# 3Y 7931 C1 2006.04.30

# ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

(54)

РЕСПУБЛИКА БЕЛАРУСЬ



НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

- (19) **BY** (11) **7931**
- (13) **C1**
- (46) 2006.04.30

(51)<sup>7</sup> C 10M 169/00// (C 10M 169/00, 101:02, 121:00, 143:02, 143:06, 159:04)C 10N 30:12

### ЗАЩИТНАЯ СМАЗКА

- (21) Номер заявки: а 20021079
- (22) 2002.12.24
- (43) 2004.06.30
- (71) Заявители: Белорусский национальный технический университет; Научнотехническое производственно-внедренческое общество с ограниченной ответственностью "ТОКЕМА"; Институт проблем использования природных ресурсов и экологии Национальной академии наук Беларуси (ВУ)
- (72) Авторы: Майко Лев Павлович; Глазков Леонид Александрович; Воронцова Ольга Сергеевна; Лиштван Иван Иванович; Хоняк Диана Анатольевна; Мулярчик Валерий Владимирович; Константинов Валерий Григорьевич; Сиводед Андрей Васильевич (ВҮ)
- (73) Патентообладатели: Белорусский национальный технический университет; Научно-техническое производственновнедренческое общество с ограниченной ответственностью "ТОКЕМА"; Институт проблем использования природных ресурсов и экологии Национальной академии наук Беларуси (ВУ)
- (56) BY 970065, 1998. RU 94027348 A1, 1996. UA 49892 C2, 2002. WO 94/03561 A1. SU 515779, 1976. SU 503896, 1976. RU 2041251 C1, 1995. RU 2126817 C1, 1999. US 3655563, 1972.

(57)

Защитная смазка, включающая петролатум, экстракт фенольной очистки масел и низкомолекулярный полиэтилен, **отличающаяся** тем, что она дополнительно содержит пластификатор нефтяной - масло ПН-6, низкомолекулярный полиизобутилен марки П-12 и полиэтиленовый воск марки ПВ-200 при следующем соотношении компонентов, мас. %:

| петролатум                            | 55-61 |
|---------------------------------------|-------|
| экстракт фенольной очистки масел      | 27-29 |
| низкомолекулярный полиэтилен          | 3-5   |
| пластификатор нефтяной масло ПН-6     | 4-6   |
| низкомолекулярный полиизобутилен П-12 | 2-3   |
| полиэтиленовый воск ПВ-200            | 2-3.  |

Предлагаемое изобретение относится к антикоррозионным материалам, а именно пластичным углеводородным смазкам, предназначенным для защиты от коррозии поверхностей металлических изделий, эксплуатирующихся в атмосфере с повышенным содержанием агрессивных агентов в интервале температур от минус 40 до 65 °C.

Известна пушечная смазка, содержащая, мас. %: масло базовое марки ДС-11 - 25-35, петролатум марок ПК и/или ПС - 60-70, церезин всех марок, кроме 57, - 3-5, присадку МНИ-7 - 1,0-1,5 [1].

### BY 7931 C1 2006.04.30

Недостатком этой смазки является относительно невысокая температура каплепадения, что вызывает ее сползание с вертикальных поверхностей при температурах эксплуатации выше  $50^{\circ}$ .

Наиболее близкой по составу и достигаемому эффекту к предлагаемой является консервационная смазка, содержащая, мас. %: экстракт фенольной очистки масел - 36-38; петролатум - 56-60; низкомолекулярный полиэтилен - 3-7 [2].

Недостатком вышеуказанной смазки является низкий уровень защитных и термопластичных свойств для жестких условий применения, что ограничивает ее использование в атмосфере с повышенным содержанием хлоридов при повышенных температурах.

Задачей изобретения является создание смазки с повышенным уровнем защитных свойств и более высокими температурами каплепадения и сползания.

Поставленная задача достигается тем, что состав смазки, включающей петролатум, экстракт фенольной очистки масел и низкомолекулярный полиэтилен, дополнительно содержит пластификатор нефтяной - масло ПН-6, низкомолекулярный полиизобутилен П-12 и полиэтиленовый воск марки ПВ-200 при следующем соотношении компонентов, мас. %:

| петролатум                            | 55-61 |
|---------------------------------------|-------|
| экстракт фенольной очистки масел      | 27-29 |
| низкомолекулярный полиэтилен          | 3-5   |
| пластификатор нефтяной (масло ПН-6)   | 4-6   |
| низкомолекулярный полиизобутилен П-12 | 2-3   |
| полиэтиленовый воск ПВ-200            | 2-3.  |

Смешением при нагревании петролатума, экстракта фенольной очистки масел и низкомолекулярного полиэтилена образуется композиция, обладающая защитной эффективностью, но не обеспечивающая требуемый уровень защитных и термопластичных свойств. Для обеспечения повышенной температуры сползания и необходимой защитной эффективности в композицию введен пластификатор нефтяной ПН-6, полиэтиленовый воск марки ПВ-200 и низкомолекулярный полиизобутилен П-12. Сочетанием воска ПВ-200 и полиизобутилена П-12 в указанном соотношении достигается необходимый уровень температурных характеристик при высокой адгезии готового продукта к защищаемой поверхности в условиях эксплуатации.

В результате получена защитная смазка с необходимым уровнем защитных свойств и более высокими по сравнению с прототипом температурами каплепадения и сползания.

В табл. 1 представлены физико-химические показатели компонентов, входящих в состав защитной смазки.

Таблица 1

| Компонент, НД                                       | Показатель                                           | Норма     |
|-----------------------------------------------------|------------------------------------------------------|-----------|
| Петролатум ТУ 38.401166-90                          | температура каплепадения, °С, не ниже                | 55        |
|                                                     | испытание корродирующего действия                    | выдерж.   |
|                                                     | содержание мехпримесей, %, не более                  | 0,04      |
| Экстракт фенольной очистки                          | плотность при 20 °C, кг/м <sup>3</sup>               | 960 - 990 |
| масел ТУ РБ 05778477-25-93                          | вязкость кинематическая при 100°, мм <sup>2</sup> /с | 10-15     |
|                                                     | массовая доля воды, %                                | следы     |
| Полиэтилен низкомолекулярный                        | температура плавления в капилляре, °С                | 55-90     |
| ТУ РБ 6-05-361-9-79, тип Γ                          | зольность, %, не более                               | 0,01      |
| Пластификатор нефтяной марки ПН-6 ТУ 38.1011217-89  | вязкость кинематическая при 100°, мм <sup>2</sup> /с | 30-35     |
| Полиизобутилен низкомолеку-                         |                                                      |           |
| лярный марки П-12                                   | растворимость в нефтепродуктах                       | полная    |
| ТУ 10-04.00966671-380-93                            |                                                      |           |
| Полиэтиленовый воск марки ПВ-200 ТУ 6-0203499-24-92 | температура каплепадения, °С, не ниже                | 103       |
| 11D-200 1 5 0-0203455-24-52                         |                                                      |           |

## BY 7931 C1 2006.04.30

Защитную смазку готовят следующим образом: смесь экстракта фенольной очистки масел и нефтяного пластификатора ПН-6 нагревают до 100 °C, добавляют петролатум, нагревают до тех пор, пока температура реакционной смеси не достигнет 120 °C, растворяют петролатум, добавляют низкомолекулярный полиэтилен, сплав полиэтиленового воска ПВ-200 и низкомолекулярного полиизобутилена П-12 и повышают температуру до 115 °C. Смесь перемешивают до полного растворения компонентов. Охлаждают.

Для проведения сравнительных испытаний было приготовлено пять образцов заявляемой смазки (табл. 2).

Таблица 2

| Компоненты                            | Содержание компонентов, мас. % |     |     |     |     |
|---------------------------------------|--------------------------------|-----|-----|-----|-----|
|                                       | 1                              | 2   | 3   | 4   | 5   |
| Петролатум                            | 58                             | 55  | 61  | 63  | 53  |
| Экстракт фенольной очистки масел      | 29                             | 28  | 27  | 26  | 30  |
| Низкомолекулярный полиэтилен          | 4                              | 5   | 3   | 6   | 2   |
| Пластификатор нефтяной (масло ПН-6)   | 5                              | 6   | 4   | 3   | 7   |
| Полиэтиленовый воск ПВ-200            | 2                              | 3   | 3   | 1   | 4   |
| Низкомолекулярный полиизобутилен П-12 | 2                              | 3   | 2   | 1   | 4   |
|                                       | 100                            | 100 | 100 | 100 | 100 |

Для сравнения использовали консервационную смазку (прототип).

Оценку защитных свойств сравниваемых образцов проводили по ГОСТ 9.054-75, методы 1, 2 и 4 на пластинках из стали 10.

Измерение температуры каплепадения сравниваемых образцов смазок проводили по ГОСТ 6793-74.

Измерение температуры сползания сравниваемых образцов смазок проводили по ГОСТ 6037-75.

Результаты проведенных испытаний (табл. 3) свидетельствуют о том, что наиболее целесообразно использовать варианты 2-4 заявляемой защитной смазки, показывающие улучшенные защитные свойства и более высокую температуру каплепадения.

Таблина 3

|                                        |          | Прі | имеры | защитн | ой сма | ЗКИ |
|----------------------------------------|----------|-----|-------|--------|--------|-----|
| Наименование показателя                | Прототип |     | ПО    | вариан | гам    |     |
|                                        |          | 1   | 2     | 3      | 4      | 5   |
| Защитные свойства по ГОСТ 9.054-75,    |          |     |       |        |        |     |
| первые признаки коррозии, сутки:       |          |     |       |        |        |     |
| при повышенных значениях относительной |          |     |       |        |        |     |
| влажности и температуры воздуха        | 80       | 100 | 100   | 100    | 100    | 100 |
| при постоянном погружении в электролит | 16       | 31  | 30    | 32     | 29     | 25  |
| при повышенных значениях относительной |          |     |       |        |        |     |
| влажности и температуры воздуха и      |          |     |       |        |        |     |
| воздействии сернистого ангидрида       |          |     |       |        |        |     |
| с периодической конденсацией влаги     | 3        | 6   | 6     | 7      | 4      | 3   |
| Температура каплепадения, °С           | 62       | 72  | 73    | 75     | 76     | 70  |
| Температура сползания, °С              | 52       | 66  | 67    | 67     | 64     | 63  |

Как видно из табл. 3, вариант 3 является оптимальным. Физико-химическая характеристика варианта 3 приведена ниже:

# BY 7931 C1 2006.04.30

| внешний вид                  | однородная мазь         |
|------------------------------|-------------------------|
|                              | темно-коричневого цвета |
| температура каплепадения, °С | 74                      |
| температура сползания, °С    | 67                      |
| массовая доля воды, %        | отсутствие              |
| массовая доля мехпримесей, % | 0,04.                   |

Смазку наносят на детали путем их погружения в расплав или распылением при температуре  $80\text{-}120~^{\circ}\text{C}$ , а также кистью или технической салфеткой при температурах, обеспечивающих возможность выполнения этих операций.

Заявленная защитная смазка может быть использована для консервации неокрашенных металлоизделий на период их транспортирования и длительного хранения на открытых площадках, под навесом или в складских помещениях.

### Источники информации:

- 1. ГОСТ 19537-83. Смазка пушечная. Технические условия. С. 1-3.
- 2. Заявка РБ 970065, МПК С 10М 101/00, 119/02, 159/06, С 10N 30/02, 1998.