BY 5970 C1

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ(12)

РЕСПУБЛИКА БЕЛАРУСЬ

(19) **BY** (11) **5970**

(13) **C1**

 $(51)^7$ C 22C 1/08

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

(54) КОМПОЗИЦИОННЫЙ КАРБЮРИЗАТОР

- (21) Номер заявки: а 19991175
- (22) 1999.12.29
- (46) 2004.03.30
- (71) Заявитель: Белорусский национальный технический университет (ВУ)
- (72) Авторы: Клещенак Геннадий Иванович; Слуцкий Анатолий Григорьевич; Цейгер Елена Николаевна; Супрунчик Андрей Вячеславович (ВҮ)
- (73) Патентообладатель: Белорусский национальный технический университет (ВУ)

(57)

Композиционный карбюризатор, содержащий древесный уголь, **отличающийся** тем, что он дополнительно содержит чугунную стружку и жидкое стекло при следующем соотношении компонентов, мас. %:

древесный уголь 15-35 жидкое стекло 5-10 чугунная стружка остальное.

(56)

Справочник по чугунному литью. - Л.: Машиностроение, 1978. - С. 213.

RU 2142018 C1, 1999.

RU 2016048 C1, 1994.

SU 1618766 A1, 1991.

SU 584037, 1977.

SU 472977, 1975.

Изобретение относится к области литейного производства, в частности к материалам, используемым при выплавке высокоуглеродистых сплавов на основе железа.

Известны карбюризаторы [1]: электродный бой, графит, кокс, сажа, которые используются в качестве науглероживающих добавок при выплавке чугуна и сталей для повышения содержания углерода. Электродный бой и графит характеризуются низкой зольностью (не более 2 %) и высокой характеристикой усвоения углерода 95-98 %, но эти материалы дефицитны и имеют высокую стоимость. Усвоение углерода при использовании различных видов кокса или сажи составляет 65-83 %, к тому же эти карбюризаторы характеризуются повышенной зольностью, которая достигает 8-11 %.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому эффекту является карбюризатор [2], состоящий из древесного угля. Усвоение углерода при использовании этого карбюризатора достигает 80 %, а зольность составляет 1-2 %.

Недостатком известного карбюризатора является относительно невысокая степень усвоения, связанная с очень низкой плотностью древесного угля (0,27 г/см³). В состав шихты вводится очень большое по объему количество карбюризатора, что увеличивает его контакт с кислородом воздуха, при этом соответственно увеличивается угар углерода и уменьшается степень его усвоения.

BY 5970 C1

Задачей, решаемой изобретением, является повышение степени усвоения углерода из карбюризатора.

Решение задачи достигается тем, что композиционный карбюризатор, содержащий древесный уголь, дополнительно содержит чугунную стружку и жидкое стекло при следующем соотношении компонентов, мас. %:

древесный уголь 15-30 жидкое стекло 5-10 чугунная стружка остальное.

Композиционный брикетированный карбюризатор готовится следующим образом. Путем смешивания древесного угля с водой готовится сметанообразная масса, в которую затем добавляется расчетное количество чугунной стружки и жидкого стекла. Смесь тщательно перемешивается до получения однородной массы, которая в последующем заформовывается в виде брикета и уплотняется без приложения нагрузки. Далее полученные брикеты помещаются в печь и просушиваются при температуре 150-200 °C в течение 2-3 часов до полного удаления влаги из композиционного карбюризатора.

Опытные плавки чугуна проводили в индукционной печи ИСТ-006 с использованием шихты, состоящей из чугунного и стального лома.

Композиционный карбюризатор загружали на дно печи и затем загружали стальной и чугунный лом. На заключительной стадии плавки вводилось расчетное количество ферросилиция и алюминия. Составы карбюризаторов, использованных для выплавки чугуна, содержание углерода в чугуне и степень его усвоения представлены в таблице. При использовании в качестве карбюризатора древесного угля (состав 1, прототип) усвоение углерода менее 80 %. Использование композиционного карбюризатора (составы 2-9) увеличивает усвоение углерода с 82 % до 91 %. Наиболее высокие результаты получены при использовании составов 2-4 и составов 7-8.

Увеличение содержания древесного угля более 35 % снижает усвоение углерода за счет уменьшения плотности брикетов (состав 5). Некоторое снижение усвоения углерода наблюдается при уменьшении содержания древесного угля ниже 15 % и при увеличении содержания жидкого стекла более 10 % (состав № 6, 9), что связано с уменьшением содержания углерода в карбюризаторе. При содержании жидкого стекла менее 5 % (состав) снижается усвоение углерода за счет уменьшения прочности брикетов.

Таким образом, карбюризатор заявленного состава обеспечивает повышение степени усвоения углерода до 87-91 %, что на 22-28 % выше чем для известного.

Влияние состава карбюризатора на содержание углерода в чугуне и степень его усвоения

Номер	Содержание компонентов			Содержание углерода		Расчетное	Фотетицоогоо
состава	в карбюризаторе, мас. %			в чугуне, мас. %		усвоение	Фактическое
И	Древесный	Чугунная	Жидкое	C	C.	углерода,	усвоение углерода, %
плавки	уголь	стружка	стекло	$C_{\text{расч.}}$	Сфакт.	%	углерода, 70
1	2	3	4	5	6	7	8
1	100	-	-	3,50	3,19	80	71
	прототип						
2	15	77	8	3,50	3,29	92	86
3	25	67	8	3,50	3,32	92	87
4	35	57	8	3,50	3,46	92	91
5	40	52	8	3,50	3,25	92	85
6	10	82	8	3,50	3,15	92	82
7	25	70	5	3,50	3,32	92	87
8	25	65	10	3,50	3,32	92	87
9	25	63	12	3,50	3,19	92	83
10	25	71	4	3,50	3,10	92	81

BY 5970 C1

Источники информации:

- 1. Шумихин В.С., Потрух А.Г., Кигель Н.А. Получение синтетического чугуна с компактным графитом: В сб. "Индукционная плавка чугуна". Институт проблем литья АН УССР. Киев, 1976. С. 55-63.
- 2. Справочник по чугунному литью // Под ред. Н.Г. Гиршовича. -Л.: Машиностроение. Ленинградск. отд., 1978. С. 213-216.