig. 4.2. They belong to set T = {t0, t1, 8,
t9, 110, t11, t12, t13}. Set B = {t0, t2, t3, t4, t5, t6, t7} of additional 7
Boolean variables helps to evaluate the conditional variables. It includes
4 primary variables, i.e. P = {t0, t2, t4, t6}. It also includes 3 intermedi-
ate variables, i.e. B\ P = {t3, t5, t7}.

We can evaluate all conditional variables with Boolean expressions,
which can be extracted from the code. Thus conditional variable t0 is
evaluated with expression “i<n” over relational operation, therefore it is
simultaneously a primary variable. Conditional variable t1 is evaluated
with expression “—t0” over Boolean negation. Conditional variable t11 is
evaluated with expression “t9 A t5” over Boolean conjunction. In its
turn, variable t9 is evaluated with expression “t0 A t3”, variable t5 is
evaluated with expression “—t4”, and variable t3 is evaluated with ex-
pression “—t2”. After substitution, variable t11 can be evaluated with
expression “t0 A —t2 A —t4” over three primary variables. Variable 111
takes values which depend on the combinations of values of variables t0,
t2 and t4.

4.2.2. Relations among values of primary Boolean variables

Dependences among values of primary Boolean variables strongly
influence dependences among values of conditional Boolean varia-
bles. These dependences can be described with relations on tuples of
Boolean values.

When the values of conditional variable t11 are analyzed (Fig. 4.2),
relations among values of primary variables t0, t2 and t4 must be consid-
ered. These relations are associated with the feasible bit-vector values of
the primary variables which can appear during code execution. Expres-
sions “i < n”, “a0 == b0” and “b0 < 0” evaluate variables t0, t2 and t4
and, as can be easily seen, are independent. It means their vector value
can take any tuple from 000 to 111.

Matrix F of feasible values of pairs of primary variables is repre-
sented with Equation (4.1).

105

(4.1)
tif, fo . 9

In matrix F, rows and columns correspond to primary variables t;;
feasibility characteristic function fj is a binary Boolean function f(t;t;)
which determines a four-bit vector, which is encoded with decimal num-
bers 0...15, and whose elements show the feasibility (value 1) or infeasi-
bility (value 0) of the corresponding two-bit values of primary variables
ti and t;. Value 9 in the principal diagonal of matrix F represents the
equivalence (=) binary Boolean function (1001).

Matrix F allows computation of feasible bit-vector values of n varia-
bles over feasible values of variable pairs.

Example 4.3. For our example primary variables t0, t2 and t4, matrix
F is as follows:

t,/9 15 15
F=t,15 9 15.
t,15 15 9

In this matrix, value 15 (1111) represents binary Boolean function
Constant 1 which means that all values 00, 01, 10 and 11 of pair (t;,t;) are
feasible during execution of the code. Bellow we will see that fij can be
other binary Boolean function.

4.2.3. Pairs of orthogonal conditional variables

We assume that two conditional Boolean variables t; and t; depend on
the same set of primary variables. They are orthogonal if they never take
value 1 simultaneously. In other words, if ti takes 1 then tj takes 0, and if
tj takes 1 then t; takes 0.

In the structured basic single-block model, the orthogonal pairs of
conditional variables can be found out using Boolean logic. Thus

106

source conditional statement “if (t0) S; else S;” produces in the single-
block model the code with additional Boolean variable t1, assignment
statement and two short if-then statements: “t1=1t0; if (t0) Si if (t1)
Sj”. Tt is easy to see that variables t0 and t1 are orthogonal, and two
short if-then statements with S; and S; inside are mutually exclusive.
Nested conditional statements “if (t0) if (t1) Si else S;” produce code
“2 =1 tl; t3 = t0 && t1; t4 = t0 && 12; if (t3) Si; if (t4) S;”, which
explores three additional Boolean variables. Variable pairs (10, t3)
and (t0, t4) are not orthogonal, while variables t3 and t4 are orthogo-
nal as t1 and t2 are orthogonal.

In general form, the orthogonal condition can be represented with the
following logical equation:

vp (6 = —t) AL, >), (4.2)

where — is Boolean negation, A is Boolean conjunction, — is Boolean
implication, p is a vector of primary variables which t; and t; depend on,
and V is a universal quantifier (for all p) which ties variables of p. After
substitution of the evaluating expressions instead of variables t; and tj,
Equation 4.2 can be expressed in terms of primary variables.

Example 4.4. Let us consider pair t9 and t13 of conditional variables.
The expression of evaluating t9 is “t0 A —t2” and the expression of eval-
uating t13 is “t0 A —t2 A —t4 A —t6”. After substituting these expres-
sions in Equation (4.2) we obtain:

(—|(t0 A —|t2) \Y —|(t0 A—t2 A —td A —|t6)) N
(—|(t0 A—t2 A —td A —|t6) \Y —|(t0 A —|t2)) =

—t0 v 12 v t4 v 16.

The inferred disjunction of four literals is not Boolean function Con-
stant 1, therefore variables t9 and t13 are not orthogonal.

107

Example 4.5. Now we consider variables t10 and t13. The expression
of evaluating t10 is “t0 A —t2 A t4” and the expression of evaluating t13
is “10 A —t2 A —t4 A —t6”. After substituting these expressions in Equa-
tion (4.2) we obtain:

((t0 A —t2 A t4) > (10 A —t2 A —t4 A —t6)) A
(0 A —t2 A —t4 A —t6) > (10 A —t2 A t4)) =
(—(t0 A —t2 A t4) v (10 A —t2 A —t4 A —t6)) A
(=(t0O A —t2 A —td A —t6) v (10 A —t2 A th)) =

—tOvi2vtdv—tdvio=1.

The inferred disjunction has literals t4 and —t4 as operands and is
equivalent to Boolean function Constant 1, therefore variables t10 and
t13 are orthogonal.

Matrix Ort (Equation 4.3) describes all pairs of orthogonal and all
pairs of non-orthogonal conditional variables of the example basic sin-
gle-block model. This matrix completely determines all pairs of mutually
exclusive operators in the basic single-block mode.

t,0 1 0 0 0 0 0 O

1 01 11 1 1 1

(0 1 0 1 1 1 1 1

t,o 1 1 0 0 0 0 0O (4.3)
Ort=

t,0 1 100 1 1 1

0 1 1 0 1 0 0 O

t,0 1 1 0 1 0 0 1

tJ0 1 1 0 1 01 0

4.2.4. Estimating parameters of basic single-block model

Analysis of the basic single-block model yields computational com-
plexity, critical path and parallelization potential of the block. These pa-
rameters depend on input data of the algorithm.

108

Various aspects of the model are important while estimating compu-
tational complexity: the cost of operators, the cost of control structures,
and the cost of memory operations. The complexity of operators is de-
rived directly from the behavioral description. The complexity of control
structures and memory operations depends on the implementation meth-
od of algorithm and on the basic parallel architecture.

Example 4.6. The loop body shown in Fig. 4.2 includes 25 statements
which contain only 4 arithmetic operators and 4 relational operators. It
includes 10 low cost logic scalar operators and 17 if-then statements.
Only 6 if-then statements may not be removed; one of them covers break
operator, 4 of them select one value of 4 producers for variable c0, and
another one select new value for state variable dO which has two produc-
ers: operator 22 and the current state value. The model also includes 24
assignments and 3 array indexing operators.

The basic single-block model includes many if-then statements which
allow flexible reordering of statements in the block and efficient partition
of the model. Both pipelined and non-pipelined partitioning can be ac-
complished. Most of if-then statements need no implementation in the
target architecture. In hardware architecture, only if-then statements are
saved and implemented which describe more than one producers of a
variable; other if-then statements may be removed from the model. In
software architecture, if-then statements with identical conditional varia-
ble can be merged into one if-then statement, and one if-then-else state-
ment can be generated of several if-then statements, thus reducing the
amount of computations on one processor.

Now we transform the basic single-block model shown in Fig. 4.2 to
a model for hardware implementation which is presented in Fig. 4.3. We
remove 11 if-then statements which may be omitted without changing
the algorithm behavior. We extract computations from 2 of 4 producers
of variable c0 and merge these producers to one long conditional state-
ment which can be implemented with multiplexor. Input and output vari-
ables of statements and matrix Ort of orthogonal conditional variables
(Equation 4.3) which determine mutually exclusive operators are the ba-
sis for data dependences analyses. The main rule is as follows. If condi-
tional variables t; and t; are orthogonal according to Ort, then statements
“if (t)) y=x;” and “if (tj) z=y;” are independent, although variable y is out-

109

put of the first statement and is input of the second statement. If t; and t;
are not orthogonal, then the statements are data dependent.

Fig. 4.4 shows the data dependency graph for the transformed basic
single-block model presented in Fig. 4.3. State variables i and dO consti-
tute dataflow feedback in the graph. Their values produced in one itera-
tion of the loop are consumed in next loop iteration.

void DataFlowFeedback(float *A, float *B, float *C, int n) {
float a0, b0, c0, d1, d0=0.0f;
inti=0;
bool t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13;
while (true) {

t0=i<n; /11
t1=110; 2
if(tl) break; 13
a0 = A[i]; 114
b0 = BJi]; II'5
t2 = a0 == h0; 116
t3=112; 7
t8 =10 && 12; 118
t9 =10 && 13; 119
d1 =a0 - bo; /110
t4 =hb0 <0; 1111
t5=11t4; 1112
t10 =19 && t4; 1113
t11 =19 && t5; 1114
t6 =d0 > 0; 1115
t7 = 116; 1116
t12 = t11 && t6; 1117
t13 = t11 && t7; 1118
c00 =d1 +1; 1119
c0l=dl-1,; 1120
if (t8) c0 = 0; else if (t10) c0 = c00; else

if (t12) c0 = c01; if (t13) c0 = dO; 1121
if (t19) d0=d1; 1122
Cl[i] = c0; 1123
++i; /1 24

}

Figure 4.3. Transformation of example model for hardware implementation

110

1 ><
VS
7
A& ?
it
14
-’
/
&

)

Figure 4.4. Data dependency graph of example basic single-block model in Fig. 4.3

The data dependencies among statements allow evaluation of the crit-
ical path and parallelization potential of the code. These parameters may
vary depending on input data. In any case, the parallelization potential of
code shown in Fig. 4.3 is higher than that one shown in Fig. 4.2.

4.3. Advanced analysis of basic single-block model

Very often programmers do not write purely structured code although
this code is close to structured one. Fig. 4.5 shows an example of such
code. This code indicates mutually exclusive branches rather with condi-
tional expressions than with then and else alternatives. Such expressions
intensively use relational operators.

The loop body contains at top level two if-then statements whose
conditional expressions are constructed of variables a0 and b0, and are

111

constructed of two relational operators “>" and “<=". In its turn, the sec-
ond if-then statement contains two additional if-then statements whose
conditional expressions are constructed of two relational operators “<="
and “>”, and are constructed of variable a0 and literals 0 and 4.

Fig. 4.6 presents the basic single-block model that is functionally
equivalent the source code. The logic part of the model differs from that
of the previous model. Thus statement 18 describes a conditional expres-
sion for the fourth producer of variable cO. This producer must be mutu-
ally exclusive against three previous producers.

Analysis of such basic single-block model differs from the above
considered structured basic single-block model.

void relationalOperators(float *A, float *B, float *C, int n) {
float a0, b0, c0, d0 = 3;
for (inti=0;i<n;++i){

a0 = AJi];
b0 = BYi];
if (a0 > b0) {
c0=4a0 -d0 *ho;
¥
if (a0 <=00) {
c0 =h0 - a0;
if (@0<=0){
c0=hb0+1;
}
if (@0 >4){
c0=a0-5;
}
}
C[i] = ¢0;
d0 =c0;

}

Figure 4.5. Example C/C++ non-structured code with dataflow feedback

4.3.1. Feasibility functions for pairs of primary Boolean variables

Section 4.3.2 proves that the feasibility function for two independent
primary Boolean variables is Boolean constant 1. Various kinds of de-

112

pendency between primary variables may exist in program code
(Fig. 4.6). In this section, we analyze relational operators ==, I=, >, >=, <
and <=from this point of view.

void relationalOperators_(float *A, float *B, float *C, int n) {
float a0, b0, c0, c1, d0 = 3;
inti=0;
bool 10, t1, t2, t3, t4, t5, t6, 17, 18, 19, t10, t11;
while (true) {

t0=i<n; /1
t1 =110; 12
if (t1) break; 113
if (t0) a0 = A[i]; 14
if (t0) b0 = BI[i]; 115
if (t0) t2=a0>bo; 116
t7 =10 && t2; "7
if (t7) c1=d0 *hO; 118
if (t7) c0=a0-cl; 119
if (t0) t3 =a0 <=h0; /1110
t8 =10 && t3; 1111
if (t8) t4=a0<=0; 1112
19 =18 && t4; /113
if (19) cO=hb0+1,; 1114
if (18) t5=a0>4; 1115
110 = t8 && 15; /116
if (t10) cO=a0-5; 117
if (18) t6="(t4 | t5); 1118
t11 =8 && t6; 1119
if (t11) c0=b0 - a0; 1120
if (t0) CJi] = c0; /121
if (t0) d0 = c0; 1122
if (t0) ++i; 1123

}

Figure 4.6. Example non-structured basic single-block model with dataflow feedback

Let primary Boolean variables ti and tj be assigned values with two
assignment statements, which contain binary relational operators in the
right part whose input variables are identical (Equation (4.4)): x and y are
numerical (may be other type of) variables, and Ri and R; are relational

113

operators. As many as 36 combinations of Ri and R; are possible. All of
them are represented with matrix RV shown in Fig. 4.7.

I= < <= > >=
6 14 13 14 13
9 11 7 11 7

RV=< 14 13 9 13 14 6

<= |11 7 11 9 6 7
> (14 13 14 6 9 13
> (11 7 6 7 11 9

I
o o |

Figure 4.7. Feasibility functions for relational operators with identical input variables

Element frir; Of the matrix is a function that determines the feasibility
of vector values of pair (ti, tj). Function 6 is Boolean exclusive or, func-
tion 7 is disjunction, functions 11 and 13 are implication, and function
14 is Sheffer stroke (negation of conjunction).

ti=xRiy; (4.9)
i=xR;Y;

Example 4.7. For instance, the feasibility function for operators >=
and > and statements (4.4) has decimal code 11 that equivalent to binary
code 1011. It means that pair (t;, t;) of Boolean variables can take values
00, 10 and 11, and cannot take value 01.

Indeed, if x >=y equals 0, then x >y cannot be equal to 1. Similarly,
the feasibility function for operators <= and >= has decimal code 7 (bi-
nary code 0111). Value 00 is infeasible as x <=y equals 0 implies x >=y
equals 1. The code in Fig. 4.6 contains statements “t2 = a0 > b0;” and
“t3= a0 <= b0;”. The feasibility function for > and <= (Fig. 4.7) has
code 6 (0110), as values 00 and 11 are infeasible, and values 01 and 10
are feasible.

Let variables ti and t; be assigned values by two assignment state-
ments with relational operators, one identical variable and two different
literals in the right part:

114

ti=xRili (4.5)
= xRy I;

where li and I; are numerical literals that satisfy inequality Ii < I;. Matrix
RL (Fig. 4.8) describes feasibility functions for statements (4.5) and all
36 pairs of relational operators.

Example 4.8. For instance, the feasibility function (Fig. 4.8) for oper-
ators = and > has decimal code 14 (binary code 1110). It means that pair
(ti, t;) of Boolean variables can take values 00, 01 and 10, and cannot
take value 11. Indeed, at Ii < 1j, if x =i equals O, then x > I; equals 0O at
x < l;. Moreover, if x = [; equals 1, then x > I; cannot be equal to 1. The
code in Fig. 4.6 contains statements “t4 = a0 <=0;” and “t5 = a0 > 4;”.
The feasibility function for <=and > has code 14 (1110) in matrix RL, as
values 00, 01 and 10 are feasible while value 11 is infeasible.

It should be noted that the feasibility functions that are located on
principal diagonal of matrix RL may be different.

= = < <= > >=

= [14 13 13 13 14 14

= 11 7 7 7 11 11
RL=< [14 13 13 13 14 14
<= 14 13 13 13 14 14

> [11 7 7 7 11 11

>= (11 7 7 7 11 11

Figure 4.8. Feasibility functions for relational operators with identical input variable
and different numerical literals

4.3.2. Feasibility functions and pairs of orthogonal variables

The orthogonal condition for two conditional variables t; and t; can be
represented with the following logical equation:

vp (A(p) = ((t > —t) A t; > L)), (4.6)

115

where p is a vector of primary Boolean variables, and A(p) is a conjunc-
tion of feasibility functions for all pairs of conditional variables. Equa-
tion (4.6) means that in case A(p) is true we need a proof that (ti > —tj) A
(t; > —t;) is true, and in case A(p) is false we need no any such proof.

There are five primary Boolean variables t0, t2, t3, t4 and t5 in the
code shown in Fig. 4.6. Equation (4.7) describes feasibility functions for
all pairs of these variables.

t,/9 15 15 15 15
t,d15 9 6 15 15
F=t,15 6 9 15 15. (4.7)
t
t

N

,15 15 15 9 14
(15 15 15 14 9

We can represent functions 9 and 15 with Boolean constant 1. The
matrix is a basis for construction of the conjunction of feasibility func-
tions:

Mp) = (2 @ 13) A —(t4 A 15).

Example 4.9. Let us check, if conditional variables t7 and t8 are
orthogonal. The code shown in Fig. 4.6 allows the derivation of evaluat-
ing expressions for t7 and t8:

t7 =10 A t2,
t8 =t0 A t3.

Substitution of these expressions in (4.2) yields the logical equation
as follows:

(t2 @ t3) A (t4 A t5) —
(0 At2—> (0O At3)) A (IO A3 > — (10 A T2))) =
(I2At3) v —t2v —t3 v (14 Ath) viD=1.

116

As it can be seen, this equation is equivalent to Boolean function
Constant 1, therefore variables t7 and t8 are orthogonal.
Example 4.10. Let us now consider conditional variables t9 and t11:

19=t8At4=t0 At3 A4
t11 =t8 A t6 =t0 A t3 A —t4 A —tb.

Equation (4.2) for these variables is as follows:

(t2 ® t3) A—(t4 A t5) >
(0 At3 Atd— (10 A3 A —t4 A —tD)) A
(tOAt3A—t4 At > - (I0At3ALE))) =

(2@t v (t4Ath) v t0Ov —t3v —tdvidvib=1.

The inferred disjunction contains literals —t4 and t4 and is equiva-
lent to Boolean function Constant 1, therefore variables t9 and t11 are
orthogonal.

Matrix Ort (4.8) describes all pairs of orthogonal conditional varia-
bles in the code shown in Fig. 4.6.

t,0 1 0 0 0 0 O

L1 0 1 1 1 1 1

t,o 1 01 1 1 1 4.8)
Oort=t,0 1 1 0 0 0 O

t,0 1 1 0 0 1 1

t0 1 1 0 1 0 1

t,0 1 1. 0 1 1 0

Matrix Ort determines all pairs of mutually exclusive operators which
are covered by 16 if-then statements (Fig. 4.6).

There are other cases when a set of primary variables may not take
arbitrary vector value. All the cases and corresponding rules for compu-

117

ting the feasibility functions are accumulated in a data base and are used
during analysis of the basic single-block model.

4.4. Formal method of basic single-block model analysis

Now we formulate in general form the equations and tasks that are
used for analysis of the basic single-block model. Let t=ty,...t, be a vec-
tor of conditional Boolean variables, p=pu,...,px be a vector of primary
Boolean variables, g=gi(p),...,0n(p) be a vector of Boolean functions that
evaluate conditional variables over primary variables, and F = {f(pi, p;) |
I, =1,...k, i<j} is a set of feasible functions for values of pairs of pri-
mary variables.

4.4.1. Tautology problem for a pair of conditional variables

For two conditional variables t; and tj, whose evaluating functions are
gi(p) and gj(p), the orthogonal condition can be represented with Boolean
Equation (4.9), if all pairs of primary variables are mutually independent:

vp ((9:(P) =g, (P) A (9, (P) > —g,(P))) (49)
This equation can be transformed to the equation as follows:

vp [u(p)]. (4.10)

where p(p) = —gi(p) v —gj(p) . Equation (4.10) represents a logical tau-
tology. It must be solved in terms of primary variables which are inde-
pendent. Any vector value of primary variables must satisfy the equation.
Solving this equation may have high computational complexity and con-
sume huge CPU time, if the number of primary variables grows signifi-
cantly.

4.4.2. Partial tautology problem for orthogonal variables

If at least one pair of primary variables is dependent, the conjunction
M(p) of Boolean feasibility functions is not equivalent to Boolean con-

118

stant 1. In this case, the characteristic function A(p) describes the set of
feasible vector values of primary variables p:

A(p) = AND T (i, py)- (4.11)

i<j

A relaxation of Equation (4.10) is possible, as only a part of primary
variables values is feasible. The orthogonal condition for two conditional
variables t; and t; with evaluating functions gi(p) and gj(p) can be repre-
sented with Boolean equation (4.12):

vp (A(p) = u(p)) (4.12)

In fact, Equation (4.12) is a partial tautology as we do not need a
proof of u(p) = 1 if A(p) = 0. At the same time, the procedure of traversal
all vector values of p has very high computational complexity. We can
avoid this procedure by reformulating tautology (4.12) to a satisfiability
(SAT) problem.

4.4.3. Contradiction procedure and SAT problem for orthogonal
variables

Very often it is easier to solve the orthogonal variables problem by

means of transition to an inverse problem. Applying the first De Mor-
gan's law to expression (4.12), we obtain:

—3p ~(A(p) > u(p)) (4.13)
where 3 is an existential quantifier (there exists p) which ties variables of
p. After substituting the evaluating functions instead of u(p), replacing

implication with disjunction and applying the second De Morgan’s law
we have:

—3p —~(=A(p) v u(p) =

119

https://en.wikipedia.org/wiki/Existential_quantification

—3p (A(p) A—ulp) =
—3p (A(p) A gi(P) A g;(P) (4.14)

Such approach to solving the problem is called a contradiction proce-
dure, and Equation (4.14) formulates a satisfiability problem. To perform
objection of (4.14), it is sufficient to find a vector value of p which satis-
fies function A(p)Agi(p) A gj(p). In case such value does not exist, this
function is equivalent to Boolean constant 0, and problems (4.14) and
(4.12) are solved.

Example 4.11. For example, we apply the problem (4.14) to proving
that conditional variables t7 and t8 are orthogonal in the code shown in
Fig. 4.6. Substitution of expression (t2®t3)A—(t4At5) instead of A(p),
expression tOat2 instead of gi(p)=t7, and expression tOAt3 instead of
gj(p)=t8 in (4.14) leads to transformations as follows:

—[(12Dt3) A—(t4 AtE) AtO A2 A0 AL3)] =
= [(t2 A —t3 A=(t4 AtE) A0 A2 A L) v
(-2 A3 A—(t4 AB) A0 A2 AL3)] =

ﬁ[OVO] :—|[O] = 1.

The source expression is equivalent to disjunction of two conjunc-
tions. The first conjunction contains opposite literals —t3 and t3 and is
equal to 0. The second conjunction contains opposite literals —t2 and t2
and is also equal to 0. As a result, expression (4.14) is equal to 1, and
variables t7 and t8 are orthogonal

4.4.4. Problem solving over minimization of partial functions

Using a pair of completely specified functions pu(p) and A(p) we can
construct a partial (incompletely specified) Boolean function

@(p) = (u(p), A(P)). (4.15)

120

This function depends on Boolean arguments p and can take three
values: 0, 1 and dc (don’t care value). Boolean function —u(p)Ai(p) de-
scribes off-set ¢°(p) of partial function o(p). Boolean function
u(p)AL(p) describes on-set @*(p) of function ¢(p). Boolean function
—\(p) describes don’t-care-set ¢®(p) of function ¢(p).

Solving the orthogonal variables problem can be performed by mini-
mization of function p(p) through appropriate changing its value with
new value O or 1 on those values a of variable p for which A(a) is false.
If new function p’(p) is Boolean constant 1, then conditional variables t;
and t; are orthogonal, otherwise they are not orthogonal. The minimiza-
tion of function can be performed with Karnaugh map.

For example, for conditional variables t7 and t8 function p(p) is de-
scribed with expression —(t0At2)v—(t0At3), and function A(p) is de-
scribed with expression (t2®t3)A—(t4At5). Function p(p) depends on
three variables t0, t2 and t3, meanwhile function A(p) depends on four
variables t2, t3, t4 and t5. Function p(p) does not depend on t4 and t5,
therefore we omit them in new function A’(p) = t2®t3. The on-set of
A’(p) is larger than that one of A(p). This is a guarantee for the correct
minimization of @(p).

Example 4.12. Fig. 4.9 shows the Karnaugh map of partial function
¢©’(p) = (u(p), A’(p)). It is easy to see, function p(p) can be replaced with
Boolean constant 1 in ¢(p), and therefore conditional variables t7 and t8
are proved to be orthogonal.

t2

o [T [

1 de 1R

ts

Figure 4.9. Karnaugh map of partial function ¢’(p)

121

4.4.5. Orthogonal subsets of the set of conditional variables

Let C = {ci1...cm} be a subset of all set of the Boolean conditional var-
iables that are represented with vector t. Variables of C are orthogonal if
only one of them can take value 1, while the others take value 0 at any
state of the code execution. This is formalized with expressions as fol-
lows.

vp AND((A(p) —77,(P))). (4.16)

where

7 (p)=c(p) >

4.17)
(=€, (P) A - A=C11 (P) A=y (P) A e A,y (P)).

Solving the orthogonal problem for m conditional variables is equiva-
lent to solving the orthogonal problem of all non-ordered pairs of these
variables. All subsets of orthogonal conditional variables can be deter-
mined from matrix Ort, for example, from matrix (4.8). Thus subset
C ={t1, 17, t9, t10, t11} is maximal one for matrix (4.8). The set of all
such subsets can be considered as a set of cliques of a non-directed graph
that is represented with matrix Ort.

4.5. Analysis of basic single-block model with control flow feedback

The conditional variables and if-then statements define the control
flow within one iteration of the single loop of the basic single-block
model. The dataflow feedback can influence the control flow implicitly
over recalculating conditional variables which depend on dataflow varia-
bles at each iteration of the loop. Very often, algorithms obtain the prop-
erty of control flow feedback. In this case, conditional variables are
global with respect to the loop, and their values are recalculated within
the loop body.

Example 4.13. Fig. 4.10 shows an example C/C++ looping/ branching
code with control flow feedback. Boolean variables sO and s1, which are
initialized in their declaration, represent control flow state in the loop

122

body. The body recalculates the values of the variables in one iteration.
Fig. 4.11 presents a basic single-block model that is derived from the
example code by means of equivalent code transformation.

void ControlFlowFeedback(float *A, float *B, float *C, int n) {
float a0, b0, c0, d1;
bool sO = true;
bool s1 = false;
for (inti=0;i<N;++i){

a0 = A[i];
b0 = BJi];
dl=a0 - bo;
if (d1>0){
if (s0) cO=d1-2;
if (s1) {
c0=di;
sO = true; sl =false;
}
}else {
if (s0) {

c0 =di;
s0O = false; sl =true;

}
if (s1) c0=d1 +2;

¥
C[i] = ¢0;
}
}

Figure 4.10. Example C/C++ looping/branching code with control flow feedback

A problem is how to recognize, what pairs of conditional variables
are orthogonal and what pairs are not in the model. Our focus is on con-
trol flow state variables, as the analysis technique for other type of pairs
of conditional variables we have already considered and developed. Re-
garding the example basic single-block model, our focus is on state vari-
ables sO and s1. It should be noted that although these variables are con-
ditional in the source C/C++ code (Fig. 4.10), they are rather intermedi-
ate than conditional in the basic single-block model (Fig. 4.11). The
orthogonal problem remains in any case.

123

void ControlFlowFeedback_(float *A, float *B, float *C, int n) {
float a0, b0, c0, d1;
bool sO = true;
bool sl = false;
inti=0;
bool t0, t1, t2, t3, t4, t5, t6, t7, t8, 19, t10, t11;
while (true) {
t0=i<n;
t1 =110;
if (t1) break;
if (t0) a0 = A[i];
if (t0) b0 = BJi];
if (t0) d1=a0 - ho;
if (10) t2=d1>0;
if (t0) t3="12;
if (10) t4 =12 && s0;
if (t0) t5=12 &&s1;
t8 =10 && t4;
if (18) cO=d1-2;
t9 = t0 && t5;
if (t9) c0=d1;
if (t9) sO = true;
if (19) sl ="false;
if (t0) 6 =13 && s0;
t10 =t0 && t6;
if (t10) c0=d1;
if (t10) sO = false;
if (t10) sl =true;
if (t0) t7 =13 &&s1;
t11 =t0 && t7;
if (t11) cO=d1+2;
if (t0) C[i] = c0;
if (10) ++i;

}

Figure 4.11. Example basic single-block model with control flow feedback

Below we develop a formal method that is based on mathematical in-
duction technique. This technique requires two cases to be proved. The
base case proves that the orthogonal variables property holds for the ini-
tial computational state before entering the loop. The induction step
proves that, if the property holds for one loop iteration I, then it holds for

124

the next iteration 1+1. The base case uses the initial values of the state
variables. The induction step uses the statements of the loop body which
update the values of state variables.

Let si and s; be two Boolean control flow state variables whose or-
thogonal property we are going to prove.

Base case. If one of two variables is initialized to 1 and other variable
is initialized to 0, then the orthogonal property holds.

Induction step. Represent the values of state variables s; and s; in next
iteration of the loop with s’ and s’;. These variables can be evaluated
over primary variables and current-iteration variables s; and s;j, using
evaluating Boolean functions gi(q) and gj(q). Vector g represents both
primary variables and state variables within current iteration.

If the orthogonal variables property holds for variables s; and s; at the
current iteration of loop, then our goal is to prove that it holds at the next
iteration for variables s’; and s’j. This can be represented with implica-
tion

vp ((—|Si V—|SJ-) —> (—|Sli \/—|S'j)) =
vp ((=s; v —s;) = (—g; (@) v —g, (@) (4.18)

If expression (4.18) is a tautology, i.e. is satisfied for any value of p,
then state variables s; and s; are orthogonal.

The C/C++ code, and in particular statements “if (o) Si= €p;” which
assign a new value to state variable s;, are a source for construction of
evaluating function gi(q):

g;(a) = |:b\B/l(tb A eb)} \ [Si A _'b\Eiltb} , (4.19)

where B is the number if-then statements for si. The first term of disjunc-
tion in (4.19) represents new value of s;, and the second term represents
current value.

In case, the primary variables are dependent, and the feasibility func-
tion A(p) is not equivalent to Boolean constant 1, expression (4.18) for
the orthogonal state variables property should be modified in order to

125

take into account two situations: when the values of state variables are
updated in the loop body, and when they save previous values:

(=S v—s;) >
vp| (HAPIAG(@ VAP AS) V| (4.20)
—(A(P) A g;(a) v =A(p) A8)))

Expression (4.20) describes that variables s; and s; can update their
values when A(p) is true, and these variables do not change their values
when A(p) is false.

Example 4.14. Let us prove the orthogonal property for state variables
s0 and s1 of the code shown in Fig. 4.11.

It is easy to see, that in base case the initial values 1 (true) and 0
(false) of the variables are orthogonal.

In induction step, we assume that sO and s1 are orthogonal in current
iteration, and the Boolean function —s0O v —s1 is true.

Function gso that evaluates new value of s0 is

gso = t0 A (19A1 v t10A0 v —(t9v110) A sO) v —tOASO =
= tOAt2A81 v 12AS0A—S1 v —tOASO.

Function gs; that evaluates new value of sl is

Os1 = t0 A (1970 v t10A1 v —(t9vt10) A s1) v —tOASl =
= tOAt2AS0 v —t2A—=S0AS1 v —t0ASL.

In the C/C++ code, all primary variables are independent, there-
fore A(p) =1 and the orthogonal property for sO and s1 holds when
(4.18) is tautology. Performing transformations for a sub-expression
of (4.18) we obtain:

—0s0 V =051 = — (t0At2AS1 v t2AS0A—=S1 v —t0ASO) v
— (t0A—1t2AS0 v —t2A—S0AS1 v —t0AS]) =
=10 v —s0 v —s1.

126

The whole expression (4.18) for sO and sl can be written and
transformed as:

(=s0 v —=s1) — (t0 v —=s0 v —s1) =
SOAsl vitOv —s0v —s1=1.

This expression is equivalent to Boolean constant 1, therefore state
variables sO and s1 are orthogonal in induction step.

Finally we can conclude that state variables sO and s1 are orthogonal
in the code shown in Fig. 4.11.

It should be noted, the proposed method can be generalized for more
than two state variables. For many variables, the orthogonal property can
be represented using expressions (4.16) and (4.17).

4.6. Conclusion

The evaluation of the computational complexity, critical path and
parallelization potential of an algorithm that is represented with the basic
single-block model is more complicated against the algorithm structural
model where mutually exclusive operators are described explicitly. This
is due to implicit dependences among statements in the basic single-
block model.

To find the mutually exclusive short if-then statements, a logic
analysis technique has been proposed that is capable of determining
pairs of orthogonal conditional variables. For structured BSBM, it
uses a mechanism of the conditional variable evaluation with Boolean
expressions and functions, relations among values of primary Boolean
variables, and a definition of the orthogonal condition with a tauto-
logical logical equation.

To perform the advanced analysis of basic single-block model, a con-
cept of feasibility functions for pairs of primary Boolean variables has
been introduced, which allows for determining values combinations the
primary variables can take during algorithm execution. The formulation
of the orthogonal condition for conditional variables is extended taking
into account the feasibility functions.

127

In the case of basic single-block model with control flow feedback, a
mathematical induction technique is proposed for determining orthogo-
nal pairs of conditional variables.

128

5. SYNTHESIS AND OPTIMIZATION
OF COMPUTATIONAL PIPELINES

This chapter introduces a new methodology for pipeline synthesis
with applications to data flow high level system design. The pipeline
synthesis is applied to BSBM whose operators are translated into graphs
and dependencies relations that are then processed for the pipeline archi-
tecture optimization. For each pipeline-stage time, firstly a minimal
number of pipeline stages is determined and then an optimal assignment
of operators to stages is generated with the objective of minimizing the
total pipeline register size. The obtained optimal pipeline schedule is au-
tomatically transformed into a pipeline structure that then can be synthe-
sized to efficient hardware implementations. Two new pipeline schedul-
ing techniques, i.e., a least cost search branch and bound technique, and
a heuristic technique have been developed. The first technique yields
global optimum solutions for middle size designs, whereas the second
one generates close-to-optimal solutions for large designs. Experimental
results on FPGA designs show that the total pipeline registers size gain
in a range up to 4.68x can be achieved. The new algorithms overcome
the known ASAP and ALAP techniques concerning the amount of pipe-
line registers size by up to 100% on average.

5.1 Computational pipelines

Pipelining is a well-known, efficient and effective way of increasing
the operating frequency and the associated throughput of data intensive
digital systems in various application fields. A pipelined system is usual-
ly described by an appropriate concurrent design language.

Pipelining can be seen as the transformation of a source behavioral
specification into a functionally equivalent description, which partitions
all operators into pipeline-stage-fragments that are executed in time-
sliced fashion. Complex digital systems are typically characterized by
irregular structures, thus it is impossible to perform a straightforward
mapping of the behavioral specification into a pipeline implementation.

In this chapter, an approach for the transformation of an irregular
complex digital system, which is described in a system description lan-

129

guage, into pipelined implementations achieving increased operating
frequency after hardware synthesis is developed. Therefore, this chapter
develops an efficient pipelining model for large digital system designs
implying several "low cost" chained operators in one basic processing
block, which takes into account key parameters of behavioral elements
including the variable sizes, the operators delay, the relations on the set
of variables and operators, and finally the mutually exclusive operators
handling. The approach does not explore the resource sharing for both
functional units and registers as such option would result in the serializa-
tion of the operator execution and would cause a slowdown of the overall
dataflow implementation.

Two optimization problems are crucial for this approach: the compo-
nent selection and the optimization of the pipeline registers. The first
problem is thoroughly developed in [3]. The second problem is attacked
in [77-82]. It is the main subject of this chapter. We explicitly define the
whole pipeline solutions space and propose an efficient heuristic optimi-
zation algorithm which is capable of pipelining large designs with the
objective of minimizing the overall registers size and to increase the op-
erating frequency after register transfer level (RTL) synthesis.

This chapter is organized as follows: firstly it provides an overview of
related works on pipeline synthesis and optimizations. Secondly, it de-
scribes the methodology based on dataflow pipeline synthesis. Thirdly, it
presents the relations and associated graphs for the pipeline modeling
and its optimization. Fourthly, it describes the time constrained optimiza-
tion for pipelines. Then it presents a new heuristic algorithm which
speeds up the optimization process for very large designs. And finally,
experimental results are reported for several video processing applica-
tions, which are followed by conclusions.

5.2 Pipelining of algorithms

In computing, a pipeline is a set of data processing elements connect-
ed in series, so that the output of one element is the input of the next one
[3], [17]. The elements of a pipeline are executed in a time-sliced fash-
ion; in such case, pipeline registers are inserted in between pipeline stag-

130

es. The pipeline stage time has to be larger than the longest delay be-
tween pipeline stages. A pipelined system requires more resources than
one that executes one batch at a time, because its stages cannot reuse the
resources of a previous stage. Numerous languages and intermediate rep-
resentations have been created for describing pipelines, among them can
be mentioned the programming language C [89], [51], [12], data flow
graphs (DFG) [9], signal flow graphs [28], [88], transactional specifica-
tions [50] and other notations [39], [29], [61]. Pipelines can also be syn-
thesized directly from binaries [51]. CAL is a formal dataflow language
that was recently developed and standardized to address the goal of high-
level system specification and design, particularly addressing the wide
field of streaming applications [16], [49]. The concurrent algorithmic
language, CAL is capable of representing pipelined networks of actors.

A pipeline system is characterized by several parameters such as the
clock cycle time, the stage cycle time, the number of pipeline stages, the
latency, the data initiation interval, the turnaround time and the through-
put. The pipeline synthesis problem can be constrained either by re-
sources or time, or by a combination of both.

An important concept in the pipelining circuit is retiming, which ex-
ploits the ability to move registers in the circuit so as to decrease the
length of the longest path and preserve its functional behavior [40], [44],
[85]. The concept is based on the assumption that the pipeline structure
has already been fixed and considers only the problem of adding pipeline
buffers with the objective of improving the performance.

The work of Sehwa [53] can be considered as the first pipeline syn-
thesis program. It minimizes the time delay using a modified list sched-
uling algorithm with a resource allocation table. The force directed
scheduling that has been proposed in [54] and modified in [88], [25] per-
forms a time-constrained functional pipelining. ATOMICS [20] per-
forms loop optima-zation starting by estimating a latency and an inter-
iteration precedence. The pipelined DSP data-path synthesis system
called SODAS [28], receives a signal flow graph as input and generates a
trade-off for the pipeline designs by changing the synthesis parameters of
the data initiation interval, the clock cycle time and the number of pipe-
line stages. In [86] an adaptation of the ASAP list scheduling and the

131

iterative modulo scheduling are used for the design space exploration
based on slow, but area efficient modules, and fast, but area consuming
modules. Speculative loop pipelining from binaries, proposed in [51],
speculatively generates a pipeline netlist at compile time and modifies
it according to the result of the runtime analysis. The automatic pipe-
lining proposed in [50] requires user-specified pipeline-stage bounda-
ries and synthesizes a pipeline which allows the concurrent execution
of multiple overlapped transactions in different stages. Integer linear
programming formulations of the pipeline optimization problem, as
an efficient approach for the design space exploration, are also pre-
sented in [10], [26], [23].

Pipelining is an effective method for optimizing the execution of
loops. The loop winding method is proposed in EIf [18]. The percolation
based scheduling [56] deals with the loop winding by starting with an
optimal schedule [2] that is obtained without considering resource con-
straints. The PLS pipelining [24] is another effective method to optimize
loops for DSP. The rotation scheduling of loop pipelining by means of
the retiming the processing nodes is introduced in [9]. The pipeline vec-
torization method, based on pipelining the inner most loops in a loop
nest by removing the vector dependences, is proposed in [89].

The problem of pipeline scheduling of DFGs for a variable number of
pipeline stages under throughput constraints is addressed in [4], [35], [3].
The macro pipelining based scheduling technique [4] aims at pipelining
heterogeneous multiprocessor systems. The number of pipeline stages is
identified during the scheduling and the pipeline cycle delay is mini-
mized in two steps. The first step finds a global coarse solution by using
the ratio cut partitioning, and the second step improves the result by rep-
artitioning the solution. The ratio balances the load on processors with
the communication traffic in the interconnection network. This model
cannot be directly applied to high-level synthesis with the objective of
register size minimization as it is based on pure timing model.

A novel pipeline decomposition tree (PDT) based scheduling frame-
work at system level is presented in [35]. It groups the tasks into clusters
and groups the clusters into partitions which are assigned to pipeline
stages. Partitions at different depth levels of the PDT can be flexibly
configured to generate various stage-length pipelines. The equations that

132

are used for decomposing the cluster dependency graph into two sub-
graphs equalize the partitions with regard to execution times and inter
cluster dependences within one stage. The cluster-partition concept does
not aim at minimizing the data transfer between adjacent pipeline stages
and cannot be directly used for pipeline register minimization, as our
method presented in this chapter can do.

The cost-optimized algorithm for selecting the components and pipe-
lining a DFG, given a library of multiple implementations of operators
and latency constraint, is presented in [3]. The algorithm starts by map-
ping each operator to the fastest component and then slows down opera-
tors by mapping them to progressively slower components in order to
balance the use of slow and fast components and minimize the total cost.
At each slowdown the algorithm partitions the DFG into a minimal
number of stages to meet the stage delay constraint. Then it traverses the
graph in downward and upward directions and accumulates delays in
order to associate pipeline registers with edges. In comparison with [3]
our methodology does not consider the component selection, but ex-
haustively minimize the register size over all the pipeline stages for the
selected component implementations. The ASAP and ALAP algorithms
constructed on the operator conflict graph in this book are similar to the
downward and upward direction traversal algorithms.

Several previous works, including [19], [15] have discussed the rela-
tionship between design scheduling and register size. Most of them are
devoted to the non-pipelined designs and all of them exploit resource
sharing. The interdependent heuristic code scheduling technique and the
DAG-driven register allocator are proposed in [19]. Such method reduc-
es stage delays of a given pipeline for the given number of general pur-
pose registers. Contrary to our work it explores intensively the resource
sharing for registers and pipelined functional units keeping a constant
size for the variables.

Modulo scheduling followed by stage scheduling is another efficient
technique for exploiting instruction level parallelism in loops [15]. The
stage scheduling performs exhaustive and heuristic searches of minimum
register requirements for one modulo schedule by shifting operations by
multiples of the initiation interval cycles. The resource sharing is used
twice, for functional units and also for registers. The stage scheduling
processes only a restricted part of the whole solution space as modifica-

133

tions of only one modulo schedule are considered. Differently from
[15], our work searches for the fastest pipeline schedule at a minimum
pipeline register cost over all the solution space for large dataflow hard-
ware designs at various stage counts without any resource sharing.

Since deep-submicron silicon technology provides large amounts of
available resources, faster pipelines without (or with minimal) sharing of
resources can be synthesized with advantages in performance, without
incurring in too much penalties in terms of additional silicon surface.
The pipeline optimization model proposed in [34] is based on precise
mathematical formulation of the optimization problem which uses the
coloring of vertices of an operator conflict directed graph and an explicit
stack mechanism for optimal solution search.

5.3 Pipelining data flow programs

For the pipelining methodology introduced here, it is also important
that, as described in [69], a method of transforming a mixed control-data
flow high-level behavioral description to a purely dataflow description
consisting of the single basic block by means of elimination of control
structures is available. Therefore, here the emphasis is again on efficient
and affective techniques of pipeline synthesis and optimization that are
based on the single basic block model. Resource sharing approaches are
not employed, but pipeline scheduling for chained operators is exploited
intensively. These two basics are well associated with FPGA based syn-
thesis of pipelines from DFGs with many low cost operators describing
random logic. In this book the focus is on pipelines with only one clock
cycle for each stage (Fig. 5.1).

5.4 Modeling pipelines with relations and graphs

5.4.1 Relations and graphs on sets of operators, variables
and pipeline stages

The dataflow program under pipelining is transformed to an acyclic
DFG ([48], [7]). After that the DFG is analyzed. The analysis of DFG
results in a number of relations and other graphs which constitute a basis

134

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%b2%20%d0%be%d1%82%d0%bb%d0%b8%d1%87%d0%b8%d0%b5%20%d0%be%d1%82&translation=as%20distinct%20from&srcLang=ru&destLang=en

for the creation of pipeline optimization methodologies.

Let N={1,...,n} be a set of algorithm operators, M={1,...,m} be a set
of algorithm variables including input and output tokens and S={1,...,k}
be a set of pipeline stages. A set of input variables of operator i=1,...,n is
denoted as in(i) and a set of its output variables is denoted as out(p).

- low cost operators

stage 1

no resource sharing

one clock cycle
/ among operators

*, pipeline registers

stage k

- operator chains
one clock cycle

______________ oo

E Output data flow i

Figure 5.1. Pipeline scheduling with chaining and without resource sharing

From the sets, a set cons(j)cN of consumers and a set prod(j)eN of
producers is being computed for each variable je M.

The operator precedence relation P describes a partial order on the
set of operators that is derived from the analysis of data dependences
between operators in DFG. The operator direct precedence relation Py
rect 1S COMputed as minimal anti-transitive relation of precedence relation
P. This relation also represents the direct precedence graph, Ge. In this

135

book only acyclic graphs Gp are considered.

The pipeline stage time Tsuge iS defined as a worst case delay of all
operator chains within one stage. In pipeline optimization, the time can
be treated as pipeline constraint. The constraint essentially influences the
pipeline frequency, throughput and load of equipment.

The longest path delays between operators constitute a basis for de-
fining pipeline constraints and are called the lengths of longest paths on
the operator direct precedence graph. A matrix L={l;; | lijeR,i,jeN} of
dimension nxn describes the delays. As graph G, is DAG matrix L can
be computed in a polynomial time. For DFG shown in Fig. 5.2 and for its
elements that are described in Table 5.1, matrix L is given in Fig. 5.3.

In Table 5.1, for the operand size of 8 the relative delays of “+7, “-7,
bitand and bitxor operators are taken as 1.0, 1.1, 0.1 and 0.1 respectively.
For other operand sizes the operator relative delays are recalculated us-
ing a linear timing model. Constants are not listed in this table. The addi-
tive timing model has been used, although we consider more complex
timing models of operators and paths.

levels

1 1

95
2 5 bit

8791
3 8| bi tand

Figure 5.2. Example data flow graph consisting of 15 operators and 18 variables.
Variables i1, i2 and i3 are inputs and variables 01, 02 and 03 are outputs

136

220 0.00 0.00 0.00
1.65 0.00 3.40
2.00 0.00

175

230 4.20
0.00 5.40
0.00 0.00
0.00 3.75
0.10 0.00

2.00

0.00
1.75
0.00
0.00
0.00
0.00
0.10

2.40
0.00
0.00
0.00
0.20
0.00
0.00
0.10

6.40
7.60
0.00
5.95
0.00
4.20
0.00
0.00
2.20

0.00 0.00
350 5.43
0.00 3.93
185 3.78
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.10 2.03

1.93

4.88
5.88
0.00
4.23
2.68
0.00
0.00
2.58
0.00
0.00
0.00
2.48

8.02
9.23
3.63
7.57
0.00
5.82
0.00
0.00
3.83
0.00
0.00
0.00
1.63

10.50
11.70
6.10
10.05
2.58
8.30
0.00
0.00
6.30
0.00
0.00
0.00
4.10
2.48

0.00)
6.68
5.18]
5.03]
0.00)
0.00)
135
0.00)
0.00)
3.28
3.18]
0.00)
0.00)
0.00)
125

Figure 5.3. Longest paths matrix L for the dataflow graph in Fig. 5.2

Table 5.1
Elements of example data flow graph
Operators Variables

N Type Relative delay N Name Mode Size
1 - 2.20 1 il in 16
2 - 1.65 2 i2 in 12
3 + 2.00 3 i3 in 12
4 + 1.75 4 a loc 16
5 bitxor 0.10 5 b loc 10
6 + 2.00 6 c loc 13
7 bitxor 0.10 7 d loc 14
8 bitand 0.10 8 e loc 18
9 - 2.20 9 f loc 16
10 bitand 0.10 10 g loc 6
11 - 1.93 11 h loc 18
12 - 2.48 12 p loc 13
13 + 1.62 13 q loc 14
14 - 2.48 14 r loc 13
15 + 1.25 15 S loc 10

16 ol out 17

17 02 out 14

18 03 out 10

137

Operator conflict relation. If in matrix L the value of l;j is larger than
Tsage We Say that there is a pipeline stage conflict between operators i and
j. In order to avoid the conflict, such operators must be scheduled to dif-
ferent pipeline stages. The operator conflict relation is a set
C={(i,j) | i,jeN,l;>Tswge}. Inclusion CcP holds for this relation. In pipe-
line scheduling, C may be replaced with its minimal anti-transitive ver-
sion C*.

Operator nonconflict relation. It is defined as Cn=P\C. Inclusion
JcCncP holds for the relation. In pipeline scheduling Cn may be re-
placed with its minimal anti-transitive version Cn® For matrix L and
Tstage=3.825 the conflict C and nonconflict Cn relations are presented in
Fig. 5.4.

Operator conflict graph. The conflict relation, C* describes a minimal
ant-transitive operator conflict graph, Gc?. A set of direct predecessors of
operator p in the graph will be denoted as cdpred(p) and a set of direct
successors will be denoted as cdsucc(p).

An operator minimal ant-transitive nonconflict graph, Gen is created
in a similar way. A set of direct predecessors of operator p in the graph
will be denoted as ncdpred(p) and a set of direct successors will be de-
noted as ncdsucc(p). To speed up the optimization process, we consider
only minimal anti-transitive operator conflict and nonconflict graphs.

o o

o O o

o O © o

O o o o o

O O O O F

O O O O o O o

O 0o oo oo o

O O O Fr O F O Fr -

O O O O o oo o oo

O O O O O OO o r +F O

O 0O 0O 0O 0O OO0 O Fr O F -

O OO0 O O0CORrR OFr OFR B,

OFrPr OO0 O0OkFr OO0OFr OF F PP

O 0O 0O 0O 0O 0O 0O 0 0 O O k¥ ¥ F O
9
]

o o

o o o

o o r o

O O O O

o opr oo o

O 0o 0o o o r o

O 0O Oor OO0 O

O O 0o o oo oo o

O 0O 0O o0 oor or o

OPr OO OO0 O0oOFr oo o

OO0 o0OOoOFr oo pr oo oo

O OO0 O0OFr OO0 OO0 OO0 Fr OO

O 0O 0O 0O 00000 kFr OO0 oo

O 0O 0 O FEF O OoOF OO0 0 0 o O

Figure 5.4. Example matrices C and Cx for the dataflow graph in Fig. 5.2

138

Mapping of operators onto pipeline stages is defined as stage:
N—S. According to the mapping, s=stage(p) is a stage seS assigned
to operator peN .

5.4.2 Number of pipeline stages versus stage time

The number | of pipeline stages is defined by the length of a longest
path in Gc. For I-stage pipeline a minimum stage time is denoted as
Tstage(l). The stage time for | is larger than the stage time for I+1. There-
fore all pipelines that are generated for a stage time Tsw.ge from the range
Fstage(I11)<Tstage<Tstage(I) have the same number | of stages as shown in
Fig. 5.5. In order to generate all possible pipelines all values of elements
lij that occur in matrix L have to be used as stage time. We denote the
least stage time that is equal to a largest operator delay as Tmin and denote
the largest stage time that is equal to the length of a longest path in ma-
triX L as Tmax. At Tstage=Tmin the number of stages is a maximum and is
equal t0 Smax. At Tstage=Tmax the number of stages is a minimum and is
equal to 1.

stageCount

Smax

1+1

Tstag e

Tmin Tstage(|+1) Tstage(l) Tmax

Figure 5.5. Number of pipeline stages versus stage delay
139

5.4.3 As soon as possible (ASAP) and as late as possible (ALAP)
pipeline schedules

Classical ASAP may not be applied to scheduling of pipelines. We
propose a modified version of ASAP. The main modification is that the
operator precedence relation that is used as input data is replaced with
the operator conflict relation. Due to this the operators are distributed not
on a set of control steps but on a set of pipeline stages. Besides that the
technique gives the fastest pipeline schedule without sharing resources.
The number of stages in the schedule is equal to the length of a longest
path in the operator conflict graph.

Similar observations concern ALAP. The mobility of operator p in
pipeline under optimization is defined as its ability to be scheduled to
various pipeline stages. The earliest stage operator p may be assigned to
is asap(p) and the latest stage is alap(p). Hence the operator p mobility
can be estimated as mobility(p)=alap(p)-asap(p)+1. Fig.5.6 shows
ASAP and Fig. 5.7 shows ALAP pipeline schedule for the dataflow
graph example in Fig. 5.2. Operators 1, 2, 6, 9, 13 and 14 have mobility
of 1, operator 4 has mobility of 2, operators 3, 11, 12 and 15 have mobil-
ity of 3 and operators 5, 7, 8 and 10 have mobility of 4.

5.5 Time constrained optimization of pipelines
5.5.1 A set of pipelines with the same stage time

In previous chapter pipelines with a minimal number of stages for a
given stage time were generated. Among them are ASAP and ALAP
pipelines. It appears that a huge set of pipelines with the same stage
count can be generated from the same operator conflict and non-conflict
graphs. The number of pipelines growth exponentially depending on the
number of operators. Pipeline parameters are different. As the time pa-
rameters are already taken into account in the stage time constraint, areas
cost parameters have to be analyzed. First of all, variations in assignment
of operators to pipeline stages may influence the size of pipeline regis-
ters. It appears that a large reduction in pipeline register size is feasible.

140

stages operators
il = g =) 8 &
1 Slbitxor 4| + | bitxor|7
}
sfiand |
v
1] - | 51—5—| 11| -
2 y
15
3
+ |13
: W]

Figure 5.6. Asap pipeline schedule for Tstage=3.825

Stages operators
il = | 2 =] 3 %
1 | s[bixer] \ ¢[= | bitxor|7
)
o] S|
L3
12[- 61_ﬁ 11| -
2 I}
15
3
+ |13
:]

Figure 5.7. Alap pipeline schedules for Tstage=3.825
141

5.5.2 Evaluation of overall pipeline registers size

The operator and variable clustering

within one pipeline stage is a
way to achieve pipeline optimization. All variables within one stage are
represented as wires. If a variable is produced in one stage and consumed
in the next neighbor stage then it is replaced with a register inserted in
between the stages. Several registers should be inserted instead of a vari-

able that transmits data over several stages.

The number of pipeline registers that are introduced for variable v de-
pends on the lifetime of v. For one variable v this dependence is illustrat-
ed in Fig. 5.8. Variable lifetime is determined by the earliest stage of
producers and the latest stage of consumers. Two and more producers
vi=es; ... vi=ex; have to be under conditional instructions with orthogo-

nal test variables c;...ck:
if c1 then v:=ey; endif

|f Ek then v:=ey; endif

prod(v)
A
I R
1 Pe) -
V

cons(v)

min stage(p;
o ge(p;)

lifetime

) AVRN max stage(dq;)

q; econs(v)

Figure 5.8. Pipeline stage range (lifetime) of variable v

142

An overall registers size RS takes into account registers for all varia-
bles of M. For the single assignment model of the source algorithm de-
scription the total pipeline register size is estimated as follows:

max stage(q) —

RS (stage) = > size(v) x| <") (5.1
(stage) ;) mird1()stage(p)
peprod(v

The size RS is a sum of register sizes that are introduced for each var-
iable v depending on the latest stage of consumers cons(v) and the earli-
est stage of producers prod(v). The variable size and its lifetime may
dominate each other.

5.5.3 Optimization task: objective function and constraints

Pipelines with different number of stages can be generated by means
of varying the operator conflict matrix. Different pipelines with the same
number of stages can be generated by means of varying the stage time
Tstage In the range from Tsge(l) t0 Tswge(l+1) Where | is a stage count. Dif-
ferent pipelines are also possible due to varying the mapping stage at the
given Tsiage and conflict graph. Let Q be a set of possible valid mappings
of operators onto pipeline stages. The objective function as follows min-
imizes the total pipeline registers size over all mappings of Q:

min RS (stage) - (5.2)

stage=Q

Every valid mapping stage(p) must meet operator, time and prece-
dence constraints as follows:

o for each peN inequality asap(p)<stage(p)<alap(p) must hold,;
o if for two operators p and g inequality I, ¢>Tstage holds, then the op-
erators may not be included in the same stage (inequality

143

stage(p)#stage(q) must hold), otherwise the operators may be in-
cluded in the same stage;

o If a pair (p,q) of operators belongs to C then inequality
stage(p)<stage(q) must hold;

o |f a pair (p, q) belongs to C, then inequality stage(p)<stage(q)
must hold.

The constraints define the structure of solution space. It should be no-
ticed that the optimization problem (5.2) is nonlinear and retiming [40]
may not be used for solving it, as every operator employs only one vari-
able for transferring its output value to consumers in pipeline.

5.6 Least cost search branch and bound technique for pipeline
optimization

Three strategies, i.e. breadth first search (BFS), depth search first
(DFS) and least cost search (LCS) are available to find a minimum cost
solution of an optimization problem. A search with bounding functions is
branch and bound (BB) search. In [77] a DFSBB technique for optimiza-
tion of pipeline schedules was proposed. In paper [79] a LCSBB tech-
nique, which overcomes DFSBB with respect to pipeline quality and op-
timization tool throughput, is proposed.

5.6.1 Pipeline schedule search tree

The search tree structure is shown in Fig. 5.9. The nonterminal
nodes of the tree are associated with assignments of operators to pipe-
line stages.

A level p of the tree corresponds to operator p. Level’s nodes de-
scribe various assignments of operator p to pipeline stages from ear-
lyi(p) to latei(p). Index i indicates a path in the tree from root to the
node. Various paths show various incomplete or complete assign-
ments of operators to stages.

144

operator 1

early,(1)

0O PR O LU) [, operator 2
\?tel(z)
early1(2)
earlyi(2)
o, .. /$.- o - operator 3
4
N N NN
v J .
@ J el operator n
earlyl(n/ %tel(n) earlyj(n/ lete,(n)
o - e -0 ... 0 - terminal nodes

stage;(n)

Complete schedules

Figure 5.9. Search tree for pipeline optimization. The tree size is 21% at p=2 and n=100,
and the size is 319 at u=3 and n=1000

All terminal nodes at level n+1 of the tree describe candidate com-
plete solutions. The search tree size can be estimated as n" where p is an
average mobility of operators in the number of pipeline stages. The size
grows rapidly depending on operator count and stage count. The search
tree is generated dynamically by means of expanding non-terminal
nodes. Its size depends on the operator expanding order. Reordering of
operators is a mechanism of increasing efficiency of the branch and
bound optimization technique.

LCSBB estimates a lower bound of total register size (LBRS) for each
expanded non-terminal node. Initial lower bound LBRS, is estimated for
root. At step t of operator p scheduling, the lower bound LBRS;=LBRS:.
1+AS; is estimated for each stage(p) from earlyi(p) to latei(p) where AS,
is the increase of the lower bound after assignment of p to stage(p). The
stage with minimum of AS; is preferably selected for passing to the next

145

nonterminal node in the search tree. After n steps, LBRS; is equal to the
actual RS(stage) .

5.6.2 Incomplete mapping of operators onto pipeline stages

For operator p a Boolean variable assign(p) is introduced. It takes
value true when the operator has been already assigned to a pipeline
stage(p). If the operator has not been assigned to a stage then the value
of assign(p) is equal to false and the value of stage(p) is undefined.

A procedure of mapping the operators to pipeline stages as a step by
step process of updating the variables assign(p) and stage(p) is defined.
Let assigni(p) and stage:(p) be state variables at step t. For some operator
p whose stage(p) is determined, assign«(p) may have value true and for
other operator whose stage(p) is undetermined it may have value false.
Then LBRS; can be estimated as:

= min stal(p)
peprod(v)

max stas(p)—

LBRS, = >_size(v) x pos[pemns(v) J (5.3)
where pos(x)=x if x>0, and pos(x)=0 otherwise; stas(p)=asap(p) if as-
sign(p)=false, and stas(p)=stage(p) if assign(p)=true.

It is easy to see that the inequality LBRS<LBRS:+1 holds for all
steps t as according to (5.3) the assignment of next operator to a pipeline
stage can only increase the lower bound of register size. Equation (5.3)
has high computational complexity in order to execute at expanding of
each node of the search tree. Computing AS, between two neighbor
nodes in the search tree seems to have significantly less computational
complexity.

5.6.3 Updating overall registers size lower bound

Let p be an operator which is assigned at step t to a pipeline stage
stage(p) implying the value of assign(p) to be changed from false to true.

146

The operator may produce more than one variable of out(p) while may
consume more than one variable of in(p). LBRS may change for each of
these variables.

Now a procedure of computing AS, for all variables that are associat-
ed with operator p is considered. Each output variable ueout(p) may in-
fluence the increase of register size. For all variables of out(p) the in-
crease of register size lower bound can be estimated as:

OS(STAS(U)— J
in(st [STAL, ()]~ 5.4
AS, = > size(u)x min (stage(p)) , ©.4)

ueout(p) STAS (U) -

S(min(alap(p),S'l'ALp(U))J

where

STAL, (u) = _min stal(q)

q#p

and

STAS(u) = max stas(q).

gecons(u)

For all variables of in(p) the increase of register size lower bound is

s(max(stage(p),STAS (v))—J ~

STAL .
AS) = > size(v)x) (5:5)
vein(p) o5 max(asap(p),STASp(v))—
STAL(V)
where
STAS,(v) = ; ir%)‘]’ﬁs)‘(v" stas(q)
and

STAL(V) = qerprig(v) stal(q).

147

Taking into account (5.4) and (5.5) the increase of LBRS for operator
p assignment can be estimated as:

AS, =AS, +AS. (5.6)

As stage(p) may vary for most of operators depending on their mobil-
ity, it can significantly influence the value of AS,. The increase of
stage(p) can cause decrease of AS’,and increase of AS”,. As a result ASp
has a local minimum.

5.6.4 Computing earliest and latest pipeline stages of operator

The dynamic earliest early(p) and latest late(p) pipeline stages of op-
erator p are bounds of a range of varying stage(p). First of all, the value
of early(p) depends essentially on the array variables assign and stage
and scalar variable asap(p). Secondly, it depends on the set cdpred(p) of
direct predecessors of operator p in the operator conflict graph. Thirdly,
the value of early(p) depends on the set ncdpred(p) of direct predeces-
sors of operator p in the operator nonconflict graph. The value of ear-
ly(p) can be estimated as follows:

asap(p),
(5.7)

gecdpred(p),
assign(q)=true

early(p) = max { max stage(q)}tl, .

max stage(q)
gencdpred(p),
| assign(q)=true

When no direct predecessor of cdpred(p) and ncdpred(p) has been as-
signed to a pipeline stage yet, the second and third operands in (5.7) are
equal to 1 and O respectively.

First of all, the value of late(p) depends essentially on the array varia-
bles assign and stage and scalar variable alap(p). Secondly, it depends
on the set cdsucc(p) of successors of operator pin the conflict graph.
Thirdly, it depends on the set ncdsucc(p) of direct successors of operator
pin the nonconflict graph. The value of late(p) can be estimated as fol-

148

lows:

alap(p),
(5.8)

late(p) = min min stage(q) (-1, |
gecdsucc(p),
assign(q)=true
min stage(q)
gencdsuca p),
assign(q)=true

When no direct successor of cdsucc(p) and ncdsucc(p) has been
assigned to a pipeline stage yet, the second and third operands in (5.8)
are equal to oo.

5.6.5 Operator assignment conflicts

The early(p) and late(p) stages of operator p estimated with (5.7) and
(5.8) are not fully accurate, but are fast estimations of the stage range
bounds. The estimated range may be wider than the actual range. This
may imply operator-to-stage assignment conflicts when the early stage is
larger than the late stage: early(p)>late(p). A reason for such result is the
influence of predecessors and successors that are already assigned to
pipeline stages on the assignment of p. No stage may be assigned to the
operator p in this case. The conflict problem is being solved by the reas-
signment of operator predecessors and/or successors to other more suita-
ble pipeline stages. This may imply additional backtrackings during the
traversal of the search tree.

5.6.6 Least cost search branch and bound minimization of overall
pipeline registers size

The least cost search branch and bound technique (LCSBB) is de-
scribed in Fig. 5.10. The technique is represented as a recursive func-
tion LCSBBScheduling with one input, top. It uses global variables as
follows:

149

LCSBBScheduling(top) begin
if top<0 then return; end if;
if top>n then
pipelineCount:=pipelineCount+1;
OptimalSchedule:=Extract(Stack);
Best:=Stack(top-1).bound;
return;
end if
p:=order-(top);
b:=Stack(top).late—Stack(top).early+1;
for s in Stack(top).early to Stack(top).late do
Sdw(s):=RegSizelncrease(p, s);
end for;
To sort b stages on increase of dw(s) and compute Stack(top).rank(i), i=1...b;
foriinltobdo
s:= Stack(top).rank(i);
Stack(top).stage :=s;
lowerBound:=Stack(top).bound+&w(s);
if lowerBound>Best then pruneCount:=pruneCount+1; return; end if;
if top<n-1 then
g:=order(top+1);
Stack(top+1).bound:=lowerBound;
Stack(top+1).early:=EarlyStage(q);
Stack(top+1).late:=LateStage(q);
if Stack(top+1).early>Stack(top+1).late then continue; end if
end if;
LCSBBScheduling (top+1);
end for;
end.

Figure 5.10. Least cost search branch and bound technique (LCSBB)
for pipeline optimization

e Stack is an array of records that includes such elements as a pipe-
line stage, lower bound of total register width, early and late
stages of operator; rank of stages where, rank(i) is a stage at
position i and rp is current position of the rank; the current
record of the stack is indexed with top;

e OptimalSchedule is the current best assignment of operators to
pipeline stages;

e Best is the current best LBRS;

150

e order? is the mapping of stack records onto operators;
o pipelineCount is the number of generated complete assignments;
e pruneCount is the number of pruned nodes of the tree.

The slave function Extract(Stack) generates a next complete assign-
ment of operators to pipeline stages. Function RegSizelncrease(p,s)
computes ASy(s) using (5.4)-(5.6). Function EarlyStage(q) computes ear-
ly(q) for operator q using (5.7), and function LateStage(q) computes
late(q) for operator q using (5.8).The optimal pipeline schedule for the
example DFG is shown in Fig. 5.11.

stages operators
=2 1ol e | o] el

- bitxor|

~

5| bitxor

4 8

Figure 5.11. Optimal pipeline schedule for Tstage=3.825. The schedule includes
13 pipeline registers consisting of 167 bits. ASAP schedule includes 17 registers
consisting of 247 bits and ALAP schedule includes 16 registers consisting of 216 bits

5.7 Heuristic technique for optimization of pipelines

It was assumed in LCSBB that early(q) and late(q) of a nonscheduled

151

operator g can be estimated using asap(p), alap(p) and stage(p) of all
other operator p. This is not a completely accurate estimation, although
LCSBB is capable of finding a global optimum. In fact early(g) and
late(q) of nonscheduled operator q may directly or indirectly depend on
early(r) and late(r) of other nonscheduled operator r.

The accurate recalculation of early(q) and late(q) is a time consuming
procedure and it may significantly slow down LCSBB. Moreover
LCSBB takes some assumptions concerning register size lower bound
estimation. The main assumption is that asap(q) and alap(q) are used in
(5.7) and (5.8) although tighter bounds early(q) and late(q) of stages
which are available for operator q can be computed. The heuristic pipe-
line optimization technique proposed in paper [79] finds only one feasi-
ble complete assignment of operators to pipeline stages that gives possi-
bly minimal total registers size. In order to find a best path from root to a
leaf of the search tree the technique needs efficient heuristics.

5.7.1 Dynamic evaluation of earliest and latest stages of operators

Assume that at step t-1 the values of assignc.i(p), early.1(p) and late.
1(p) are determined for peN. The sets cdpred(p), ncdpred(p), cdsucc(p),
ncdsucc(p) of predecessors and successors of each operator p in the con-
flict and non-conflict graphs have been computed, they stay the same for
all scheduling steps.

Let at step t nonscheduled operator r has been mapped onto stage(r)
and assignment assign:(r):=true has been already performed. Then, the
early pipeline stage of a nonscheduled operator peN can be evaluated
recurrently as

early,, (p),
early, (p) = max (max searlyt(q))+1, , (5.9)

qecdpred(p)

max searly,(q)
gencdpred(p)

152

where searly:(q)=early«(q) if assign«(q)=false, and searly(q)=stage«(q) if
assigni(q)=true. It is easy to observe that the inequality early:(p)>early
1(p) holds for all t=1...n.

At step t the late pipeline stage of a nonscheduled operator peN can
be evaluated recurrently as

late,, (p),
late, (p) = min (min slatet(q)j_l, , (5.10)

gecdsucc(p)

min slate, (q)
gencdsucd p)

where slate(q)=late:(q) if assign:(g)=false, and slate:(q)= stage(q) if
assigni(q)=true. It is easy to observe that the inequality late((p)<late:..(p)
holds for all t=1...n. Equations (5.9) and (5.10) demand an appropriate
order of nonscheduled operators to properly compute early(p) and
late(p). For early(p) this order is p=1...n. For p=1...r-1,
early(p)=early.1(p) and for p=r+1...n, early(p) is estimated with (5.9).
For late(p) this order is p=n...1. For p=n...r+1, late(p)=late1(p) and for
p=r-1...1, late«(p) is estimated with (5.10).

5.7.2 Dynamic estimation of overall registers size lower bound

At step t the values of assigni(p), peN describe the current incom-
plete assignment of operators to pipeline stages. If assigni(p)=true then
stage(p) has been already determined. If assign(p)=false then early:(p)
and late(p) have been already computed for p. Then the total register
size lower bound at scheduling step t can be estimated as:

max searly, (p) —

LBRS, = > size(v) x pos pecons(y) . 5.11
=Y W)>p min _slate, (p) 11)
peprod(v

153

LBRS: computed with (5.11) is a more precise estimation over those
computed with (5.3). Obviously LBRS; can only increase with increasing
of t. It means that the inequality lowerBound:1<lowerBound; holds for
all scheduling steps t=1...n.

5.7.3 Dynamic ordering of operators

Reordering of operators makes pipeline scheduling more efficient
versus optimization time and pipeline quality. The dynamic heuristic
pipeline scheduling uses a heuristic weight y, of nonscheduled opera-
tor peNnon:

Xp zia)i'pi(p)v (5.12)

where k is the number of heuristic parameters; i, i=1...k are heuris-
tic factors satisfying the equality > o =1.The heuristic parameters

pi(p),i=1...k describe features of nonscheduled operator p in pipeline
under optimization.

The parameters are defined to satisfy two key requirements. Firstly,
they have to vary in the range from 0 to 1. Secondly, the higher value of
the parameter is expected to imply better pipeline parameters. Then the
value of y, varies in the range from 0 to 1. Operator peNnon With the
maximum value of y;, is selected as the next scheduled operator.

Four heuristic parameters have been used in the example shown in
Fig. 5.12 for the DFG of Fig. 5.2 and Table 5.1. The mobility of opera-
tors 1, 2, 6, 9, 13 and 14 determined by ASAP and ALAP schedules
(Fig. 5.6 and Fig. 5.7) is equal to 1, therefore these operators are as-
signed to stages 1, 1, 2, 3, 3 and 4 respectively. The early-late stages of
the rest operators 3, 4, 5, 7, 8, 10, 11, 12 and 15 are 1-3, 1-2, 1-4, 1-4, 1-
4,1-4, 2-4, 2-4 and 2-4 respectively.

154

Figure. 5.12. Selection of next operator for assignment to a stage. Operators 1, 2, 6, 9,
13 and 14 are already assigned to stages s1-s4 implying the lower bound register size,
LBRS=61; operators 8 and 10 will be assigned at the end of the scheduling process;
for each other operator the heuristic weight, xp is computed. Operator 12 has
the maximal weight of 0.713 and is selected as the next scheduled operator

The overall LBRS that is estimated with Equation (11) is equal to 61
as only variables a, f and r have a nonzero register size lower bound of
32, 16 and 13 respectively. Thus LBRS of variable a is 16x(max(1,2,3)-
min(1)) = 16x2 = 32 as its consumers are operators 5, 6 and 9 and its
producer is operator 1. Operators 6, 9 and 1 are already assigned to stag-
es 2, 3and 1 and the early stage of operator 5 is 1.

Operators 8 and 10 have the equal size of input and output therefore
the movement of operators over stages does not change the overall pipe-
line register size. Those operators will be assigned at the end of schedul-

155

ing process. The heuristic weight, x, is computed for each other operator
with Equation (12) at the vector of heuristic factors, =(0.210, 0.301,
0.087, 0.401), which gives the global optimum solution. Operator 12 has
the maximum weight of 0.713 and is selected as the next scheduled op-
erator. Its heuristic parameters, p(12) = (0.5, 0.933, 0.125, 0.789) are
evaluated according to the following procedure.

The first parameter is a complement-on-one of the relative dynam-
ic operator mobility over pipeline stages, pi1(12)=1-(4-3)/(4-2)=0.5
where 3 is the dynamic mobility of operator 12. The maximal mobili-
ty among nonscheduled operators (operators 5 and 7 have the mobili-
ty of 4) is 4 and 2 is the minimal mobility among nonscheduled oper-
ators (operator 4 has the mobility of 2). Low values of the mobility
imply high values of p;.

Operator 12 can be assigned to stages 2, 3 and 4. For each possible
assignment a new LBRS is computed. For instance, if stage 2 is chosen
then the early-late stages of operators 4, 5 and 8 are modified with (9)
and (10) to 1-1, 1-2 and 1-2 respectively. As a result the LBRS of varia-
bles d, e and ol is changed with (11) from 0 to 14, 36 and 34 respective-
ly. The overall LBRS increases from 61 to 145. If stages 3 and 4 are cho-
sen for operator 12 then the overall LBRS grows form 61 to 110 and 89
respectively.

The second parameter is a relative LBRS difference over available
stages of operator 12 among all nonscheduled operator, p2(12)=(145-
89)/60=0.933 where 145 is LBRS computed with (11) after assignment of
operator 12 to stage 2; 89 is LBRS after assignment of operator 12 to
stage 4; 60 is the maximal LBRS difference among available stages over
all nonscheduled operator (operator 15 has the maximal difference of
60). Parameter p. shows the relative difference between the best and
worst cases of operator assignment to available stages.

The third parameter is a relative minimal LBRS increase over all
nonscheduled operator, ps(12) = 1-(89—61)/(93-61)= 0.125 where 89
is the minimal LBRS increase of operator 12 over stages 2-4; 61 is the
minimal LBRS increase of operator 15; 93 is the minimal LBRS in-
crease (maximum among the operators) of operator 5. Parameter ps
shows the relative increase of LBRS after assignment of the operator
to the best available stage.

156

The fourth parameter is a relative difference between inputs and
outputs sizes of the operator, ps(12) = (18+14-17)/ (16+16-13)=0.789
where 18, 14 and 17 are the sizes of variables h, d and ol (operator
12) and 16, 16 and 13 are the sizes of variables a, f and p (operator 9
whose size difference is the largest). Parameter ps shows the im-
portance of moving the operator over stages: moving should be done
to the earliest available stage if the outputs size is larger than the in-
puts size and vice versa.

Stage 4 has a minimum LBRS of 89 among stages 2, 3 and 4 and is
selected for assignment of operator 12. Applying the heuristics to
other operators yields the operator sequence, 11, 3, 4, 15, 7, 5, 8 and
10, the corresponding LBRS sequence, 102, 115, 129, 139, 151, 167,
167 and 167, and the corresponding stage sequence, 3, 1,1, 3, 1,4, 4
and 3. The resulting pipeline schedule is the global optimum solution
shown in Fig. 5.11.

5.7.4 Heuristic technique for pipeline optimization

The heuristic technique (HT) is represented in Fig. 5.13 as recursive
function HeuristicScheduling with one input top. It uses global variables
as follows:

e Stack is an array of n+1 records that include such elements as op-
erator, rank of avalable pipeline stages for the operator, current
position rp in the rank, current stage assigned to operator, mobili-
ty of operator, current lower bound of total register size, set
nschop of nonscheduled operators, arrays of early and late stages
for the nonscheduled operators, array vbnd of register sizes for all
variable in the scheduled algorithm;

e pipelineSchedule is a mapping of operators onto pipeline stages
generated by the heuristic algorithm;

o registerTotalSize is the overall pipeline registers size.

The slave function ExtractPipelineSchedule generates the resulting
pipelineSchedule. Function ChooseOperator computes heuristic parame-
ters p for nonscheduled operators from the set nschop and chooses an

operator with the maximal heuristic weight (5.12).
HeuristicScheduling(top) begin
157

if top>n then
pipelineSchedule := ExtractPipelineSchedule(Stack);
registerTotalSize := Stack(top-1).bound,;
return;

end if;

p:=ChooseOperator(Stack(top).nschop);

Stack(top).operator:=p;

Stack(top).rank:=GenerateRank(p);

mobility:=|Stack(top).rank;

for rp in 1 to mobility do
stage:=Stack(top).rank(rp);
Stack(top).stage:=stage;
Stack(top).bound:=RegisterLowerBound(p, stage, Stack(top).vbnd);
Stack(top+1).nschop:=Stack(top).nschop\{p};
Stack(top+1).early := EarlyStages(Stack(top).early);
Stack(top+1).late:=LateStages(Stack(top).late);
if AssignmentConflict(Stack(top+1).early, Stack(top+1).late) then

continue;

end if;
Stack(top+1).vbnd := VariableRegisterBounds(Stack(top).vbnd);
HeuristicScheduling(top+1);

end for;

end.
Figure 5.13. Heuristic technique HT for pipeline optimization

Function GenerateRank computes a rank of pipeline stages which are
available for the selected operator p. Function RegisterLowerBound es-
timates LBRS for p using (5.11). Function EarlyStages computes using
(5.9) the early stage of each nonscheduled operator after assignment of p
to an avalable stage. Function LateStages computes using (5.10) the late
stage of each nonscheduled operator. Function AssignmentConflict re-
turns true if a nonscheduled operator g has been found for which ear-
ly(gq)>late(q), otherwise it returns false. Function VariableRegister-
Bounds recalculates using (5.11) the lower bound register size for each
of vbnd.

5.7.5 Tuning heuristic factors
The heuristic weight y, is a criterion for choosing a next scheduled

operator. The operator is assigned to a pipeline stage which gives a min-
158

imum of LBRS. The result of the operator choice significantly depends
not only on the heuristic parameters of p, but also on the heuristic factors
of w. The factors determine the weight of each parameter in the criterion.
Important parameters should have larger factor value. The optimization
problem in the solution space described by the vector is to determine
the importance of each parameter during pipeline optimization. Conduct-
ed experiments show that the problem has many local optima. As the
function HeuristicScheduling is fast enough and it is possible to generate
many vectors o and to compute RS for each of them, a random search
and a genetic algorithm have been used to solve this problem. The ran-
dom search is capable of finding an optimal solution for RS, but very
often it yields a suboptimal solution.

5.8. Conclusion

A new pipeline synthesis and optimization methodology that starting
from partitions of a large dataflow design increases the data throughput
of whole design by selecting design partitions and by generating the
pipelined implementations has been presented. The methodology is ca-
pable of determining the most appropriate pipeline stage time and the
number of pipeline stages for each partition of the dataflow design.

Two pipeline optimization techniques that minimizes the total pipe-
line register size for each stage time and the stage count have also been
developed. The first methodology is called" least cost search branch and
bound™ and the second is referred to as a "heuristic pipeline optimiza-
tion". The branch and bound algorithm is capable of finding the global
optimum pipeline schedule for low size designs, whereas the heuristic
algorithm is capable of finding close-to-optimal solutions also in the case
of large designs.

159

6. OPTIMIZATION OF PIPELINES FOR MEANINGFUL
APPLICATIONS

The pipeline optimization algorithms LCSBB and HT that are pro-
posed in the previous chapter and the downward and upward direction
traversal algorithms that are proposed in [3] and represented as ASAP
and ALAP are compared in this chapter on several meaningful test
benches.

6.1. Bayer filter based on improved linear interpolation

The Bayer filter test bench (Fig. 6.1) was considered in detail in
[77]. It contains 13 input ports, 5 output ports and 63 local variables,
totally 81 variables. The variable size varies in the range from 8 to
23, and the average size is 20.41. The Bayer filter also contains 68
operators including 32 additions, 19 subtractions, 3 multiplications
and 13 bitand operators.

A relative time delay is assigned to each operator as follows: 1.0 for
addition, 1.1 for subtraction, 3.0 for multiplication and 0.02 for bitand.
The total delay of all operators is 62.2. The design critical path length is
15.62 or 25.1% over the total operator delay.

As reported in [79], pipelines with 2 to 7 stages were optimized by
DFSBB and synthesized to FPGAs. The global optimum was obtained
for 2 and 3 stage pipelines and suboptimal solutions were generated for 4
up to 7 stage pipelines.

Table 6.1 reports pipeline scheduling results obtained by four
scheduling techniques: LCSBB, HT, ASAP and ALAP. One pipeline
stage count is represented with a range of stage time. LCSBB has
generated a global optimum for each stage time. HT has given total
register size that is very close to global optimum, 2.0% more on aver-
age. LCSBB and HT show superior results compared to both ASAP
and ALAP, 48.8% and 82.6% on average respectively.

It should be noted that for 7-stage pipeline the number of pipeline
registers, 60 is comparable with the number of operators, 68. This
proves the importance of register minimization problem.

160

i] 210 4t 412
u
1 it it itan itand 5 pitand B Hand jtand itand itand 10 pitand fitand 1epitand 13pitand
HBE a3t e e

. it
w =% / 47 za /
br3 195 brs

w[]
. .
s = g]
ol brid bg? 193

o A
e[=[] =[= i+

art brtt bgd ot

1 =y N
" E - 59 + 4
s briz bgt 1g6

]
13 W o |+ wal -]

o by bos a7

) e TH—
al-] = [l 5o -]
ar? bri4. bgt g8

.——ﬁ
s <]

bl rgm

e 4
El 3 e [] s []
a8 bri§ bat. 1ad

2]

1020
2 +] s +] o[- | 5 -

b7 gt

54

brig byt gtz

Ba 1530
] s -]

bir byt g

a1
&7

btg

Figure 6.1. Data flow of Bayer filter

Table 6.2 reports parameters of LCSBB that are obtained on Bayer

filter. The CPU time is less than 1 sec for 2 pipeline stages and is equal
to 959 sec for 7 stages. The number of pruned branches grows rapidly up
to 1818112224 and the number of updated optimal schedules grows form
1 to 4 with increasing the number of stages from 2 to 7. The number of
conflicts also grows rapidly.

161

Table 6.1

Results for Bayer filter obtained by LCSBB, HT, ASAP and ALAP

Sta- | Stage LC§BB . HT _ ASAP _ALAP
ges | time Reglster Reglster % Reglster % Reglster %
size size size size
1 15.62 0 0 0 0
2 15.60 100 100 0.0 100 0.0 142 42.0
11.62 100 100 0.0 100 0.0 248 148.0
10.52 108 123 13.9 123 13.9 286 164.8
10.12 116 116 0.0 146 25.9 263 126.7
9.42 116 116 0.0 169 45.7 301 159.5
8.52 124 124 0.0 192 54.8 270 117.7
8.30 147 147 0.0 215 46.3 285 93.9
3 7.42 232 232 0.0 315 35.8 381 64.2
7.12 240 240 0.0 338 40.8 464 93.3
6.32 240 240 0.0 361 50.4 479 99.6
6.30 271 286 5.5 407 50.2 494 82.3
6.12 294 294 0.0 430 46.3 532 81.0
5.32 340 355 4.4 453 33.2 501 47.4
4 5.22 387 396 2.3 599 54.8 681 76.0
5.12 403 403 0.0 622 54.3 658 63.3
5.10 403 403 0.0 668 65.8 673 67.0
4.32 426 441 35 691 62.2 672 57.8
4.30 472 472 0.0 760 61.0 702 48.7
5 4.10 573 588 2.6 883 54.1 836 45.9
4.00 596 612 2.7 929 55.9 920 54.4
3.32 650 657 11 975 50.0 926 42.5
3.22 650 665 2.3 998 53.5 926 42.5
6 3.20 752 759 0.9 | 1167 55.2 1128 50.0
3.12 759 774 2.0 | 1213 59.8 1235 62.7
3.10 842 881 46 | 1259 49.5 1250 48.5
7 3.00 960 990 3.1 | 1451 51.2 1383 44.1
On average: 2.0 48.8 82.6
Table 6.2
Parameters of LCSBB on Bayer filter
Stages | Stage time _ LCS branch and bound _
CPU time Pruned branches | Schedules Conflicts
2 8.30 <1 22 1 2
3 5.32 <1 3422 2 0
4 4.30 1 62453 1 64
5 3.22 <1 96725 2 119
6 3.10 14 24103979 3 294947
7 3.00 959 1818112224 4 151966

162

Table 6.3
Comparison of DEFSBB against LCSBB (times) on Bayer filter

Stages CPU time Pruned branches Schedules Conflicts

2 1.00 14.09 6.00 1
3 1.00 6.86 4.50 1
4 1.00 6.14 27.00 5.48
5 1.00 10.76 15.50 53.47
6 8.36 21.45 12.00 0.04
7 1.54 3.03 11.75 216.71

2.32 10.39 12.79 46.28

For DFSBB the CPU time, the number of pruned branches, the num-
ber of feasible complete schedules and the number of operator assign-
ment conflicts are by 2.32x, 10.39x, 12.79x and 46.28x larger on average
respectively over LCSBB (Table 6.3). LCSBB has given less overall reg-
isters size of 15.4% and 14.1% over DFSBB for the stage time of 3.1 (6
stages) and 3.0 (7 stages) respectively [79]. The CPU time for the heuris-
tic algorithm has not exceeded 1 sec for all stage time and all count of
pipeline stages.

The heuristic factors have been tuned for each stage time using the
random search technique. Each factor has been varied in a wide range of
values. The average factors over all the stage times and the stage counts
are maverage=(0.292, 0.299, 0.213, 0.196). Therefore, each factor is a sig-
nificant heuristic. Due to the variations of factors, total register size vari-
ations in the range from 0% up to 36.4% have been observed, 10.4% on
average. Therefore the tuning of the heuristic factors is an effective
mechanism of pipeline optimization.

It should be noted that the solution space grows very rapidly in the
case of the Bayer filter design depending on the number of pipeline stag-
es. It means that a huge number of pipeline schedules exist which are
very close to each other with respect to the total register size. In general,
the capability of LCSBB depends on the number of operators, on the
length of the critical path, on the mobility of operators and on the num-
ber of pipeline stages. LCSBB is capable of synthesizing optimal pipe-
lines with a low number of pipeline stages for large DFGs (>1000 opera-
tors) which have long critical paths and low mobility of operators. For
large designs the fast HT algorithm becomes a preferable option.

163

1 ~
3 ~—\ /
, N/ Y

L

a 1 2 32 4 5 6 7 8 9 10 11 12 132

Figure 6.2. The ratio “maximum/ minimum” of total register size vs. pipeline stage time
for the Bayer filter design case. The ratio varies in the range from 1.94x to 4.68x

In order to measure the distribution of the total register size variation,
LCSBB has been modified in such a way to maximize the register size
instead of minimizing it. The resource gain has been estimated with the
ratio “maximum / minimum” of the total register size that is shown in
Fig. 6.2 as a function of pipeline stage time and can reach the significant
value of 4.68x. Each local minimum corresponds to the minimum stage
time for each number of pipeline stages.

6.2. Forward 8x8 discrete cosine transform

The forward discrete cosine transform FDCT64 has been implement-
ed in CAL as an actor consisting of one action and then automatically
transformed into a single basic block model by means of applying vari-
ous transformation including unrolling loops. The FDCT64 is a relative-
ly large design with 64 input ports, 64 output ports and 2304 local varia-
bles, for a total of 2432 variables. The word size varies in the range from
1 up to 32 bit and the average size is equal to about 23. FDCT64 core
processing module includes 2368 operators of which 336 are additions,
496 are subtractions, 64 are multiplications, 576 are right shifts, 64 are
left shifts and 832 are static assignments. A relative time delay has been
assigned to each operator as follows: 1.0 for addition, 1.1 for subtraction,
3.0 for multiplication and 0.1 for shift. The static assignment has no
hardware implementation correspondence, therefore its relative delay has

164

been set to 0.0. The total delay for all operators is 1137.6. The design
critical path length is 19.6 or 1.72% over total operator delay. LCSBB
cannot yield global optimum results for a large design such as FDCT64,
therefore HT algorithm has been used in this case.

Table 6.4 reports the parameters of pipeline schedules generated for
FDCT64. For each stage count in column 1 the minimal stage time is
given in column 2. Column 3 reports the register size depending on the
stage time for HP. The size has increased from 688 for 2 stages to 24896
for 9 stages. The results for ASAP that are given in columns 4 and 5 are
much worse (100.3% on average) over HT. ALAP has produced better
results on average (columns 6 and 7) over ASAP, and worse results
(50.0% on average) over HT. Within 2 and 3 pipeline stages the total
register size grows slowly from 688 to 4096 and starting from 4 stages
the size grows rapidly.

Table 6.4
Results for FDCT64 obtained by HT, ASAP and ALAP
Sta- Stage = H.T : Redi tASAP Redi tALAP
. eqgister eqgister egister
ges | ftime size (bit) Size (bit) % Size (bit) %

2 19.59 688 2088 203.5 688 0.0
18.00 2048 2864 39.8 3072 50.0

17.00 2048 3776 84.4 4096 100.0

16.00 2048 3488 70.3 4608 125.0

15.00 2048 3608 76.2 4096 100.0

14.00 2048 4160 103.1 3072 50.0

13.00 2304 4736 105.6 2304 0.0

11.00 2560 7112 177.8 2560 0.0

10.00 3584 8672 142.0 4096 14.3

9.71 4096 7536 84.0 4608 12.5

3 9.00 4096 10272 150.8 7168 75.0
8.00 4096 9656 135.7 7168 75.0

6.70 4352 8752 101.1 7168 64.7

4 5.40 9440 17200 82.2 11264 19.3
5 4.30 12608 22104 753 13568 7.6
6 4.10 15872 27168 712 27392 726
7 3.30 20128 33232 65.1 32256 60.3
8 3.20 22784 37352 63.9 36528 60.3
9 3.00 24896 43344 74.1 40704 63.5
On average, %: 100.3 50.0

165

It is interesting to notice that the CPU time used by the HT algorithm
has resulted to stay within 2 sec for all pipeline stages. For large design
such as the FDCT64 only static heuristic parameters have been exploited
by the HT algorithm for operator ordering.

In case of FDCT64 design, HT yields much better results than
LCSBB in case of the Bayer filter, when comparing both to results of
ASAP and ALAP. Therefore, it can be concluded that HT is capable of
generating large pipelines that are close to optimal solutions.

6.3. Experimental results for random middle size designs

A program for the random generation of data flow graphs has been
developed to test the performances of a design with different statistical
properties of their operators. The generic parameters are the number of
operators, variables, input and output ports, the operator types, operator
delays and variable sizes. For conducting the experiments, the operator
types and associated probabilities have been chosen as follows: addition
(0.3), subtraction (0.25), multiplication (0.1), shift (0.1) and bitand
(0.25). The operator delays have been assigned to the same values used
in the previous experiments. The variable lifetime in terms of operator
interval is also a control parameter. By varying the parameter value it is
possible to generate DFGs with different critical path length.

In order to measure parameters of pipeline optimization techniques,
two random design series have been generated. The first one includes
five middle size designs constructed of 100 up to 300 operators. In Table
6.5, the total operator delay and critical path length is indicated for each
design. The critical path length varies in the range from 20% down to
16% of the total operator delay. For each variable its size was randomly
generated in the range from 4 to 28 and the average size is indicated for
each design in Table 6.5.

Each pipeline schedule constructed of 2, 3, 4 and 5 stages was opti-
mized with respect to the total register size for each design by LCSBB,
HT, ASAP and ALAP. In Table 6.5 the register size is given in bits for
LCSBB. The symbol * indicates suboptimal solutions for 5-stage pipe-
lines, therefore the comparison of HT, ASAP and ALAP over LCSBB in
% is given for 2-, 3- and 4-stage pipelines. The average register size pro-

166

duced by HT is only 2.28% larger than the minimum size produced by
LCSBB. It means that HT can be considered as a "close-to-optimal" op-
timization technique. Again, ASAP and ALAP results end to be much
worse (53.8% and 48.3% respectively) than LCSBB.

Table 6.5
Results for random middle size designs
Parameters Design
Number of operators 100 150 200 250 300
Total operator delay 111 152 175 231 280
Critical path 23.3 31.9 33.0 39.2 43.4
Variable average size 16.25 15.94 15.53 15.21 15.36
Pipeline registers size given by LCSBB (bit)
2 334 209 175 244 182
Stages 3 457 413 291 348 454
4 686 595 478 697 601
5 901* 805* 701* 732* 826*
Register size HT (%) 3.6 0.4 2.4 3.5 15
Register size ASAP (%) 49.3 50.8 64.1 31.1 73.9
Register size ALAP (%) 43.0 49.6 50.1 37.7 61.0
Variables average lifetime given by LCSBB (stages)
2 0.189 0.086 0.057 0.073 | 0.057
Stages 3 0.302 0.173 0.109 0.107 0.117
4 0.434 0.265 0.175 0.195 | 0.165
5 0.594 0.333 0.245 0.221 | 0.215
Var lifetime HT (%) 4.5 0.8 0.0 -4.2 0.9
Var lifetime ASAP (%) 35.5 30.3 27.8 114 30.7
Var lifetime ALAP (%) 24.8 21.3 35.2 21.3 18.8
Decrease in pipeline registers average size over variables average size (%)
Register size LCSBB % 8.4 9.3 16.2 18.2 34.1
Register size HT (%) 9.0 9.6 14.2 11.8 335
Register size ASAP (%) -2.7 -5.0 -7.4 0.3 2.5
Register size ALAP (%) -6.5 -10.4 45 2.7 0.3
Average CPU time for LCSBB (sec)
CPUtime LCSBB (sec) | 444 | 376 | 276 [508 [678

Two key factors influence the minimization of the total pipeline reg-
ister size: the reduction of the variables average lifetime in terms of pipe-
line stages and the decrease in the pipeline registers average size over the
variables average size. In Table 6.5 the variable lifetimes grow with the

167

increase of the stages number. The lifetime given by HT is very close to
the lifetime given by LCSBB. The variables average lifetime for ASAP
is 27.1% and for ALAP is 24.3% larger than for LCSBB. LCSBB and
HT have decreased significantly the pipeline registers average size over
the variables average size (17.2% and 15.6% on average respectively). It
is interesting to notice that HT (9.0) succeed in reducing the word width
better than the LCBB (8.4) for designs with about 100 operators. At the
same time LCBB reduces the lifetime of the registers in comparison to
the HT algorithm by a factor of 4.5%. As a result the LCBB algorithm
outperforms HT with respect to the register size by a factor of 3.6%.
ASAP and ALAP are not capable of assigning pipeline registers to small
size variables. Due to such limitation, the registers average size results to
increase of a factor 2.5% for ASAP and of 1.9% for ALAP over the vari-
able average size. LCSBB consumes more CPU time, from 276 to 678
sec.

6.4. Experimental results for random large size designs

The second series includes five large designs constructed of 1000 up
to 5000 operators (Table 6.6). The critical path length is about 10% of
the total operator delay for all design. The results reported in Table 6.6
show that HT yields superior results compared to both ASAP and ALAP,
32.7% and 40.6% on average respectively concerning the total register
size and 16.9% and 25.5% with respect to the variables average lifetime.
In contrast to ASAP and ALAP, it also results into smaller size variables
that are mapped onto the pipeline registers. It is also important to notice
that HT requires very limited CPU time for large design, only from 4 to
112 sec, thus, could be successfully used in commercial pipeline optimi-
zation tools.

6.5. Conclusion
Based on the mathematical models, design formulations and selected
algorithms, a program that automatically transforms a non-pipelined al-

gorithm into a pipelined design within a range of 1-2 min of CPU time

168

has been developed.

The experiments performed on the design test benches of a Bayer
filter, 8x8FDCT, middle size and large random designs, have proven
that the proposed LCSBB and HT algorithms yields much better re-
sults against ASAP and ALAP. Results characterized by a low pipe-
line registers size has been achieved by means of reducing the varia-
ble average lifetime in terms of pipeline stage interval and choosing
small size variables that are mapped onto pipeline registers inserted in
between stages.

Table 6.6
Results for random large designs
Parameters Design
Number of operators 1000 2000 3000 4000 5000
Operator total delay 885 1721 2640 3573 4469
Critical path 88 173 266 351 447
Variable average size 15.83 15.55 15.52 15.51 15.47
Pipeline registers size given by HT (bit)

2 484 568 676 976 1090

Stages 3 940 952 1455 1748 2388

4 1469 1712 2192 3067 3318

5 1995 2093 2895 3773 4430
Register size ASAP (%) 3251 32.89 33.77 33.22 31.11
Reqgister size ALAP (%) 66.59 43.94 32.34 27.38 32.64

Variables average lifetime given by HT (stages
2 0.032 0.020 0.017 0.017 | 0.016
Stages 3 0.069 0.036 0.036 0.033 0.033
4 0.102 0.059 0.052 0.052 0.049
5 0.141 0.075 0.070 0.069 | 0.065
Var lifetime ASAP (%) 19.19 12.34 19.96 18.14 14.63
Var lifetime ALAP (%) 51.73 29.42 15.43 16.92 14.20
Decrease in pipeline registers average size over variables average size (%)
Register size HT (%) 12.03 13.10 14.14 10.76 13.33
Reqgister size ASAP (%) 0.52 -4.38 2.59 -1.79 -0.84
Register size ALAP (%) 1.79 1.97 -0.42 1.73 -2.42
Average CPU time for HT (sec)
CPU time for HT (sec) | 4 | 7] 26 | 5 112

169

7. GENETIC ALGORITHM FOR TUNING OPTIMIZATION
HEURISTICS

7.1. Heuristics for solving optimization problems

A heuristic technique or simply a heuristic, is any approach to prob-
lem solving that employs a practical method, not guaranteed to be opti-
mal, perfect, but instead sufficient for reaching an immediate goal [55].
Where finding an optimal solution is impossible or impractical, heuristic
methods can speed up the process of finding a satisfactory solution.

Heuristics can be mental shortcuts that ease the cognitive load of
making a decision. A rule of thumb, a guesstimate, an educated guess, an
intuitive judgment, a common sense and profiling are examples that em-
ploy heuristics.

Heuristic is the strategy derived from previous experiences with simi-
lar problems. This strategy relies on using readily accessible information
to control problem solving in human beings and computers. The analysis
of heuristic search procedures includes a classification of graph search
strategies that put into perspective the approaches found in typical
presentations of search procedures.

Weight y(p) represents an integrated heuristic of selecting operator p
in the partially generated pipeline, which is estimated as:

2(P) =X @ p (P, (7.1)

where pi(p) is a heuristic parameter of operator p; w; is a factor at the
heuristic parameter; k is a number of parameters. The heuristic factors o
must satisfy the equality as follows:

o =1 (7.2)

K
i=1

170

In the heuristic algorithm, the heuristic parameters are dynamically
modified as they depend on the current optimization state, which is up-
dated on passing from one loop iteration to another. The heuristic param-
eter pi(p) must meet the following two requirements. Its value has to
vary in the range from 0 to 1. The higher value of the parameter, the bet-
ter pipeline properties are expected. The operator peQ with the maxi-
mum value of y(p) is selected as the next candidate for scheduling.

Operator p* whose weight x(p*) is a maximal one among all non-
scheduled operators of set Q is the most preferable candidate for sched-
uling at the next step:

x(p*) =max x(p). (7.3)
peQ

Let us consider in detail four heuristic parameters p1—pa, the heuristic
technique HT uses and dynamically recalculates (see Section 5.7.3 of
this book) at each step of the pipeline optimization process. Fig. 7.1.
gives a strict definition of these parameters.

First parameter p1(p) is a complement-on-one of the relative dynamic
mobility of operator peQ over pipeline stages that are available for p. It
is estimated on absolute mobility(p), minimal mobility™ and maximal
mobility™* over all operator of Q. Low value of mobility(p) implies high
value of p1. This parameter will also be referred as mob.

Second parameter p(p) is a relative Ibrs difference over available for
p pipeline stages, among all operator of Q. It is estimated over minimal
rslb™"(p) and maximal rslb™(p) on available stages, and maximal
drslb™ on all operator of Q. The higher Ibrs difference for p the higher
value of p,. This parameter will also be referred as drslb.

Third parameter ps(p) is a complement-on-one of the relative increase
of minimal over stages Ibrs for p against minimal Ibrs over nonscheduled
operator of Q. The parameter shows the increase of minimal lbrs after
assignment of p to the best available stage against all operator of Q. It is
estimated over minimal rslb™"(p) of p on available stages, minimal
oprsib™™ and maximal oprslb™> on the set Q of nonscheduled operator.
This parameter will also be referred as mrslb.

171

_ mobility (p) — mobility ™ (p) = "SIP™ () - rslb™ (p)
mobility ™ — mobiliy ™ * | #2{P)= drslp™

p(p)=1

mobility (p) = late(p) —early(p) +1, rsb™ (p)= min rsib(p,s),

early(p)<s<late(p)

mobility ™ = rpelqn mobility (q), rslh™ (p)= max

rslb(p, s),

early(p)<s<late(p) (p)

mobility ™ = m%x mobility (q) drslb™ = nqwa}gx(rslbmaX (q)—rslb™ (q))
qe =

__rslb™ (p) —oprslb™
oprslb™ —oprslb™ ’

linsize(p) — outsize(p)|

=1
£s(P) dsize™

pA(p) =

insize(p) = > _size(v),

oprslb™ = mig rslb™ (q), veinput(p)
qe

OprSlbn-IEIX = ma(g(rslb™ (Q) OUtSIZE(p) B vaoutpu(spl)ze(\/),
ge!

dsize™ = m%x\insize(q) —outsize(q)|
E

Figure 7.1. Heuristics pi—mob, p2—drslb, ps—rsib and ps—dios for dynamic ordering
of operators at each step of pipeline optimization

Fourth parameter p4(p) is a relative difference between overall input
variables size and overall output variables size of operator p. The param-
eter shows the importance of moving the operator over stages: moving
should be done to the earliest stage if the output variables size is larger
than the input variables size and vice versa. It is estimated over overall
inputs size insize(p), outputs size outsize(p) and the maximal size differ-
ence dsize™* over all operator of Q. This parameter will also be referred
as dios.

7.2. Motivation of tuning heuristics

The significance of the heuristic parameter pi(p), i = 1 ... k in the inte-

172

grated heuristic y(p) is determined by the value of factor w;. The higher
is the value, the more important is the parameter. Best optimization re-
sults are usually correlated with the use of most important heuristics.
Searching for the best values of the factors in vector o is a complicated
optimization problem with many local optima.

Thus, in the pipeline optimization heuristic algorithm HT, the choice
of the next scheduled operator essentially depends not only on four heu-
ristic parameters p1 - ps, but also on the heuristic factors w: - wa. Fig. 7.2
shows that for a 3-stage pipeline TB1000 the overall pipeline registers
size varies between 871 and 1163 bits at ®:=0, ®3=0,...,1, ®4=0,...,1 and
®2=1-m1—m3—m4. A high value of w; is associated with the high im-
portance of the corresponding parameter p; in the weight y(p). A low
value of w; is taken when the corresponding parameter pi poorly recog-
nizes the best solutions.

300 4

O—0O——n
250-300

250 4

200 7§ W 200-250
150 7 m150-200
0 1

100 - ®100-150

50 7 ¥ 50-100

B 0-50
[m}) u}

015 = <" 0.15
0.00 = 0.00

Figure 7.2. Overall pipeline registers size variations from 871 to 1163 in solution space
projection 3-stage pipeline TB1000: heuristic factor w, (dios) is horizontal axis,
factor w; (mrslb) is vertical axis, factor »,=0 (mob), and factor w,= 1—w;—ws;— w4 (drslb)
173

http://www.lingvo-online.ru/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%81%d0%bb%d0%b0%d0%b1%d0%be&translation=poorly&srcLang=ru&destLang=en

It is easy to see that finding an optimal value of vector o is a compli-
cated problem as the registers size has many local minima in the multi-
dimensional space. This Chapter presents a genetic algorithm that is ca-
pable of efficiently solving heuristics tuning problem.

7.3. Genetic algorithm of tuning heuristics

7.3.1. Basics

The vector of heuristic factors o=(ws,...,mx) is an individual. The
heuristic factor w; is a gen. The population is a set of individuals which
exist during the genetic algorithm operation. The generation is a set of
individuals which exist during one iteration of the genetic algorithm. A
fitness function F(w) of individual o represents quality of the corre-
sponding solution. In the pipeline optimization problem, it is determined
over the objective function that is a minimum of the overall pipeline reg-
isters size RS(w) obtained by HA. The fitness function F(w) is a differ-
ence between the maximum of RS(w"°™') of the worst individual in the
population and RS(w) of individual w.

7.3.2. Genetic operations

The selection operation aims at choosing parents to perform a crosso-
ver or mutation operation and produce a next generation of individuals.

The fitness proportionate selection (FPS) evaluates the fitness func-
tion F(w) for each individual ® and normalizes each fitness value with
dividing it by the sum of all fitness values. The sum of normalized val-
ues equals 1 and the values can be considered as probabilities. The popu-
lation is sorted on descending of fitness values. Accumulated normalized
fitness values are computed, a random number r between 0 and 1 is cho-
sen and the selected individual is the first one whose accumulated nor-
malized value is greater than r.

The worst parent selection (WPS) chooses a parent with the worst
fitness value and replaces it in the next generation with the best off-
spring in case the fitness value of the offspring is larger than fitness
value of the parent.

174

https://en.wikipedia.org/wiki/Fitness_proportionate_selection
https://en.wikipedia.org/wiki/Fitness_function
https://en.wikipedia.org/wiki/Fitness_function

The worst individual selection (WIS) chooses the individual with the
worst fitness value in the current population and replaces it with the best
offspring in case the fitness value of the offspring is larger than fitness
value of the individual.

The half uniform crossover (HUX) chooses randomly half of gen in-
dices that are represented with a subset K* of the set K={1,....k}. HUX is
a partially matched crossover. The simple recombination of parent’s gens
is not sufficient for obtaining a correct offspring as for the new individu-
al the sum of heuristic factors may appear unequal to 1. Two following
cases for two parents are differentiated.

Case 1. The fitness values of o' and »? are approximately equal:
F(oY)~(F(®?). In this case HUX tries to save the genotype of parent o' in
the first offspring and the genotype of parent w? in the second offspring.
The first offspring w® is constructed of original gens of parent o' which
are indexed with ieK! and of normalized gens of parent »? which are
indexed with ieK\K®. The second offspring w* is constructed of original
gens of parent w? which are indexed with ieK\K* and of normalized gens
of parent o' which are indexed with ieK?®. The gen normalization is per-
formed with the ratios as follows:

a=> o, (74)
b=> o, (7.5)
y'=@1-a)/@-b), (7.6)
y* =b/a. 7.7)

Ratio y* aims at the normalization of gens of w? in offspring w®:
o’i=yxw? for ieK\K!, Ratio y? aims at the normalization of gens of w? in
offspring o*: w*=y*xw?; for ieK?.

Case 2. The fitness value of w? significantly exceeds the fitness value
of 0% F(o)>(F(w?). In this case HUX tries to save the genotype of par-

175

ent o! in both offspring. The first offspring is the same as w®. The sec-
ond offspring w® is constructed of original gens of parent ! which are
indexed with ieK\K! and of the normalized gens of w? which are indexed
with ieK?®. The gen normalization is performed as w’=w?/y? for ieK™.

An illustration of two cases of crossover HUX is given in Fig. 7.3. In
case 1 the fitness values of 175 and 173 of two parents are close, and
each offspring w® and w* tries to save the genotype of both parents. In
case 2 the fitness value of 175 of first parent is significantly higher than
the fitness value of 92 of second parent and each offspring, »® and ®°
tries to save the genotype of the first parent.

»!=(0.31,0.47,0.09, 0.13), ®?=(0.25, 0.14, 0.53, 0.08)
Ki={1, 3}, K\K'={2, 4}
a=0.31+0.09=0.4, b=0.25+0.53=0.78
v'=(1-0.4)/(1-0.78)=2.73, y?=0.78/0.4=1.95
®°=(0.31, 0.38, 0.09, 0.22)

Case 1: Case 2:
F(0')=175, F(w?)=173 F(0')=175, F(w?)=92
»*=(0.60, 0.14, 0.18, 0.08) ®°=(0.13, 0.47,0.27, 0.13)

Figure 7.3. lllustration of crossover HUX

The single offspring crossover (SOX) takes two parents, o' and »?
and produces one individual. Firstly, the heuristic factor weights o and 3
are computed as:

o =F(o!) / (F(o!) +F(»?), (7.8)
B=1-o. (7.9)

Secondly, the single offspring w is calculated as a vector of weighted
sum of parent gens:

oi=oxoli+pxwy fori=l..k (7.10)
176

SOX: TGM:

»'=(0.31, 0.47, 0.09, 0.13) £=0.3

®2=(0.25, 0.14, 0.53, 0.08) ®=(0.31, 0.47, 0.09, 0.13)
F(ol)=175 i=2, j=4

F(0?)=92 §=0.47*0.3=0.14
0=175/(175+92)=0.655 ©:=0.47-0.14=0.33
B=1-0.655=0.345 ©4=0.13+0.14=0.27
©=(0.29, 0.36, 0.24, 0.11) ®=(0.31, 0.33, 0.09, 0.27)

Figure 7.4. lllustration of crossover SOX and mutation TGM

The offspring meets all the requirements to the individual. Its gens
are closer to the first parent if F(o')>F(®»?), and are closer to the second
parent otherwise. This crossover tries to scan the region of the search
space that is closer to the point with best fitness function. An illustration
of crossover SOX is given in Fig. 7.4, left. The fitness values of 175 and
92 of two parents are used to calculate factors o and . Value 0.655 of o
is higher than value 0.345 of . Therefore, offspring o is closer to parent
o' over parent w?.

The two gene mutation (TGM) alters two heuristic factor values in
one parent o' from its initial state. The heuristic factors w? and w? are
selected randomly. The corresponding factor values in the single off-
spring o are calculates with a mutation factor & whose value satisfies
inequality O<e<1:

d=¢x ok, (7.11)
i = ol — 9§, (7.12)
0j = o + 3. (7.13)

TGM is capable of correctly changing the value of any two heuristic
factors in opposite direction. An illustration of TGM is given in Fig. 7.4,
right. The value of randomly chosen heuristic factor w; is decreased by
0.14 at the mutation factor ¢=0.3 and the value of w4 is increased by
0.14. To determine what will be performed next, crossover or mutation,
two probabilities are used: Peross aNd Pmut.

177

7.3.3. Genetic algorithm

Fig. 7.5 summarizes the genetic algorithm (GA). GA consists of an
initialization stage and a loop that iteratively updates the population by
means of genetic operators in such a way as to find a schedule with the
minimal overall pipeline registers size. For a small design or a large de-
sign with few pipeline stages, the exit condition is defined over the max-
imum number of iterations, which give no improvement of the best indi-
vidual. For a large design and/or a large number of pipeline stages, it is
defined over a CPU time constraint.

GA is a random strategy at all steps of its operation. It randomly
chooses the genetic operation, randomly chooses parents for performing
crossover and mutation operations, randomly performs these operations,
and randomly updates the population of individuals.

1. Produce initial population by repeatedly generating k-1 random
numbers p;, i=1...k-1 between 0 and 1, ordering the numbers
on ascending, computing next individual as w=(p,
Ho—Ua,. .., Mk-1—Hk-2, 1—pk-1), and adding it to the population.
2. Perform the heuristic algorithm for each individual o that is
interpreted as a vector of heuristic factors, find the worst indi-
vidual, compute the fitness function F(w) for all individuals
and reorder the individuals on descending of F(w).
3. while (not Exit condition) do
4. Randomly choose genetic operation, crossover or mutation
with probabilities peross and pmut respectively.

5. Randomly choose parents using selection operation FPS.

6. Perform crossover HUCX or SOCX and obtain two or one
offspring.

7. Perform the heuristic algorithm for each offspring to obtain
F(w) for each offspring .

8. Perform selection operation WPS or WIS to update popula-
tion.

end while

9. Return the best individual.

Figure 7.5. Genetic algorithm for optimization of heuristic factors
178

7.4. Two modes of exploiting the genetic algorithm

GA can be exploited in two modes: (1) while actually solving the op-
timization problem in real time, and (2) during accumulation of
knowledge on the best heuristic factors. In the first mode, GA searches
for the best heuristic factors for one set of input data of the heuristic al-
gorithm. In the second mode, GA accompanies the heuristic algorithm
regarding heuristic factors, which executes many times on various input
data. It results in generating cumulative distribution functions for all heu-
ristic factors.

7.4.1. Solving optimization problem

The first mode of actual solving the optimization task over tuning the
heuristic factors requires GA to be capable of generating at least 50-100
individuals in population in acceptable CPU time. In this case the
runtime of the heuristic algorithm (in particular the runtime of HT of
pipeline optimization) should not exceed 1-2 sec.

For Intel i3 CPU it is feasible for 1-7 stage pipelines for the design
size of 1000 operators. For larger designs, GA can find a high quality
solution for only 2-3 stage pipelines. Of course GA works perfectly for
designs of <1000 operators.

7.4.2. Evaluation of cumulative distribution functions

The second mode aims at preliminary extracting and accumulating
knowledge on the heuristics and on the best heuristic factors wi—w,
which describe importance of these heuristics in the integrated optimiza-
tion criterion. In this case, the GA runtime constraint may be taken of
tens and hundreds of minute.

Vector ™ of the best heuristic factors can be treated as a random
continuous variable. Its probability distribution can be estimated based
on the multiple execution of GA on various design and various number
of pipeline stages. Let U be the number of GA runs and " is the vector
of best heuristic factor values for the u run, u=1...U. Each projection
o, i=1...k of the vector can be represented with a histogram h;(j),

179

j=1...w that divides (Fig. 7.6) the interval [0,1] of w;" values into w parts
with step=1/w. The j" subinterval, j=1...w includes the factor values of
the range from (j—1)xstep to jxstep. The value of hi(j) is the number of
vector factors whose value belong to the j* subinterval in projection w“.

Fig. 7.6 gives an example of the histogram for factor w; at the drslb
heuristic. The histogram aims at estimating the probability density func-
tion fi(j)=hi(j)/U, and the cumulative probability distribution function,

Qi(j):Z:v":l f,(v). Fig. 7.7 provides an example of the cumulative
probability function of factor w,.

=
=

L= T e N L LI - N - N -}

0.05 015 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Figure 7.6. Histogram of the best value of factor w2 (drslb) in HT

1.00

/
0.90
0.80 /
0.70 /
0.60 /
0.50 /
0.40 /
0.20 /
0.20 //
0.10 P
0.00 : . . . :
0 0.2 0.4 0.6 0.8 1

Figure 7.7. Estimation of cumulative probability distribution function (CDF) for the best
value of factor w2 (drslb)
180

https://en.wikipedia.org/wiki/Probability_density_function

7.4.3. Random algorithm of searching for heuristic factors

In their turn, the cumulative function is a basis for efficient random
search for an optimal solution using the heuristic algorithm. This search
can produce the initial generation of individuals and initialize the popula-
tion in GA. Fig. 7.8 presents a random search algorithm (RA) for pro-
ducing promising heuristic factors. For each heuristic, it firstly generates
a uniform random number, determines the lowest subinterval whose cu-
mulative function value is not less than the random number, and calcu-
lates a preliminary heuristic factor value. Secondly, it normalizes the
vector of preliminary factor values by means of computing the values
sum and dividing each factor value by this sum. And finally, it calls the
heuristic algorithm with the randomly obtained factors, which returns the
value of fitness function. This procedure repeats until the CPU time con-
straint is not met.

51. foreachiin {1...k} do
2. Generate random number pi with uniform probability distribu-
tion.
3. Find lowest value j between 1 and w such that Qi(j)> wi.
4. Assign oi=jxstep.
end for
5. Calculate sum s of wi, i=1...k.
6. Foriin {1...k} assign wi:=wi/s (normalization) .
7. Compute fitness function F(w) by call the heuristic algorithm with
heuristic factors w=(wa,...,0k) as actual parameters.

Figure 7.8. Random search algorithm (RA) for generating heuristic factors
7.5. Experimental results
7.5.1. Test benches for pipeline optimization

The random test benches (TB1000-TB5000) that are described in [79]
and consist of 1000-5000 operators are exploited intensively in this book
in order to study properties of the heuristics and algorithms that have
been proposed. TB1000-TB5000 are constructed of such operators as
addition, subtraction, multiplication and logical operators. The probabil-

181

ity of appearing the operators is 0.3, 0.25, 0.1 and 0.35 and the operator
relative delay is 1.0, 1.1, 3.0 and 0.1 respectively.

The variable size varies between 4 and 28 and equals to 15.83 on av-
erage. The design critical path length is about 10% of the total operators
delay for all test benches. All experiments were performed on the Intel®

Core™ i3 CPU 550 @ 3.20 GHz 3.19 GHz, 4 GB.
7.5.2. Optimization of heuristics

We have written a computer program that measures the effectiveness
of each of four heuristics for pipeline optimization with respect to the
registers size minimization. The program divides each axis of the search
space, which is associated with a heuristic factor, into intervals by means
of 21 points from 0.0 to 1.0 with the step of 0.05. As only three of four
heuristics are mutually independent, it represents the search space with
1771 points corresponding to various combinations of the factor values.
Fig. 7.9 shows that the number of combinations equals 1 if one of the
factors has the value of 1.0 and the number equals 231 if one of the fac-
tors has the value of 0.0. The program computes the overall pipeline reg-
isters size using HT for each point of the search space.

Two of four heuristics can be used in the static mode. These are w:
(mob) and ws=1-m: (dios). In this case, the optimization space includes
only 21 points (Fig. 7.10). The statically heuristic algorithm orders oper-
ators before optimizing the pipeline. The pipeline optimization results
can significantly depend on what point has been chosen. The value of
0.25 of the static heuristic factor m: decreases the registers size RS by
12.1% over the value of 0.60.

Fig. 7.11 presents a minimum of RS for TB1000 3-stage pipeline
among all factor value combinations. The average minimum RS is equal
to 881.1 for wy, is equal to 887.19 for w4, is equal to 887.95 for w; and is
equal to 923.38 for ws. Fig. 7.12 also proves the effectiveness of the heu-
ristic .. The average RS decreases with increasing the value of w,. This
is a sign of high importance of drslb in the weighted criterion (7.1). The
importance of other heuristics decreases in the order as follows: w4, ®1
and ws. It can be seen, the lower value of @z implies the lower RS.

182

L
L]
200 5
L]
150 »
L]
-
L]
100 -
-
L]
50 L
L]
L] - . .

0 . . : : ¢ ..

0.00 0.20 0.40 0.60 0.80 1.00

Figure 7.9. Number of combinations of three heuristic factors values vs. the factor value
of selected heuristic (21 values for one factor)

4700
4600

4500 /\
o VAN /
e /

4000 T T T T T T T T T 1
0.00 010 020 030 040 050 060 070 080 0590 100

Figure 7.10. Overall pipeline registers size RS (bits) for 10-stage pipeline TB1000
obtained by heuristic algorithm that uses static heuristics vs. heuristic factor o1 (mob)

300
250
200 : 1
150 ; !
Ri
100]
50
O —
0.00 0.20 0.40 0.60 0.80 1.00

Figure 7.11. Minimum of overall registers size subtracted by 871 vs. heuristic factor
value: w;—mob (dash), w,—drslb (solid), ws—mrslb (round dot), w.—dios (dash dot)

183

0,00 0,20 0,40 0,60 0,80 1,00

Figure 7.12. Average overall registers size subtracted by 888 vs. heuristic factor
value: w1—mob (dash), mz2—drslb (solid), ms—mrslb (round dot), ws—dios (dash dot)

35,00

., Hw(\\ -~ -~
30,00 4F—Tn

25,00

;‘
20,00
\

15,00

A e -
10,00 NS

Figure 7.13. Overall registers size range (%) vs. heuristic factor value: wi—mob
(dash), w2—drslb (solid), ms—mrslb (round dot), ws—dios (dash dot)

It is important for the optimization, what heuristic factor is capable of
changing RS and in what direction. Fig. 7.13 reports that choosing a par-
ticular value of m; or ws allows large variations in RS due to varying the
value of other factors. At the same time an appropriate selection of the
value of o, or m4 reduces the variations and may lead to rapidly finding a

minimum of RS. It should be noted that there is a slight correlation be-
tween drslb and dios and between drslb and mob.

184

7.5.3. Cumulative distribution probability functions of heuristic
factors

GA is capable of obtaining the best heuristic factor values for various
deigns and various number of pipeline stages. The cumulative distribu-
tion probability functions (CDF) that are shown in Fig. 7.14 are generat-
ed on the best values of heuristic factors that result from numerous opti-
mization runs for the designs TB1000-TB5000.

The average values of the best factors at the mob, drslb, mrslb and
dios heuristics are as follows: ®,=0.466, ®:=0.292, ®,=0.186 and
®3=0.056. Each best factor takes values in a restricted interval. Thus, w;
should be between 0.15 and 0.9, m: should be between 0.0 and 0.6, w4
should be between 0.0 and 0.55, and w3 should be between 0.0 and 0.25.

CDFs that are presented in Fig. 7.14 are an effective facility for gen-
erating the initial population in GA using the random algorithm RA
(Fig. 7.8). These functions can be also used as a fast solution search tool
in the case when only few HT runs can be done in an acceptable runtime.

T T T T 1
0 0,2 0.4 0.6 0.8 1

Figure 7.14. Cumulative probability distribution functions (CDF) for best heuristic
factors: w;—mob (dash), w,—drslb (solid), ws—mrslb (round dot), w,—dios (dash dot)

185

7.5.4. Tuning genetic algorithm

In order to properly choose in each design case the most efficient
genetic operations among those proposed in section 7.3.2, several ex-
periments have been done on large designs. Two of three curves that
are shown in Fig. 7.15 compare two crossovers HUX and SOX in case
when the mutation operation is not used. The first 50 individuals are
generated randomly with a uniform probability distribution. Starting
conditions for SOX (884.8) have appeared to be preferable over start-
ing conditions for HUX (885.8).

But very quickly (after generating the 80" individual) HUX started
to give the registers size RS much lower than SOX and this difference
increases with evolution of the population. The conclusion is as fol-
lows: SOX is preferable on a restricted population size and HUX is
preferable when more individuals can be generated. Both crossovers
can be used in the same genetic algorithm. The choice of one of them
can be performed randomly at each iteration of the genetic algorithm.

Third curve CDF-HUX in Fig. 7.15 shows that the replacement of the
uniform probability distribution with the cumulative probability distribu-
tion functions for the heuristics factors that are shown in Fig. 7.14 speeds
up the reduction of RS for a low-size population but can give a worse
result for a large-size population. The random search algorithm RA gen-
erates individuals (heuristic factors) in the initial population and can be
used for implementing the mutation operation.

Several experiments have been done in order to formulate the rules of
choice between the operations of worst parent selection (WPS) and worst
individual in population selection (WIS). Both operations give close
results very frequently for the pipeline optimization task. At the same
time, WPS may appear prefarable over WIS as it can preserve the diverse
genofond of the population. On its turn, WIS can produce a population
that includes a lot of very close individuals. For designs that can be
optimized with a large population, probability pcross OF crossover may be
close to 1. For designs that can be represented with a small population,
probability pm.: Of mutation and mutation factor € should be increased as
in this case the search space can be scanned more thoroughly.

186

950
940

920

910 15

00 T
890 L\
830 "\ : e R T revevewrrrrrrrrrrrrrm—
s70 [t====- A -
860 _E'—-\-_—___. _________
850 T T T T T T
i 50 100 150 200 250 300 350

Figure 7.15. Overall registers size RS (bit) in 3-stage pipeline optimized by crossover
HUX (solid), SOX (round dot) and CDF-HUX (dash) vs. population size
(average on 5 runs of TB1000 for each crossover)

7.5.5. Effectiveness of genetic algorithm

Fig. 7.16 shows the dependency of the overall pipeline registers
size RS on the design size, which is obtained for three optimization
algorithms: ASAP, ALAP and GA. The size varies from 1000 to 5000
operators, and the registers size varies from 1288 to 4237 bits. GA
overcomes ASAP by 50.31%, 50.66%, 49.98%, 43.34% and 35.02%
for the design size of 1000, 2000, 3000, 4000 and 5000 operators re-
spectively. GA has 105.43% of gain over ALAP for the design size of
1000 operators. Then the gain reduces to 43.95%, 36.68%, 31.95%
and 35.63% for the size of 2000, 3000, 4000 and 5000 operators re-
spectively. The gain is obtained due to the own properties of the heu-
ristic algorithm (about 70%), and due to the optimization of heuristic
factors by the genetic algorithm GA (about 30%).

The design size significantly influences the runtime of the heuristic
algorithm in particular, and influences the runtime of GA in general.
Within 100 sec of CPU, the genetic algorithm GA has generated 874,

187

294, 95, 65 and 79 individuals of the population for the design size of
1000, 2000, 3000, 4000 and 5000 operators respectively.

4500
4000 .
-
" J".
3500 -
3000 — —

a’_’," /
2500 T =—x e
S
="
2000 === //
1500

——
1000
500
0 \ T \ 1
1000 2000 3000 4000 5000

Figure 7.16. Overall registers size RS (bit) in 4-stage pipeline optimized by GA (sold),
ASAP (dash) u ALAP (dash dot) vs. design size

7.6. Conclusion

Exact optimization techniques yield a global optimum solution for
small-size problems. Heuristic optimization techniques are capable of
handling large-size problems but are not able to guarantee finding an
exact solution. They can find a close to optimum solution, which de-
pends on heuristics that are exploited.

Usually several heuristics can be incorporated in a heuristic algo-
rithm. It is difficult to determine, which of them are more important, and
which are less important. In this chapter, we have presented a genetic
algorithm, which can search for an optimal heuristic factor for each heu-
ristic that is exploited. The factor determines the importance of the given
heuristic in an integrated heuristic, which recognizes preferable solutions
during solving the optimization problem.

188

8. NET ALGORITHMS

A schedule for a sequential finite state machine defines a distribution
of statements on control steps taking into account constraints on time and
resources. A net schedule defines both a partial precedence and concur-
rent execution of the statements under the same constraints.

This chapter introduces a net scheduling and allocation model, a
method, and techniques that allow to generate net schedules which min-
imize either the execution time or resources. The net schedule is a source
to synthesize a sequential schedule with chaining, multi-cycling, and
pipelining. Moreover the net schedule can be directly mapped to a com-
puting architecture or a parallel program. Experimental results show that
the net schedule execution time is more than 20% less than the sequential
schedule execution time in the case of variable execution time of opera-
tors, statements and program code fragments.

The theoretical models and methods of this chapter can first of all be
applied to the design and optimization of digital systems. Thus they are
implemented in the Ahiles VHDL-based high-level synthesis system
which is described below. Additionally these models and methods can be
used for the generation and optimization of parallel programs.

8.1. Sequential scheduling of algorithms

Scheduling is the first task in the synthesis process. Its results are
most important for the final parameters of the design. It should be noted,
the scheduling task is a NP-hard problem.

The known scheduling techniques such as ASAP, ALAP, list, free-
dom-based, force-directed, path-based scheduling, and integer linear
programming formulation use the precedence relation between opera-
tors/statements which is extracted from the data and control flow graphs
as input data for sequential scheduling.

Usually two optimization criteria are considered during the schedul-
ing: to minimize the execution time and to minimize the resources. In the
first case statements are parallelized to execute on the same control step.
In the second case, statements are distributed on different control steps to
execute on a same functional unit.

189

Two basic scheduling techniques synthesize the sequential schedule
with the shortest execution time and maximum resources. These are “as
soon as possible” (ASAP) and ““as late as possible” (ALAP) [53]. ASAP
schedules statements on the control steps from the first to the last. A
statement is scheduled immediately if its predecessors have been sched-
uled. ALAP schedules statements on the control steps from the last to the
first. A statement is scheduled immediately if its successors have been
scheduled.

entity DIFFEQ is
port(DXP,AP,XP,UP: in BIT_VECTOR(7 downto 0);
YP :inout BIT_VECTOR(7 downto 0);
CLOCK,START: in BIT;
READY : out BIT);
end DIFFEQ;
architecture BEHAVIOR of DIFFEQ is
begin
process
variable DX,A,X,Y,U : BIT_VECTOR(7 downto 0);
variable B,C,D,E,H,G : BIT_VECTOR(7 downto 0);
variable R:BOOLEAN;
begin
wait until CLOCK'EVENT and CLOCK="1"and START="1";
READY<="'0"; DX:=DXP; A:=AP; X:=XP; Y:=YP; U:=UP;

loop
R:=X<A; --1
exit when not R; --2
C:=X+(2*X); -3
B:=U*DX; --4
D:=B*C; --5
G:=U-D; --6
E:=Y*DX; -7
H:=E+(2*E); -8
U:=G-H; --9
X:=X+DX; --10
Y:=Y+B; --11

end loop;

wait until CLOCK'EVENT and CLOCK="1";
READY<='1"; YP<=Y;
end process;
end BEHAVIOR;

Figure 8.1. Differential equation integrating algorithm (DiffEq) in VHDL
190

The differential equation integrating algorithm (DiffEq) [20] shown in
Fig. 8.1 and represented in VHDL [45] is used in this paper to illustrate
scheduling techniques. ASAP scheduling is given in Fig. 8.2 and ALAP
scheduling is given in Fig. 8.3.

Control step

Operators

1

SHONOJOLO)

()

&

olyel

ng

Figure 8.2. How ASAP scheduling handles DiffEq

Control step

Operators

1

4

1 Q3
O OING;

i/ Qs/@e
@11 dg ®1o

Figure 8.3. How ALAP scheduling handles DiffEq

List scheduling is a resources scheduling technique [53]. It assumes a
number of function units of each type to be given. The technique sched-
ules statements consecutively from the first to the last control steps, tak-

191

ing into account the constraints on resources. List scheduling for DiffEq
with two ALUs and one multiplier is show in Fig. 8.4.

Control step Operators

v
s | o

Figure 8.4. How list scheduling handles DiffEq

Freedom-based scheduling maps statements onto control steps tak-
ing into account the range of the steps which could be paired with the
statement. The statements on the critical path can be assigned to the
tightest range of steps and have to be scheduled at the beginning of
the scheduling process.

Force-directed scheduling is a time-constrained scheduling technique.
The technique schedules statements step by step in accordance with
"force" values. Each scheduling step follows by the re-evaluation of the
"force" values.

Integer linear programming formulation can be resource, time, and
feasible constrained scheduling technique. It can find optimal solutions
for practical problems. The described scheduling techniques can generate
schedules with chaining, multicycling, pipelining. They assume the op-
erator execution time to be constant.

The goal of allocation is to minimize computational resources. Ef-
fective allocation algorithms are based on interference and preference
graph coloring. The goal of allocation is to minimize the resources.

192

The algorithm operations are mapped onto functional units, variables
are mapped onto registers, and data dependences are mapped onto
multiplexers, buses and partitioned buses. It should be noted, the al-
location task is a NP-hard problem.

After the data path is synthesized, control signals (select signals for
multi-functional units and multiplexers, load-enable signals for registers)
are introduced and a finite state machine is generated based on the
scheduled behavioral description. The data path and finite state machine
are described in a hardware description language and used as input for
logic synthesis.

Effective high-level synthesis methodologies, algorithms and systems
(AMICAL, Cathedral, CMUDA, DAA, ELLA, HAL, HIS, Yorktown
Silicon Compiler, PASS, PSAL2, Sehwa, and others) for digital circuits
have been developed [20, 53, 54]. Using a source behavioral description
in a hardware description language (for example VHDL [62]) they de-
sign a register transfer level (RTL) structure consisting of two parts: the
data path (DP) and the control unit (CU). To synthesize the data path, the
following tasks are solved: compiling a behavioral description into an
internal form, control and data flow graphs (CFG and DFG) generation,
analyzing these graphs, scheduling, and allocation of statements. Known
scheduling techniques synthesizing a sequential schedule introduce con-
trol steps and finite state machine (FSM) states into the behavior distrib-
uting the statements on the control steps.

8.2. Net scheduling of algorithms
8.2.1. Net schedule

The statements, control steps, and FSM states are considered in the
sequential schedule. The sequential schedule describes a distribution of
the statements onto the control steps and FSM states. Net scheduling
does not introduce control steps and states; it defines only precedence
and concurrency between statements, which conserves both time and
resources [60].

Let N={1,..n} be a set of the statement numbers. Directed graph
Grn=(N,H) can describe the net schedule, where H is the statement’s di-
rect precedence relation. If statements is,...,ik are direct predecessors of

193

statement j in the net schedule, then j may execute when all of its prede-
cessors have finished executing.

In a binary matrix, an element of the matrix can take one of two val-
ues. Elements of a triple matrix can take one of three elements.

Binary matrix Q describes data dependences between the statements,
in which element gi; equals 1 if i is a predecessor of j, and equals 0 oth-
erwise. In triple matrix W, element w;; equals

e 0 if the statements i and j may not execute on the same func-

tional unit

e 1 if the statements may execute on the same functional unit se-

quentially

e 2 if the statements may execute on the same functional unit

concurrently

The last case applies when the statements are orthogonal [57]; that is
the statements are ““if c1 then P1; end if;* and “if c2 then P2; end if;” and
conditional signals or variables c1 and c2 are orthogonal (their conjunc-
tion equals false). We can equivalently transform any VHDL behavioral
description, without changing mapping functions, to the form consisting
of if-then statements and loop-statements without an iteration scheme
[69, 70]. Note that an orthogonal statement cannot precede another or-
thogonal statement. For the DiffEq in Fig. 8.1, Ahiles gives us the matri-
ces Q and W in Fig. 8.5, assuming that "<", "+", "-" operators execute on
the same ALU. Statements i and j are sequential if a path exists between
i and j on the graph Gu, otherwise the statements are concurrent.

01 0O0O0O0OO0OO0OTGO0ODIZ1 00100101111
0 00O0OOOOOOO0OI1 0 00O0OOOOOOOQOO
000O0O110O01O00O0 100 0 01 01111
0 0O0O110O01O00O0 0 00O0O1O0100O00O0
0 00O0OOT1O0O0T1IO00O0 0 0010O01O0O0O00O0
Q=0 0 0 0 OOO0OOT1O00O0 W=|/1 01 0 0 0 01111
00 O0OOOOTI 1101 0 00110O0O0OO0OO0TO
0 00O0OOOOOI1IO00O0 10100100111
0 00O0OOOO OO OOTQ OO 101 00101011
0 00O0OOOOOOOQ OO 101 00101101
10 0 0O OO0 OO OO0 0 11 01 001 011 1 O]

Figure 8.5. Matrices for DiffEq
194

Two statements are mutually exclusive in the net schedule if they
never execute simultaneously. For this to be true, the statements must
be orthogonal or sequential. If mutually exclusive statements may
execute on the same functional unit, they are compatible and can
share same resources.

The zero elements of the top part of the Q matrix define maximum set
Dwm ={(i,j) | i=0, i<j} of the concurrent statements pairs. Among the
pairs of set D are the pairs of set Do, which are orthogonal statements.
Set D=Dw defines the net schedule of maximum concurrency. The nodes
and arcs in Fig. 8.2 represent the most concurrent schedule for DiffEq.

Let t; and s; be functional unit j’s execution time and cost respective-
ly. Time tj can be constant or variable. If fu(i) denotes the type of func-
tional unit executing statement i, net schedule execution time is

T = runegx thu(i) , (81)

D jeu

where U is the set of cliques of graph GB = (N,B) constructed on set

N of the nodes that represent statements and on set D of the edges that
represent sequential statements pairs. The graph GB clique that gives the

maximum sum of the statements’ execution time defines the execution
time. Schedule cost is

NEey
S:Zij(max mjvj, (8.2)
1

VeVp

where Nry is the number of functional unit types. V, is the set of the

cliques of graph Gp = (N, D) constructed on set N of the nodes and on set
D of the edges that are the pairs of concurrent statements. The number of
the functional units of type j needed to execute clique v statements con-
currently is mjy.

195

The sum of costs of the various functional unit types defines the total
cost. Clique set V, provides the number of functional units of any type.

Sets U5 and V, describe the maximum paths and sections on graph G.

Hence, the longest path defines the execution time, and the widest sec-
tion defines the cost.

8.2.2. Optimizing a net schedule

To optimize a schedule, net scheduling must meet one of two goals:
e minimizing the execution time with given constraints on the re-
sources
e minimizing the resources with given constraints on the execu-
tion time
While set Dm determines the most concurrent (and thus fastest) net
schedule, subset D of Dwm determines a net schedule of less concurrency,
yet lower system cost. Set D also defines execution time T and cost S.

Finding pairs of concurrent operators

Ahiles can find up to 2" different net schedules, where r is the cardi-
nality of set Dy.

Because of the concurrent execution of any pair of set Do of orthogo-
nal statements which does not require additional execution time and re-
sources, we can always include Do into D. For instance, DiffEq can be
potentially a source for generating 2% net schedules.

Synthesizing a net schedule involves solving one of two optimization
tasks, depending on the optimization criteria selected:

min {T; | Sp <o (8:3)
or
min {S, [T, <T,}, (8.4)

196

where To and So are the constraints on execution time and cost. To ac-
count for execution time (Equation 8.1) and cost (Equation 8.2) esti-
mates, we reformulate Equation 8.3 and 8.4 as the tasks

min < max t
DcDy | ueUp Z fu(®

NZFU:S x(maxm JSSO (8.5)

j=1 veVp

and

=1 veVp D ieu

Ngy
Dn!g; {Zs x[maxm j ma Dt < S } (8.6)

Two techniques let us generate D while solving Equation 8.5 and 8.6
consecutively adding pairs to D and consecutively moving pairs out of
D. The first technique solves Equation 8.5 and starts with set D=Do. The
second technique solves Equation 8.6, starts with set Dy, and never
moves orthogonal pairs Do. (Because of the concurrency of orthogonal
statements, the pairs of Do do not require additional execution time and
resources. Hence we can always include Do in D.)

Both techniques select a pair for including or removing by analyzing

the maximum-weight cliques of sets U5 and V,; the techniques select

pairs that decrease the execution time and not increase the cost. The ad-
dition of pairs to set D is complete when any pair together with D pro-
duces cost S greater than bounding cost So or produces a number of func-
tional units greater than the bounding number. Removing pairs from set
D is complete when each pair to be removed implies time T greater than
bounding time To. Adding or removing pairs in different order yields
different contents for D.

Fig. 8.6 shows the influence D has on the net schedule execution time
T and cost S. When D is empty, the process yields the net schedule of
maximum execution time Tmax and minimum cost Smin. When D equals
Dw, the net schedule uses minimum execution time Tmin and maximum
cost Smax. Including a pair in D can decrease the execution time, while
removing a pair from D can decrease the cost.

197

Recalculating clique sets

Adding or removing a pair from D changes the clique set according to
four rules. Two rules transform Ug into Uz when we add pair

d=(i,]) € Dw into set D creating new set D"=Duq{d}. The first rule
splits a clique containing statements i and j into two new cliques of
less cardinality; the second rule allows the removal of cliques from
the new set D"

T
T max (2]
D’cD
X
5
D
6
D”>D
Tmin DM
Smin Smax S

Figure 8.6. Set D’s effect on concurrency space

* Rule 1 (splitting) — If element ue U5 satisfies the condition that

{i, j} c u, then the elements u\{i} and u\{j} are added to set
U ; otherwise element u is;

* Rule 2 (absorbing) — If in set U; two elements u" and u" exist for

which u' > u", then element u" is removed from the set.
198

Two additional rules recalculate set V, as new set V.. The third rule
combines two cliques containing both statements i and j into a new
clique that is included into set V.. The fourth rule removes the absorbed
cliques from the set:

e Rule 3 (merging) — If ViU Vv" o {i, j} is true for v\, v* €V, then

element v=(v'nv") U {i, j} is added to V.. All elements of V
are also included in V..

e Rule 4 (absorbing) — If in set V. two elements v' and v" exist for

which v' o v" then element v" is removed from the set.

If we remove pair d from set D and D' = D \ {d} is the new set, then
rules 1 and 2 transform set V into the set V. and rules 3 and 4 trans-

form set U5 into the set UH,,.

Solving Equation 8.5 to minimize the execution time for DiffEq with
one multiplier and two ALUs (tmuL = 100 ns, taru = 40 ns, smuL = 5 and
saLu = 1) produces set , which contains 31 pairs, as described by the zero
elements of the top right part of matrix Qp (Fig. 8.7). The markings
along the column heads indicate the exit statement, e, and VHDL opera-
tors <, +, =, and —.

No pair can be added to D without increasing the number of function-
al units and exceeding the constraints. For each clique of set U, the

execution time is the sum of the clique statements’ execution time. Over-
all execution time is 340 ns, and the cost is 7 (Fig. 8.8).

If we add pair (i, j) to set D statements i and j are concurrent; if
(i, j) is not included in set D, statement i precedes statement j. For
pair (i, j) of set Du not included in set D, we know that statements i
and j are not concurrent, but do not know whether i should precede j
or j should precede i.

Introducing Boolean variable x; into matrix Qg for pair (i, j) and its

negotiation ;ij for pair (j, i) solve this problem. If x; equals 1, statement

i precedes statement j. If the value equals O, j precedes i. Thus, while
many net schedules possible for a given D, for some sets D no net
schedule exists.

199

Time
120
120
120
140

T=340

+

X
X

X
x 0 1 0 O

x 0 1 0 O

x 0O 0 1 1 0 1
x 0

01 0 0 0 0 0 x O
0O 0 000 00O 0 0 O0 1
0O 0 0 0O1 1.0 0 1 O0
0O 0 0 0 1 1

0 0 000 00O O 1O

0

0 0 0O OO 0 01
0O 0 0O OO OO O O0O0OTOo

0O 0 0 0 0 1

X

X O

O I X

| X

0O 0 0 0O

X

X
D

Q

Figure 8.7. Matrix of set D for DiffEq with one multiplier and two ALUs

OWOWONMNNMNNNNNNSNSNN WO © ©

Cost

Exit

AT O A A 100100000

OO A d A1 O A A A A A

ANANANNNNNNNNNNNAAA

ALU Mul

S=7

+ OO0 000001000 A+H0O0OOO

+ 100 A1 00010000100

T O 1000010000000 O0

+ O 000100000 HA+HO O

¥ OO0 0O 1001010100000

O 00000100000 O0O0o

¥ OO0 0000000000

¥ OO0 00O A 10001010000

+ OO0 0O d A 1000 d"1000O0O0O

DA 1O A A 10010000 O

VOO—dO0OOOd10O—d+1000O

Figure 8.8. Clique sets for matrix Q*p
200

ANmStowoOo~0o DN T VY

1l
=]
>

8.2.3 Tackling the existence problem
Formulation of existence problem

Given set D, that net schedule Gy exists in which pairs of concurrent
statements constitute D. Clique set U5 must be the maximum-paths set

of graph Gu, and clique set V, must be the maximum-sections set of the
graph; otherwise this proposition is not true.

For set D and the given values of variables xjj, a net schedule exists if
the matrix derived from the matrix Qp by substituting the variable val-

ues describes a transitive relation. This transitivity condition expresses
the requirement that the net schedule must have exactly that level of con-
currency defined by set D.

The relation is transitive if the following combined logical equation
has at least one solution for xi;.

L =V l(zik A ij) Vv (ij A Zki)JZO’
(o
(i,k)¢D
(K, })eD

L2 = \/ [(Zij A Zik A ij) Vv (Zji A ij N Zki)JZO, (87)

1, if(i,j)eD, andi< j,
0, if(i,j)eD, and j<i,

5, if(@,))eD,\D,and i< j,
i, if(j,i)eD, \D,and j<i.

z; =

X
X

In combined Equation (8.7) variables z; are intermediate. Equation
L1 describes the transitivity conditions for the elements of set D and

201

equation L2 describes the transitivity conditions for the elements not be-
longing to this set.
One algorithm effectively solves the combined Equation (8.7) by

constructing graph GJ and searching for its non-conflicting labeling

(Fig. 8.9). The graph nodes are variables x; that correspond to non-
concurrent statements pairs. The algorithm introduces edge (Xi, Xik) if
statements j and k are concurrent and pair (j, k) belongs to set D. It labels
the graph nodes 0 and 1. The initial label 1 is assigned to the nodes be-
longing to set {xi | (i, j)¢Dwm, i, j = 1, ..., n, i <j} of the Boolean variables
that correspond to the nonconcurrent statements pairs not introduced into
set Dwm. If an edge connects two variables X, Xj that satisfy constraint
i<j<k, it is labeled +, otherwise it’s labeled —.

Labeling conflicts

Labeling two variables and the edge connecting them creates one type
of conflict if the variable labels are the same and the edge label is +, or
the variable labels are different and the edge label is —. If the graph has at
least one of this first type of conflict, the equation for L; has no solution.

For variables Xij, Xi, and X« where i<k<j, there is a second type
conflict if variable xij‘s value equals 0 (1) and the values of Xix and X
equal 1 (0). If the graph has at least one of the second type of conflict
the equation for L, has no solution. To generate a net schedule, the
algorithm must label the nodes in such a way as to avoid the conflicts
of both types.

Fig. 8.9 shows graph G[for the matrix in Fig. 8.7. Node xs¢ has the

label 1 and connects with node Xg11 Vvia edge (Xs,6, Xs,11), labeled +; hence,
node xs11 must be labeled 0. Nodes Xs11 and X111 have different labels
and are connect via the edge labeled —; this is a conflict. Equation (8.7)
has no solution. Therefore, the number of net schedules of the different
concurrency levels is less than the number of subsets of set Dw.

Solving conflicts

If L1 and/or L2 have no solution, the algorithm searches for subset
D' of set D to solve Equation (8.5) and set D" that includes set D to

202

solve Equation (8.6) (see Fig. 8.6). Sets D' and D" must satisfy Equa-
tion (8.7). Set D' gives a less expensive net schedule, while set D"
gives a faster one.

How do we find appropriate sets D' and D"? A program like Ahiles
could use various procedures to solve this problem, but the main idea is
to reduce or extend set D to avoid the conflicts. It is better to minimize
the number of the concurrent statements pairs removed from or added to
set D, but the algorithm should examine the influence of each pair on the
execution time and cost as well.

Figure 8.9. Graph GS of logical equation L1, showing a labeling conflict of the
first type
203

The gradient method is the basis for one possible procedure. The pro-
cedure firstly uses a branch and bound technique to find labeling that
avoids conflicts of the second type and minimizes the number of the con-
flicts of the first type. Then for each pair that we can remove from or add
to D, it estimates the number of conflicts remaining and selects the pair
producing the minimum number of remaining conflicts. The procedure
repeats until no labeling conflicts remain. This technique’s efficiency
depends on the estimating method.

Now consider Equation (8.5). There are 10 conflicts for set D de-
scribed by the matrix in Fig. 8.7. Matrix Cnf in Fig. 8.10 describes for
each pair the number of conflicts that will remain if we remove the pair.

1 2 3 4 5 6 7 8 9 10 11

1(- - 11 12 100 9 11 - 9 - -
2 |- - 10 14 12 10 14 12 10 10 -
3|{- - - 1 - - 10 1 - 10 -
4|1- - - - - - - 10 - 13 9
5{- - - - - - - 12 - 15 13
6|- - - - - - - 10 - 15 -
7T|- - - - - - - - - 10 -
8 |- - - - - - - - - - 10
9/9- - - - - - - - - 8 1
0VWl- - - - - - - - - - -
nl- - - - - - - - - - -

Figure 8.10. Matrix Cnf records the number of conflict remaining
for each pair if we remove it from D

As the matrix shows, removing a pair can sometimes create more
conflicts; for example, removing pair (5, 10) would result in 15 conflicts,
five more than we started with. Pair (6, 7) has the minimum number-
seven-of remaining conflicts, and the procedure selects it for removal.
Several steps of removing pairs and replacing 0 elements with x elements
transforms the matrix in Fig. 8.7 into matrix QJ (Fig. 8.11) describing
set D of cardinality 22 that satisfies Equation (8.7).

This procedure also transforms the clique sets (see Fig. 8.12).
While the execution time increases from 340 ns to 380 ns because
nine pairs of concurrent statements became non-concurrent, the cost
remains unchanged.

204

Cost

OO ONMNMNMNMNAEANNMNNDNS O O O

S=7

205

= [NeoNolololoNoNoNol o]
D ENO © © © 0 ® | XddHdoOoOO0O0O0O0OO0OOOAdA—AO
g _H2211_1_31_24_u L
2 =
] m WlllOlllOlllllll
XOOXlOXxom + A dd—HdO0OO00O
= o
X O O OO0 X0 X X OoOlIX m +odo0o-Ho0o0o AI.“_111222212222111
o
X ™d Hddddd OIX|[|X m A A A A A A A
©
X OO0OOoOOoOod0ooOoIxXxo =2 toococo-dodo +o0o0000O0CO-HOO0OOAHOO
@
O O X X X XOO0OOoOOoOOo g ¥ 10000 +HO +t OO A A0 A000 O — O
=
=
X X d 4 d O|X O O[|X]|X E R R R Ne i N e R I 1000001000000
~
O O d+d OO0IX OO0 OO0 I} ¥ O0OO0O0O0O—HO +O0Od00O0O 100000 A0
=)
O OO0 0O O0OO0o0O|IX oo oo T ¥ O0OO0OO0OO0OAHOO ¥ OO0 100101010000
S
O X O O OO OO0 0o OoIX o fF 000 AOOO roOoHoo0o0o0oHOHOO0OO0OO0OOO
Y
x
a4 O0OIX O 0IX O0IX OO % voodaoo oo ¥ O0O00O0O00O0O0O0O0O
x
OO0 0O OIX OIXI|XI|X O; £ Vo dao uao oo ¥ O0OO0O0OdHO0OO0OO0O—HO0OHO0OO0OO
<
I > +00O0Oddd00O0OAdAH0OO0O0O
- AN M < DO~
x 0 —
o — VA0 A1 10010000 dAdA
0 1]
2 - VOO10O0OOd0OOAdd0 00O
=))
2
Lo

AaNmStwo~o GOdN0 TR

1l
o
>

Figure 8.12. New clique sets for matrix Q*p, with the labeling conflicts resolved

8.3 Generating a net schedule

Now graph G’ has no labeling conflicts. Ahiles can generate an
appropriate net schedule after considering the labels of the graph
nodes as Boolean variable values and substituting these values into
the matrix Q”p,

Ahiles generates matrix Qp. (Fig. 8.13). Since this matrix defines a
transitive relation and no row i and column j exists for which g;=q;=1,
Ahiles can reorder the matrix rows and columns to obtain a matrix with
zeros below the principal diagonal (Fig. 8.14). This reordered matrix de-
fines the statements’ precedence relation in a net schedule. To determine
the net schedule Ahiles uses the following procedure to calculate matrix
Hp that defines the statements’ direct precedence:

H=Qp;
forie{0,..,N-1} do
for je{0,...,i} do

N

if (hj+1,N—i+j 21)/\[\/ (hj+1,k ALTEN :1)j then

k=1
hj+l,N—i+j =
end j;
end i;

0;

Starting from the right top corner of Hp, the procedure replaces 1
values with 0 values for elements h;; for which the Boolean multipli-
cation of the row i and column j gives the value 1. For matrix Qp, the
procedure gives the matrix Hp shown in Fig. 8.15 and the net sched-
ule shown in Fig. 8.16.

Table 8.1 gives some experimental results for net schedules that
Ahiles synthesized for DiffEq. | measured the time spent to generate the
net schedules on a 486, 50-MHz PC. Theory predicts a probabilistic
growth of the number of the graph cliques depending on the size of the
graph. However, sets U5 and V,, include few cliques for the net sched-
ules, thus avoiding labeling conflicts, the most complex problem in net

schedule synthesis.
206

dddHo0o0o0od00-H0O

Sdoocoocoocoocoocoococoo
O A A A A A A A 1O
OHOO0OO0OO0OO0OAO O HO
NOOOOOOOOOOO
O AAAA A0 A0 O
LooOdHdOoOOdO0OO0OO0O
“oOooococooHdoooO
mMoOOO0OO0OO0OOOOOOO
N—HO-HOOOOOOOO

O OO0 O0ODO0ODO0OO0OO0OO0OOo

ANmssowmo~oo g g

Figure 8.13. Matrix Qo before reordering

DA A A A0 A A A0

OAd A A A A A" O OO

dd9dddo0o0o-Hd0000O

wmHoOoOHdo0O0OdO0o0O0O
Sd1oocoocoocoococoococoo
WModoOodHOoOO0OO0OO
toooHdooooooo
NOOOOOOOOOOO
NHdHoOOoOOoOOO0O0OOOO
mMoocoooocooooo

OO0 00000000 Oo

A~ oo doo

Figure 8.14. Matrix Qp after reordering to obtain a zero bottom part

DO O OO0 OO—H0 A0
OCOO0OO0OO0OO0OHO0OO-H0OO

Jdooddoo-doooco
mMoooO—-do0oOod0O0O0O
S4oocoocoocoococoocooco
MoOoHdooOo-doOoO0OO0OO0OO
tooo-dooooooo
NOOOOOOOOOOO
NHdHOOOOO0OO0OOOO

MNMOOO0OO0ODODODOOOO0OOo

OO 0000000 O0OOo

A~ o doo

Figure 8.15. Matrix Hp calculated form matrix Qo

207

Figure 8.16. Net schedule for Hp, which uses two ALUs and one multiplier

Table 8.1
Ahiles net schedule synthesis results for DiffEq
Functional units Cardinality Remo- | No of cliques | ..
N[Noof [Noof | T Initial Cc’;‘f}ilfcfts ved [~ T Is'e”;;"
ALUs | Multipliers | “™| D pairs b b
1 2 1 39 31 6 5 6 22 0.11
2 1 1 39 21 I 4 5 14 0.11
3 2 1p 61 51 15 12 11 26 0.44

8.4 Transition from net schedule to sequential schedule

Ordinary, multicycling and chaining algorithms produce sequential
schedules from net schedules. These algorithms do not care about com-
putational resources as the resource constraints have been already taken
into account while generating the net schedule.

The well-known ASAP and ALAP scheduling algorithms assume the
statements’ execution time is less or equal to the clock cycle period. To
generate schedule these algorithms use the net schedule graph for G as
input data. In this case the number of statements in the longest path of

208

the net schedule graph determines the minimal number of control steps
in the sequential ordinary schedule. In the case, multicycling is applied
to long-delay operators and statements, ASAP and ALAP account for the
execution time of each statement that can be larger than the clock cycle
period. One statement can be scheduled to several consecutive control
steps and several corresponding clock cycles.

In case, chaining is applied to short-delay operators and statements,
ASAP and ALAP assign chains of operators and statements to one con-
trol step and one corresponding clock cycle.

Given constraints on resources, the list scheduling technique can gen-
erate a sequential schedule from the net schedule while minimizing the
number of control steps. In this case, the list scheduling technique is ca-
pable of optimizing ordinary, multicycling and chaining sequential
schedules, which follows the synthesis and optimization of a resource-
constrained net schedule.

8.5 Graph language and tool for creation and simulation
of sequential and net algorithms

This section presents a graph language and a tool for visual interac-
tive development and simulation of net algorithms. The language is de-
veloped on the basis of C language, but the principles laid down in it are
applicable to other languages as well. The graph language is based on the
following construction principles:

1. The graph vertices are associated with primitives of the C lan-
guage: data types, variables, constants, logical and arithmetic operators,
statements, control structures, etc.;

2. The graph arcs connect the vertices and describe the control flow,
which can be either sequential or parallel;

3. Various labels are assigned to vertices and arcs, the interpretation
of which establishes the semantics of the language;

4 The. graph execution is dynamically visualized;

5. Source and termination vertices are fixed in the graph; only one ac-
tive vertex is executed in the graph that describes a sequential algorithm,
and several vertices are active and execute in the graph that describes a
concurrent algorithm;

209

6. The control flow of is described by tokens that mark the arcs and
move when the algorithm execute;

7. If tokens appear at all input arcs of a certain vertex, the vertex fires,
and the corresponding statement or variable assignment is performed
followed by moving the tokens from the input to the output arcs of the
vertex;

8. The token at exactly one output arc characterizes the sequential ex-
ecution of the graph; tokens at several output arcs characterizes its con-
current execution;

9. Firing of a vertex can be unconditional or conditional; in the sec-
ond case a test Boolean variable is associated with the vertex; if the vari-
able value is true when the vertex fires, the corresponding statement exe-
cutes; otherwise it does not execute; in any case, the tokens move from
the input to the output arcs;

10. The graph interacts in the process of operation with a storage of
variables and with a storage of statements;

11. In the process of interpreting and executing the visualized graph,
variable values are updated in the storage.

Fig. 8.17 shows the environment of visual simulation of a graph that
describes sequential behavior. The top part of the interface includes a
menu bar and a toolbar. The window of visualizing the graph includes
images of vertices and arcs.

Two upper rectangular vertices describe the cluster name and the
graph header. Seven lower rectangular vertices represent assignment
statements, three of which contain one operator in the right part.

The upper oval vertex describes the while loop, and the lower oval
vertex describes the if-then-else statement. Small round vertices with
identifiers cO and cl inside describe test variables. Even smaller round
vertices describe the operation of sequential execution.

All arcs are labeled. The oval vertex while has a stroke indicating that
the vertex is firing. The token moves along an arc directed into the loop
body. The lower part of the interface describes the storage of variables.
For each variable, the cluster to which it belongs, the kind, type, size in
bytes, current value and comment are indicated.

Fig. 8.18 illustrates a graph and its execution, which model and simu-
late a concurrent algorithm. The graph representation is a result of trans-

210

forming a branching and looping behavioral description that is per-
formed in a high level language into the basic single-block flow model,
which allows for a maximum of asynchronous parallelization and a min-
imum of the critical path in the graph. Such a graph can represent a par-
allel asynchronous behavior of an embedded system.

The graph vertices are assignment statements and variables. The as-
signment statement depicted by blue rectangles reads the values of the
input variables from the storage (bottom in this figure), perform logical,
arithmetic, or other operations and write the values of the output varia-
bles into the storage.

2 e pons-cc0 I (=l

.i. File Edit View Interpreter Generate Code Window Help 'T"E"?‘
O @'n| R v| [z +[t5tvariable Vlnettﬁtedge V]x EE]A|%%|
[(M)F a g c NE[r[E]F RS M 1]« »]

4 [| [

x | Clusters I Mode Types I Edge Types |
Data Types Constants/Variables/Operators | Functions | Arguments | Graphs |
MName Cluster Kind Type Size Value Note
0 s_gcd i int SocA second integral u
s_gecd W int first integral
0 in_X s_ged Ul int 4 42 supplier of X vari
Qin_y s_ged v int 4 38 supplier of ¥ vari -
< i] 3
[Md Before] [Md Aﬂner] [\"Io\te Up] [Mo\re Down] [\a‘ariable] Data Type: dynamic*
Ready Success

Figure 8.17. Interface of graph-based environment for execution of sequential algorithm
211

| 3= 1EEE_Paper_Testddp - [ieee] o[
D@-®& [9+ |l +[constant ~[kdge BEEY -TCOFNESEN
(MFaacgcecNE [»[EFRS[IM[1« »| i

5| [BoatE wo=yTi1): H 0=0.20v0;| I
Jr., Flna=pavy, 15=111-112; o —fnssnsus,
26, . . :
e, || Hoetd RO=RE1); =04 -
" r2=1L-'m, R | . £
; =) Has=pime—Hm=neao] ",
; NS P o) . ¥
7 [=as] 0 [a=o7exe;] ¢ [i=iL) @" # [ce=en) s
i
£ c1=iz10,] foatd X1=x[i);
[| Acats Z1=gfi); | *2 [@1=0.3+%1]]
2 [. o R !
13 [(10=D.5+8;] 1 [G=ZenL) 4 [CGG=1aaes] s - [FEaE s)
~ . -~] o
S u SR
mm® e ",
"é—“{uﬂlm 7 [1a8=t25+70] = [na=n3w01;
g * [5=24-02;]
il]; " -5 [0e=n7+z0]
. e @
s [ma=paryL - e L

Soatx Y1=¥y 1%v1] “Afr=nens;

< [m | 3
" | Data Types | Constants/Variables/Operators | Functions | Arguments | Graphs | Clusters | Node Types | Edge Types |
Mame Cluster Kind Type Size Value Mote Delay Exec. Tme *
ieee v arr_float 40 0 float X[10];
- ¥ ieee v arr_float 40 0 fioat Y[10];)
@z ieee v arr_float 40 0 float Z[10]; 0.0 0.0
@0 ieee c int 4 10 10 0.0 0.0
@i ieee v int 4 2 inti; 0.0 0.0
Qi1 ieee v int 4 0 inti1; 0.0 0.0
-~ " i an ~ na P
4 . 3
Add Before| |Add After Move Down Data Type: yoid Function:
Ready Success ieee I

Figure 8.18. lllustration of executing a concurrent algorithm

Vertices-variables are divided into two classes: conditional (control)
variables (depicted in yellow circles) and value-assigned variables (de-
picted in orange rectangles). The value of a conditional variables affects
the execution of statements (value true enables execution, and value
false disables execution).

212

The vertices of the graph are connected with arcs. The arcs that are
represented with solid lines connect vertices-statements to vertices-
variables, and vice versa. The arcs represented by dashed lines connect
the control variables with the statements, the performance of which they
influence. Solid arcs can be marked with markers that indicate the flow
of control or data in the basic single-block model. When tokens appear at
all input arcs of a certain vertex, this vertex fires, and the tokens move to
the output arcs. The statement that is associated with the vertex executes
if the control variable connected to the vertex by the dashed arc takes
value true.

The firing vertex is indicated by a bypass line. Several vertices of the
graph can simultaneously fire, and the more such vertices, the higher the
level of concurrency of the behavior. The correct transformation of a
behavior into the basic single-block model ensures that the tokens do not
crawl on each other and ensures that two or more tokens on the same arc
cannot appear at the same time. The dynamics of the graph can be con-
trolled through a number of tools provided by our simulation system.

The proposed transformational techniques and tools support the crea-
tion of net algorithms that are parallel in space and process one data set.
They also support the creation of asynchronous pipelines that are parallel
in time and process a flow of data sets [76]. The method provides for the
creation of both regular asynchronous pipelines as well as irregular asyn-
chronous pipelines, whose stages differ from each other. When designing
a pipeline, the original control flow is eliminated, the pure data flow is
extracted, and the network is divided into pipeline stages.

Each pipeline stage is represented with a subnet that implements the
required functionality, performs certain operations and interact with
neighbor stages-subnets by data exchange and handshaking mechanism.
Synchronization of the subnets is localized and performed by means of a
request / acknowledgment mechanism, which is implemented by moving
the tokens along arcs, which connect the subnets of neighbor pipeline
stages. The synthesis of the asynchronous pipeline is performed in a reg-
ular way by the method, which explores the basic single-block model
and is described in Chapter 5 of this book.

Fig. 8.19 shows a net modular algorithm graph that asynchronously
implements the TTA true audio codec [71, 78]. The blue rectangular ver-
tices of the graph represent whole modules (functions) instead of simple

213

statements. The input of this algorithm is a data stream of audio frames.
Our method transforms this net algorithm into a two-stage asynchronous
pipeline that is shown in Fig. 8.20.

an

7 [prrangy| 2 [Fasss

7 [CSTALE]
g :K
’ i @;
772 [gRIeE :

EEE‘ FiipE .
_’@' ‘:@ {BASpE|

- ® - .." .
% [Copme 2 cwRITE]—{ B ARY |2 o ARy |

Figure 8.19. Graph of asynchronous net algorithm of audio coder TTA

1" [CrmRl— Wztop:] “{ CDELETE
e B

Figure 8.20. Graph of asynchronous 2-stage pipeline for audio coder TTA
214

The first stage of the pipeline runs in parallel with the second stage
that is a hybrid filter. Table 8.2 reports parameters of the pipelined asyn-
chronous audio encoder TTA, which are measured when encoding an
excerpt from a melody by Italian baroque composer Tomaso Giovanni
Albinoni. The two-stage net pipeline yields the acceleration factor of
3.4 against a non-parallel implementation. It should be noted that
non-pipelined net algorithm and graph shown in Fig. 8.19 yields a
smaller acceleration factor of 2.2.

Table 8.2
Parameters of asynchronous pipeline implementing the TTA audio
compressor

Parameter Value
Number of variables of all types 40
Number of vertices in the graph of net algorithm 41
Number of edges in the graph of net algorithm 83
Total number firings of graph vertices 5053
Total number of tokens at the edges of graph 7806
BrruucnurenbHast CI0KHOCTb aJITOPUTMA 47615
Critical path on data flow graph of net algorithm 13829
Parallelization factor 3.4

8.6 Experimental results

The model, method and techniques described here are used to develop
a VHDL-based, high-level synthesis system called Ahiles [61]. The sys-
tem inputs are a behavioral VHDL description, transition probabilities
for branch statements of the description, an optimization task, and func-
tional unit descriptions. The outputs are a register transfer level (RTL)
structure composed of the structure parameters and the data path and the
finite state machine (FSM).

Firstly, AHILES compiles the design specification and transforms the
behavioral description to a special behavioral model. The system uses an
internal format to speed up the design process and to allow the genera-
tion of high-quality designs. Still in the internal form, the description is
diagnosed and analyzed, then presented in the control and data flow
graphs. Ahiles then solves the scheduling, allocation, and binding tasks

215

and generates the data path and finite state machine in the internal form.
Reverse translation maps the register transfer level structure into
VHDL text.

We can link the VHDL design to several VHDL libraries and units.
Ahiles was written mainly in C and runs on an IBM PC platform. | ob-
tained the results described below on a PC 486/50.

VHDL compiler parameters appear in Table 8.3. For large designs,
the compiler throughput is more than 200 lines per second. The average
size of the design internal form is only 1.4 times greater than the size of
the source VHDL text.

Table 8.4 shows DiffEq’s parameters for the net-based and list sched-
uling. In each case, the net-based scheduling technique (in this case,
Ahiles) introduced the smaller number of control steps.

Table 8.3
Parameters for the Ahiles VHDL compiler
Parameter Benchmark -
Bubble Gced Gedf | Kalman Pid
VHDL text (lines) 119 50 60 220 724
VHDL text (bytes) 3009 2089 2844 7966 23138
Internal form (bytes) 5570 2573 2925 12393 | 30280
Compilation time (s) 0.71 0.49 0.77 1.45 2.53
Throughput (lines/s) 168 102 78 149 286
Throughput (lines/s) 4238 4263 3694 5382 9145
Table 8.4
Synthesis results for DiffEq using various techniques within Ahiles
Parameter - — Techniqt_Je - —
Ordinary | Chaining | Multicycling | Pipelining
Clock cycle (ns) 120 120 60 60
Number of ALUs 2 2 1 2
Number of multipliers 1 1 1 1(p)
Control steps (list) 5 5 9 6
Control steps (net based) 5 4 8 6
Number of registers 8 8 8 7
Number of multiplexors 10 9 8 11
Number of multiplexor inputs 25 23 23 27

216

0.07

JO
> +HE %
= + M 7;
= + okt
i + 4+ %
[< + Y+ bid
= FF h %
+ ¥ + %
+ X + %
+ T %
+ %
T e o3 At e A dedde
0 40 T 140
ime

Figure 8.19. Frequency function for the net (+) and sequential (*) schedule
execution time

Fig. 8.19 displays graphically the advantage net scheduling provides
over sequential scheduling in the case of variable execution time of func-
tional unites: Its frequency function peaks earlier and at a smaller proba-
bility level.

Table 8.5 reports the results that Ahiles obtained for five benchmarks.
Bernard Courtois and Polen Kission of the Techniques of Informatics
and Micro-electronics for Computer Architecture (TIMA) Laboratory
provided the Bubble, Gedf, and Pid benchmarks. | borrowed the Ged and
Kalman benchmarks from the works of Bergamaschi, and Morison and
Newton. Due to equivalent transformation of the source behavioral de-
scriptions and new scheduling techniques, Ahiles minimized the number
of the finite state machine states. The system either maps behavioral de-
scription operators to the data path functional units or introduces them
into the finite state machine.

Fig. 8.20 shows an example of a pipelined net schedule Ahiles has
generated. Functional units are pipelined [53], therefore we split multi-
plication operators into parts, one for each stage of the pipeline. Each
part precedes its successor. For DIFFEQ the net schedule of maximum
concurrency with two-stage pipelined multiplication is presented in
Fig. 8.20. A net schedule of less concurrency is synthesized by the net

217

scheduling technique with constraints on the cost and number of the
functional units as well as on the number of pipeline stages.

Table 8.5
Synthesis results for Ahiles
Benchmark

Parameter Bubble God Gedf | Kalman | Pid
Number of states 20 2 5 16 23
Number of ALUs 0 1 1 1 1
Registers/bits 7/104 2/32 2/64 18/138 13/389
RAMs 1 0 0 3 0
ROMs 0 0 0 3 1
Multiplexor/input 4/13 4/8 4/8 14/36 8/33
Collectors 0 0 0 5 9
Structure (lines) 416 164 184 1000 723
Structure (bytes) 12383 4647 5241 31550 22938
Time (s) 6.03 4,79 4.84 12.04 7.15

Figure 8.20. Net schedule Ahiles generated for a system with two ALUs and one
pipelined multiplier. The designators *1 and *2 indicate the first and second stage
of the pipelined multiplier

218

8.7 Conclusion

A new model of solving the scheduling and allocation tasks in high-
level synthesis systems has been proposed. The net scheduling tech-
niques that are developed in this chapter can synthesize the optimal net
schedules on two criteria; the minimum execution time, and the mini-
mum cost. The net schedule existence problem is formulated as a com-
bined logical equation solving problem. An efficient technique for solv-
ing the logical equations of certain type has been proposed. The net
schedule can be either directly used for digital system synthesis, or can
be a source for generating sequential schedules with chaining, multicy-
cling, and pipelining, which use pipelined and non-pipelined functional
units.

As the obtained results show, net-based scheduling systems like
Ahiles can produce synchronous designs more efficiently than the known
sequential-scheduling techniques. At the same time, net-scheduling
mainly targets the design and optimization of asynchronous systems,
both hardware and software. The synchronization mechanisms may vary
in a wide range. Net scheduling is extremely useful for modeling, syn-
thesis and optimization of software for computer networks.

219

REFERENCES

. AHG report on editorial convergence of MPEG-4 reference software,
ISO/IEC JTC1/SC29/WG11 MPEG2003/9632, July 2003.

. Aiken, A. Optimal loop parallelization / A.Aiken and A.Nicolau // in
Proc. of the 1988 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1988.

. Bakshi, S. and Gajski, D. D. Component selection for high-
performance Pipelines / S. Bakshi and D. D. Gajski // IEEE Trans.
VLSI Syst., vol. 4, no. 2, pp. 181-194, 1996.

. Banerjee, S. Macro pipelining based scheduling on high performance
heterogeneous multiprocessor systems / S.Banerjee, T. Hamada, P.
Chau and R. Fellman // IEEE Trans. Signal Processing, vol. 43, no. 6,
pp. 1468-1484, June 1995.

. Barford, P. Critical Path Analysis of TCP Transactions / P. Barford,
M. Crovella // IEEE/ACM Transactions on Networking, vol. 9, 2001,
No. 3, pp. 238-248.

. Bezati, E. Synthesis and optimization of high-level stream programs /
E. Bezati, S.Casale-Brunet, M. Mattavelli, and J. Janneck // in Proc.
of the 2013 Electronic System Level Synthesis Conference, 2013, pp.
1-6.

. Brunet, S. Profiling of dataflow programs using post mortem causa-
tion traces / S. Brunet, , M. Mattavelli and J. Janneck // in Signal Pro-
cessing Systems (SiPS), 2012 IEEE Workshop on, Oct 2012, pp.
220-225.

. Chang, P. A Decomposition Approach for Balancing Large-Scale
Acyclic Data Flow Graphs / P. Chang, C.S. Lee // IEEE Transactions
on Computers, vol. 39, No. 1, 1990, pp. 34-46.

. Chao, L.-F.A. Rotation scheduling: a loop pipelining algorithm / L.-
F.A. Chao, LaPaugh, and E.-M. Sha // Trans. Comp.-Aided Des. In-
teg. Cir. Sys., vol. 16, no. 3, pp. 229-239, Mar 1997.

220

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Cong, J. An Efficient and Versatile Scheduling Algorithm Based on
SDC Formulation / J. Cong and Z. Zhang // Design Automation
Conference (DAC), Jul. 2006.

Corrado, B. Flow Diagrams, Turing Machines and Languages with
Only Two Formation Rules / B. Corrado, G. Jacopini // Communi-
cations of the ACM. — 1966, 9 (5): 366-371.

Demicheli, G. Hardware synthesis from C/C++ models / G. Demi-
cheli // in Design, Automation and Test in Europe, Conference and
Exhibition 1999, pp. 382-383.

Dijkstra, E.W. Letters to the editor: go to statement considered
harmful / E.W. Dijkstra // Communications of the ACM. — 1968, 11
(3): 147-148.

Drechsler, R. A genetic algorithm for variable ordering / R.
Drechsler, B. Becker, N. Gockel // IEE Proceedings, 143(6), 1996,
pp. 364-368.

Eichenberger, A.E. Stage Scheduling: A Technique to Reduce the
Register Requirements of a Modulo Schedule / A.E. Eichenberger
and E.S. Davidson // in Proc. 28" Int. Symp. on Microarchitecture,
1995, pp. 338-349.

Eker, J. CAL Language Report: Specification of the CAL Actor
Language / J. Eker and J. Janneck, // University of California-
Berkeley, December 2003.

Gao, L. A software pipelining algorithm in high-level synthesis for
fpga architectures / L. Gao, D. Zaretsky, G. Mittal, D. Schonfeld,
and P. Banerjee // in Proceedings of the 10th International Sympo-
sium on Quality Electronic Design, ISQED 2009, 2009, pp. 297—
302.

Girczyc, E.M. Loop winding—a data flow approach to functional
pipelining / E.M. Girczyc // in Proc. of the IEEE ISCAS, May 1987,
pp. 382-385.

Goodman, J.R. and Hsu, W.C. Code Scheduling and Register Allo-
cation in Large Basic Blocks / J.R. Goodman and W.C. Hsu // in
Proc. Int. Conf. on Supercomputing, 1988, pp. 442-452.

221

http://portal.acm.org/citation.cfm?id=1147025
http://portal.acm.org/citation.cfm?id=1147025
http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf
http://www.cs.unibo.it/~martini/PP/bohm-jac.pdf
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Communications_of_the_ACM

20.

21.

22.

23.

24.

25.

26.

27.

28.

Goossens, G. An efficient micro-code compiler for applications
specific DSP processors / G. Goossens, J.Rabaey, J. Vandewalle
and H.D. Man // IEEE Trans. Computer-Aided Design, vol. 9, pp.
925-937, June 1990.

Henkel, J. An Approach to Automated Hardware/Software Parti-
tioning Using a Flexible Granularity that is Driven by High-Level
Estimation Techniques / J. Henkel, R. Ernst // IEEE Transactions on
VLSI Systems, vol. 9, No. 2, 2001, pp. 273-289.

Hollingsworth, J. Critical Path Profiling of Message Passing and
Shared-Memory Programs / J. Hollingsworth // IEEE Transactions
on Parallel and Distributed Systems, vol. 9, No. 10, 1998, pp. 1029-
1040.

Hu, X. Minimizing the number of delay buffers in the synchroniza-
tion of pipelined systems / X. Hu, R.G. Harber and S.C. Bass //
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 13, no. 12, pp. 1441-
1449, Dec1994.

Hwang, C.-T. Pls: A scheduler for pipeline synthesis / C.-T. Hwang,
Y.-C. Hsu and Y.-L. Lin // Trans. Comp.-Aided Des. Integr. Cir.
Sys., vol. 12, no. 9, pp. 1279-1286, September 1993.

Hwang, K.S. Scheduling and hardware sharing in pipelined data
paths / K. S. Hwang, A. E. Casavant, C.-T. Chang, M. A. d’Abreu //
Proc. ICCAD-89, November 1989, pp. 24-27.

Javaid, H. Rapid design space exploration of application specific
heterogeneous pipelined multiprocessor systems / H. Javaid, A. Ig-
njatovic and S. Parameswaran // Trans. Comp.-Aided Des. Integ.
Cir. Sys., vol. 29, no. 11, pp. 1777-1789, Nov 2010.

Juarez, E. A System-on-a-chip for MPEG-4 Multimedia Stream
Processing and Communication / E. Juarez, M. Mattavelli and D.
Mlynek // IEEE International Symposium on Circuits and Systems,
May 28-31 2000, Geneva, Switzerland.

Jun, H.-S. Design of a pipelined datapath synthesis system for digi-
tal signal processing / H.-S. Jun and S.-Y. Hwang // Trans. Comp.-

222

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Aided Des. Integ. Cir. Sys., vol. 12, no. 3, pp. 292-303, September
1994,

Kahn, G. The semantics of a simple language for parallel program-
ming / G. Kahn // Information Processing, pp. 471-475, 1974.

Kahn, D. B. M. G. Coroutines and networks of parallel processes /
D. B. M. G. Kahn // Information Processing, 1977, pp. 993-998.

Karp, R.M. Turing Award Lecture: Combinatorics, complexity and
randomness, Communications of the ACM, vol. 29, no. 2, pp. 98-
109, Feb. 1986.

Knuth, D.E. The art of computer programming: Fundamental algo-
rithms / D.E. Knuth // Addison Wesley, 1968, Vol. 1. — 735 p.

Knuth, D.E. The art of computer programming: Seminumerical al-
gorithms / D.E. Knuth // Addison Wesley, 1969, Vol. 2. — 724 p.

Knuth, D.E. The art of computer programming: Sorting and search-
ing / D.E. Knuth // Addison Wesley, 1973, Vol. 3. — 844 p.

Ko, D.-I. The pipeline decomposition tree: an analysis tool for mul-
tiprocessor implementation of image processing applications / D.-I.
Ko and S.S. Bhattacharyya // in Proc. CODES+ISSS '06: 4th Int.
Conf. on Hardware/software codesign and system synthesis, 2006,
pp. 52-57.

Kobayashi, S. Task Scheduling Algorithm with Corrected Critical
Path Length / S. Kobayashi and S. Sagi // ISS, vol. J81-D-I, No.2,
pp. 187-194.

Kuhn, P. Instrumentation Tools and Methods for MPEG-4 VM: Re-
view and a New Proposal / P. Kuhn // Tech. Rep. M0838, ISO/IEC,
Mar. 1996.

Kwok, Y.-K. Dynamic Critical-Path Scheduling: An Effective
Technique for Allocating Task Graphs to Multiprocessors / Y.-K.
Kwok, |I. Ahmad // IEEE Transactions on Parallel and Distributed
Systems, vol. 7, No. 5, 1996, pp. 506-521.

Lee, E.A. Synchronous data flow / E.A. Lee and D.G. Messer-
schmitt // Proceedings of the IEEE, vol. 75, pp. 1235-1245, 1987.

223

http://portal.acm.org/citation.cfm?id=5658&coll=portal&dl=ACM
http://portal.acm.org/citation.cfm?id=5658&coll=portal&dl=ACM

40.

41.

42.

43.

44,

45.

46.

47.

48.

Leiserson, C.E. Optimizing synchronous systems / C.E. Leiserson
and J.B. Saxe // Journal of VLSI Computer Systems, vol. 1, no. 1,
pp. 41-67, 1983.

Liu, L. An Efficient Parallel Critical Path Algorithm /L. Liu, D. Du
and H.-C. Chen // IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 13, No. 7, 1994, pp. 909-919.

Lucarz, C. Dataflow/actor-oriented language for the design of com-
plex signal processing systems / C. Lucarz, M. Mattavelli, M.
Wipliez, G. Roquier, M. Raulet, J. Janneck, I. Miller, D. Parlour //
Proc. Conf. on Design and Architectures for Signal and Image pro-
cessing, November 2008, pp.1-8.

Lucke, L. Data-Flow Transformations for Critical Path Time Reduc-
tion in High-Level DSP Synthesis / L. Lucke, K. Parhi // IEEE
Transactions on Computer Aided Design, vol. 12, No. 7, 1993, pp.
1063-1068.

Malik, S. Performance optimization of pipelined logic circuits using
peripheral retiming and resynthesis / S. Malik, K.J. Singh, R.K.
Brayton and A. Sangiovanni-Vincentelli // Trans. Comp.-Aided
Des. Integ. Cir. Sys., vol. 12, no. 5, pp. 568-578, May 1993.

Mermet, J.P. ed., Fundamentals and Standards in Hardware De-
scription Languages. Boston: Kluwer Academic Publishers, 1993.

Mittal, S. A Survey of Value Prediction Techniques for Leveraging
Value Locality / S. Mittal // Concurrency and Computation, 2017.

Mattavelli, M. Implementing Real-Time Video Decoding on Mul-
timedia Processors by Complexity Prediction Techniques / M. Mat-
tavelli and S. Brunetton // IEEE Transactions on Consumer Elec-
tronics, vol. 44, 1998, pp. 760-767.

Mattavelli, M. Methods to explore design space for MPEG RVC
codec specifications / M. Mattavelli, S. Casale-Brunet, A. Elguindy,
E. Bezati, R. Thavot, G. Roquier and J. Janneck // Signal processing
Image Communication, Elsevier, 2013.

224

https://www.academia.edu/33619227/A_Survey_of_Value_Prediction_Techniques_for_Leveraging_Value_Locality
https://www.academia.edu/33619227/A_Survey_of_Value_Prediction_Techniques_for_Leveraging_Value_Locality

49.

50.

51.

52.

53.

54.

55.

56.

o7.

58.

Mattavelli, M. The Reconfigurable Video Coding Standard, [Stand-
ards in a Nutshell] / M. Mattavelli, I. Amer, M. Raulet // Signal Pro-
cessing Magazine, IEEE 27 (3) (2010) 159 -167.

Nurvitadhi, E. Automatic pipelining from transactional datapath
specifications / E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu // Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 30, no. 3, pp. 441-454,
March 2011.

Oh, S. Speculative loop pipelining in binary translation for hard-
ware acceleration / S. Oh, T.G. Kim, J. Cho and E.Bozorgzadeh //
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 27, no. 3, pp. 409—
422, March 2008.

Parhi, K. VLSI Digital Signal Processing Systems: Design and Im-
plementation / K. Parhi // Wiley Interscience, 1999.

Park, N. Sehwa: A software package for synthesis of pipelines from
behavioral specifications / N. Park and A.C. Parker // IEEE Trans.
Computer-Aided Design, vol. 7, pp. 358-370, March 1988.

Paulin, P.G. Force-directed scheduling for the behavioral synthesis
of ASIC’s / P. G. Paulin, and J. P. Knight // IEEE Trans. Computer-
Aided Design, vol. 8, pp. 661-679, June 1989.

Pearl, J. Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving / J. Pearl // New York, Addison-Wesley, 1983. — 382 p.

Potasman, R., Lis, J., Aiken, A. and Nicolau, A. Percolation based
synthesis / R. Potasman, J. Lis, A. Aiken and A.Nicolau // in Proc.
27th Design Automation Conf., 1990, pp. 444-449.

Prihozhy, A. Theory of equivalent transformation of algorithms in
VLSI CAD / V. Mischenko, A. Prihozhy // Minsk: Navuka i techni-
ka, 1991. — 260 p.

Prihozhy A. Methods of equivalent transformation of logical algo-
rithms in VLSI CAD / A. Prihozhy // Vesti Academy of Sciences of
Belarus, ser. f.-m.s., 1992, Ne2, ¢.86-92.

225

https://en.wikipedia.org/wiki/Judea_Pearl
https://en.wikipedia.org/wiki/Judea_Pearl

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Prihozhy, A.A. High-Level Synthesis Methodology / A. Prihozhy //
Minsk, Inst. Eng. Cybernetics, National Academy of Sciences, Bel-
arus, 1993. — 47 p.

Prihozhy, A.A. AHILES: Performance Driven High-Level Synthe-
sis from VHDL Description / A.A. Prihozhy, A.N. Smolsky // Int.
Conf. “Design Methodologies for Microelectronics”, Slovakia, Bra-
tislava, 1995, pp.45-52.

Prihozhy, A. Net scheduling in high-level synthesis / A. Prihozhy //
IEEE Design & Test of Computers, 1996 spring, pp. 24-33.

Prihozhy, A.A. Use of VHDL-Based Design Methodology and the
AHILES System for Education in Belarus / A. Prihozhy // Chapter
in book ‘“Microelectronics Education”, World Scientific, 1996,
pp.217-220.

Prihozhy, A.A. If-Diagrams: Theory and Application / A.A. Pri-
hozhy // Proc. of the European Conference PATMOS'97. — UCL,
Belgium, 1997. — P. 369 — 378.

Prihozhy, A.A. Parallel Computing with If-Decision-Diagrams /
A.A. Prihozhy, P.U. Brancevich // Proc. of the Int. Conference
PARELEC’98. — Poland, Technical University of Bialystok, 1998. —
P. 179 - 184.

Prihozhy, A. Asynchronous Scheduling and Allocation, in Proceed-
ings of the Conference DATE 98 / A.A. Prihozhy // IEEE Computer
Society, Paris, France, 1998, pp.934-935.

Prihozhy A. Mathematical methods and software for high-level
structural-parametric synthesis of digital systems / A. Prihozhy //
Thesis Doctor Habilitation: 05.13.11. — Minsk, 1998. — 496 c.

Prihozhy, A.A. Digital System High-Level Synthesis Technology /
A. Prihozhy, R.M. Merdjani, S.V. Zemlyanik // Proc. Int. Conf. “In-
formation Technologies for Education, Science and Business”,
Minsk, Belarus,1999, pp.145-149.

Prihozhy, A.A. Automatic Parallelization of Net Algorithms / A.A.
Prihozhy, R. Merdjani, F. Iskandar // Proc. Int. Conf. on Parallel

226

69.

70.

71.

72.

73.

74.

75.

76.

Computing in Electrical Engineering — PARELEC’2000. Canada,
2000, IEEE Computer Society Press, pp. 24-28.

Prihozhy, A. High-Level Synthesis through Transforming VHDL
Models / A.A. Prihozhy // in Book “System-on-Chip Methodologies
and Design Languages”, Kluwer Academic Publishers, 2001,
pp.135-146.

Prihozhy, A. High-level Synthesis through Transforming VHDL
Models / A. Prihozhy // System-on-Chip Methodologies and Design
Languages, Kluwer Academic Publishers, 2001, pp.135-146.

Prihozhy, A., Techniques for Optimization of Net Algorithms / A.
Prihozhy, D. Mlynek, M. Solomennik and M. Mattavelli //
PARELEC 2002 — Parallel Computing in Electrical Engineering,
IEEE CS Press, 2002, pp. 211-216.

Prihozhy, A. Data Dependences Critical Path Evaluation at C/C++
System Level Description / Prihozhy, A., Mattavelli, M. and
Mlynek, D. // Chapter in Book “Integrated Circuit and System De-
sign. Power and Timing Modeling, Optimization and Simulation”,
LNCS 2799, Springer, 2003, pp.569-579.

Prihozhy, A.A. Evaluation of Parallelization Potential for Efficient
Multimedia Implementations: Dynamic Evaluation of Algorithm
Critical Path / A. Prihozhy, M. Mattavelli, D. Mlynek // IEEE
Trans. on Circuits and Systems for Video Technology, Vol. 15, No.
5, May 2005, pp.593-608.

Prihozhy, A.A. If-Decision Diagram Based Modeling and Synthesis
of Incompletely Specified Digital Systems / A.A. Prihozhy, B.
Becker // Electronics and communications, Special Issue on Elec-
tronics Design. — Kyiv, 2005, pp. 103 — 108.

Prihozhy, A. Design of Parallel Implementations by Means of Ab-
stract Dynamic Critical Path Based Profiling of Complex Sequential
Algorithms / A. Prihozhy and D. Mlynek // in Book “Integrated Cir-
cuit and System Design”, LNCS 4148, Springer, 2006, pp.1-11.

Prihozhy A. Methodology for transformation of program code to
improve parameters of parallel implementations of audio codecs /

227

http://www.springerlink.com/content/978-3-540-39094-7/
http://www.springerlink.com/content/978-3-540-39094-7/
http://www.springerlink.com/content/aq3rhn46q7507601/?p=1b7b432d660449869de192882a3f9a0d&pi=0
http://www.springerlink.com/content/aq3rhn46q7507601/?p=1b7b432d660449869de192882a3f9a0d&pi=0
http://www.springerlink.com/content/aq3rhn46q7507601/?p=1b7b432d660449869de192882a3f9a0d&pi=0

77.

78.

79.

80.

81.

82.

83.

A. Prihozhy, M. Solomennik, D. Mlynek // — Electronics and Com-
munication, Vol. 31, Kyiv, 2006.

Prihozhy, A. Pipeline synthesis and optimization of FPGA-based
video processing applications with CAL / A.-H. Ab Rahman, A.
Prihozhy and M. Mattavelli, // EURASIP Journal on Image and
Video Processing, vol. 2011:19, pp. 1-28, 2011. [Online].
Available: http://dx.doi.org/10.1186/16875281-2011-19.

Prihozhy A. Optimization Methodology for Complex FPGA-based
Signal Processing Systems with CAL / A. Ab-Rahman, H. Amer, A.
Prihozhy, C. Lucarz, M. Mattavelli // Int. Conf. on Design & Archi-
tectures for Signal and Image Processing - DASIP’2011, Tampere,
Finland, Nov. 2-4, 2011. — France, ECSI, IEEE.

Prihozhy, A. Synthesis and Optimization of Pipelines for HW Im-
plementations of Dataflow Programs / A. Prihozhy, E. Bezati, H.
Rahman, M. Mattavelli. // IEEE Trans. on CAD of Integrated Cir-
cuits and Systems, Vol. 34, No. 10, 2015, pp. 1613-1626.

Prihozhy A. Heuristic genetic algorithm for optimizing computa-
tional pipelines / A. Prihozhy, A. Zhdanouski, A. Karasik, M. Mat-
tavelli // Doklady BGUIR, 2017, Ne 1, c. 34-41.

Prihozhy, A.A. Semantic model for high-level synthesis of dataflow
pipelines / A.A. Prihozhy, O.N. Karasik, O.M. Frolov // Open Se-
mantic Technologies for Intelligent Systems, Proceedings of Inter-
national Conference, February 2017. — Minsk, BSUIR, 2017, pp.
415-418.

Prihozhy, A. Efficient Dynamic Optimization Heuristics for Data-
flow Pipelines / A. Prihozhy, S. Casale-Brunet, E. Bezati, M. Mat-
tavelli. // 2018 IEEE International Workshop on Signal Processing
Systems (SiPS), 21-24 Oct. 2018, IEEE, pp. 337-342.

Ravasi, M. High-level Algorithmic Complexity Evaluation for Sys-
tem Design / M. Ravasi, M. Mattavelli // International Journal on
System Architectures, vol. 48/13-15, Elsevier Publisher, 2003, pp.
403-427.

228

http://dx.doi.org/10.1186/16875281-2011-19
https://ieeexplore.ieee.org/document/8598386/
https://ieeexplore.ieee.org/document/8598386/

84.

85.

86.

87.

88.

89.

90.

91.

RSA Data Security, Inc. PKCS #1: RSA Encryption Standard. Ver-
sion 1.4, June 1991.

Shenoy, N. Retiming: Theory and practice / N. Shenoy // VLSI
Journal Integr., vol. 22, no. 1-2, pp. 1-21, 1997.

Sun, W. FPGA pipeline synthesis design exploration using module
selection and resource sharing / W. Sun, M. Wirthlin, and S. Neu-
endorffer // Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 26, no. 2,
2007, pp. 254-265.

True Audio Codec Software [Electronic resource]. - 2018. — Mode
of access: http://www.true-audio.com. - Date of access: 11.11.2018.

Verhaegh, W.F.J. Improved force-directed scheduling in high-
throughput digital signal processing / W.F.J. Verhaegh, P.E.R. Lip-
pens, E. H.L. Aarts, J.H.M. Korst, J. Van Meerbergen and A. van
der Werf // Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 14, no. 8,
pp. 945-960, Aug 1995.

Weinhardt, M. Pipeline vectorization / M. Weinhardt and W. Luk //
Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 20, no. 2, pp. 234—
248, Feb. 2001.

Wipliez, M. Software code generation for the RVC-CAL language /
M. Wipliez, G. Roquier, and J. Nezan // Journal of Signal Pro-
cessing Systems, pp. 1-11, 20009.

Wong, Y.-C. A Parallelism Analyzer for Conservative Parallel Sim-
ulation / Y.-C. Wong, S.-Y. Hwang and Y. Lin // IEEE Transactions
on Parallel and Distributed Systems, vol. 6, No. 6, 1995, pp. 628-
638.

Hayqﬂoe U3J1aHnuEC

MPUXOKUM Anatonuii AnekceeBuy

AHAJIN3, IIPEOBPA3OBAHUE
N onNTUMM3ALUA 151 BBICOKOITPOU3BOJAUTEJBHBIX
HAPAJLIEJIbHBIX BEIYMCJIEHUAM

TexcT Ha aHTTIMIICKOM SI3BIKE

[oanucaso B neuats 19.03.2019. dopmar 60x84 '/,.. Bymara odcernas. Pusorpagus.
VYen. ney. i1, 13,37, Yu.-u3a. i1 10,45. Tupax 100. 3aka3 91.
W3znatens u nonurpaduyueckoe ucnoiHeHue: benopycckuii HaMOHATBHBIA TEXHUYECKUI YHUBEPCH-
TeT. CBUIETENIBCTBO O IOCYJAPCTBEHHOM PErHCTPALIK U3]1aTells, U3rOTOBUTEIIS, PAaCIIPOCTPaHUTENs
nevyatHeix u3ganuii Ne 1/173 ot 12.02.2014. Ilp. HesaBucumoctw, 65. 220013, r. MuHCK.

	Пустая страница
	Пустая страница

