БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра ЮНЕСКО «Энергосбережение и возобновляемые источники энергии»

С.В. Климович И.В. Янцевич

Теплотехнический расчет наружных ограждений и тепловой баланс здания

Учебно-методическое пособие к курсовой работе

для студентов специальности
1-43 01 06 «Энергоэффективные технологии и энергетический менеджмент»

Электронный учебный материал

Минск 2019

УДК 692.23:699.86:378.147.091.313(075.8) ББК 38.711я7 К 49

Авторы:

С.В. Климович, И.В. Янцевич

Рецензент:

E.К. Костьювевич, зам. директора Института интегрированных форм обучения и мониторинга образования БНТУ, кандидат технических наук, доцент

Пособие содержит методические указания и варианты задания по курсовому проектированию по дисциплине «Энергопотребление в зданиях и сооружениях». Приведен теоретический материал и типовой вариант для теплотехнического расчета наружных ограждений здания и составления теплового баланса.

Белорусский национальный технический университет пр-т Независимости, 65, г. Минск, Республика Беларусь Тел.(017) 292-77-52 факс (017) 292-91-37 Регистрационный № БНТУ/ФТУГ – ______.2019

- © БНТУ, 2019
- © Климович С.В., Янцевич И.В., 2019
- © Янцевич И.В., компьютерный дизайн, 2019

СОДЕРЖАНИЕ

Сост	ав и оформление работы	4
Тепл	отехнический расчет наружных ограждений и тепловой баланс	
здан	ия	6
1	Определение расчетных условий	6
2	Определение расчетного сопротивления теплопередаче наружных	
	ограждающих конструкций	7
3	Определение фактического сопротивления теплопередаче	
	наружных ограждающих конструкций	13
4	Определение трансмиссионных тепловых потерь	14
5	Определение тепловых потерь с воздухообменом	18
6	Определение свободных теплопоступлений	20
7	Определение расходов тепловой энергии на отопление	21
8	Анализ фактического теплопотребления	22
9	Определение тепловых нагрузок горячего водоснабжения	24
	ература	26
-	пожение А – Бланк задания к курсовой работе	27
_	пожение Б – Задание к курсовой работе	29
Прил	пожение В – Варианты конструкции наружных стен	31
Прил	пожение Г – Варианты конструкции кровельного покрытия/	
черд	ачного перекрытия	35
Прил	пожение Д – Варианты конструкции подвального перекрытия	40
Прил	пожение Е – Варианты конструкции заполнений наружных	
свет	овых проемов	42

СОСТАВ И ОФОРМЛЕНИЕ РАБОТЫ

В процессе изучения дисциплины «Энергопотребление в зданиях и сооружениях» студентам предлагается выполнить курсовую работу с расчетно-пояснительной запиской на 20-25 страницах печатного текста, включающей в указанной последовательности структурные элементы: титульный лист; задание; содержание; введение; основная расчетная часть; заключение (выводы); список использованных источников; приложения (при необходимости).

Бланк задания (приложение A) содержит следующие сведения: тему, исходные данные в соответствии с назначенным вариантом задания и сроки выполнения работы,

Вариант задания (приложение Б) выбирается студентами по номеру в списке группы. Работа, выполненная не по своему варианту, к рассмотрению не принимается.

Требованиям к оформлению курсовой работы:

- Текст расчетно-пояснительной записки оформляется на бумаге формата A4 (210×297 мм) с размером свободных полей: левое 30 мм, правое 10 мм, верхнее и нижнее 20 мм. Шрифт текста Times New Roman черного цвета с высотой 14 рt, через интервал с множителем 1,25. Абзацы в тексте начинают отступом 5 мм, одинаковым по всему тексту.
- Сквозная нумерация страниц пояснительной записки и приложений, входящих в ее состав. Страницы нумеруются арабскими цифрами, проставляемыми в правом верхнем углу страницы. Номера страниц на титульном листе и на задании не ставятся, но включаются в общую нумерацию страниц.
- Заголовки разделов основной части записывают с абзацного отступа прописными буквами, нумеруя арабскими цифрами без точки в пределах всей пояснительной записки. Заголовки подразделов записывают с абзацного отступа строчными буквами, начиная с прописной буквы. В конце номера раздела точка не ставится.
- Выделение или подчеркивание заголовков всех структурных элементов не используется. Приложения (при наличии) обозначают заглавными буквами русского алфавита, начиная с А.
- Ссылки на использованные литературные источники должны нумероваться арабскими цифрами по порядку упоминания в тексте и помещаться в квадратные скобки. На все таблицы и рисунки должны быть сделаны ссылки в тексте. При ссылках в тексте на порядковые номера формул, таблиц, рисунков сокращения слов не допускаются, например, «... в формуле (1)», «... по таблице 1», «... на рисунке 1».
- При оформлении цифрового материала слово «Таблица» с номером и наименованием (при наличии) указывают один раз слева над таблицей. При переносе части таблицы на другую страницу над другими частями таблицы слева пишут слова «Продолжение таблицы» с указанием номера таблицы. Над

последней частью таблицы слева пишут слова «Окончание таблицы» с указанием номера таблицы. Нумеруют таблицы в пределах раздела арабскими цифрами. Название таблицы (при наличии) следует помещать сразу после номера таблицы, например, «Таблица 1 — Ведомость расчета».

- Иллюстрации следует нумеровать в пределах раздела арабскими цифрами. Слово «Рисунок», номер и наименование помещают после рисунка и пояснительных данных (если имеются), например, «Рисунок 1 Однослойная конструкция».
- Формулы, применяемые в расчетах, должны быть расшифрованы с указанием размерностей всех буквенных величин. Пояснения символов и числовых коэффициентов, входящих в формулу, если они не пояснены ранее в тексте, должны быть приведены непосредственно под формулой. Пояснения каждого символа следует давать с новой строки в той последовательности, в которой символы приведены в формуле. Первая строка пояснения должна начинаться со слова «где» без двоеточия после него. Подстановку числовых значений буквенных величин следует приводить непосредственно под формулой в той же последовательности, в какой они даны в формуле. Формулы, следующие одна за другой и не разделенные текстом, разделяют запятой. Формулы должны нумероваться в пределах раздела арабскими цифрами, которые записывают на уровне формулы справа в круглых скобках.

Объектом исследования является жилое здание старой постройки городского квартала. Характеристики здания приводятся в задании.

Целью курсовой работы является теплотехнический расчет наружных ограждений и тепловой баланс здания для последующей разработки комплекса типовых энергосберегающих мероприятий в рамках тепловой модернизации жилого здания при изучении дисциплины «Энергоэффективность в ЖКХ».

С целью систематизации материал пособия изложен в сжатой форме и не ограничивает студентов в самостоятельной работе с литературой при выполнении курсовой работы и подготовке к сдаче экзамена по дисциплине. Теоретический материал пособия сопровождается решением типового варианта.

ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ НАРУЖНЫХ ОГРАЖДЕНИЙ И ТЕПЛОВОЙ БАЛАНС ЗДАНИЯ

1 Определение расчетных условий

Определение расчетных условий определяется типом здания (в нашем случае – жилое) и географического района его постройки (указан в задании). В данной курсовой работе к расчетным условиям будем относить:

- → Расчетные параметры воздуха в помещениях для расчета наружных ограждающих конструкций здания:
 - температура внутреннего воздуха t_{e} ;
 - относительная влажность внутреннего воздуха φ_{s} .

Расчетные параметры воздуха в помещениях зданий принимаются в соответствии [3, таблица 4.1].

→ Влажностный режим помещений и условия эксплуатации ограждающих конструкций зданий в зимний период.

Влажностный режим помещений (сухой, нормальный, влажный и мокрый) и условия эксплуатации ограждающих конструкций зданий в зимний период (А, Б) принимаются в соответствии [3, таблица 4.2] в зависимости от температуры и относительной влажности внутреннего воздуха.

Следует обратить внимание, что чердачные перекрытия и перекрытия над неотапливаемыми подвалами помещений с нормальным влажностным режимом рассчитываются для условий эксплуатации ограждающих конструкций A.

- → Расчетные параметры наружного воздуха в отопительный период (для жилого здания отопительным является период года со среднесуточной температурой воздуха не более +8°C):
- $t_{x.c.}$ средняя температура наиболее холодных суток обеспеченностью 0,92;
- $-t_{x.5}$ средняя температура наиболее холодной пятидневки обеспеченностью 0,92;
 - $t_{H.om}$ средняя температура наружного воздуха за отопительный период;
 - v_{cp} максимальная из средних скоростей ветра по румбам за январь.

Расчетные параметры наружного воздуха в отопительный период принимаются по [4, таблица 3.1].

→ Продолжительность отопительного периода z_{om} , принимаемая по [4, таблица 3.1].

Ш Типовой вариант:

Определяем расчетные условия для жилого здания, расположенного в г. Славгород Могилевской области:

- 1) Расчетные параметры воздуха в помещениях для расчета наружных ограждающих конструкций здания [3, таблица 4.1]:
 - температура внутреннего воздуха $t_{\theta} = 18^{\circ}C$;
 - относительная влажность внутреннего воздуха $\varphi_{e} = 55 \%$.
- 2) Влажностный режим помещений и условия эксплуатации ограждающих конструкций зданий в зимний период принимаем в зависимости от температуры и относительной влажности внутреннего воздуха по [3, таблица 4.2]:
 - наружная стена, кровельное покрытие нормальный, Б
 - подвальное перекрытие нормальный, А
- 3) Расчетные параметры наружного воздуха в отопительный период (для периода года со среднесуточной температурой воздуха не более 8 °C) принимаем по [4, таблица 3]:
- средняя температура наиболее холодных суток обеспеченностью 0,92 и наиболее холодной пятидневки обеспеченностью 0,92:

$$t_{xc} = -29 \, {}^{o}C, \qquad t_{x5} = -24 \, {}^{o}C,$$

- средняя температура наружного воздуха за отопительный период:

$$t_{H.om} = -1.4 \, {}^{o}C,$$

максимальная из средних скоростей ветра по румбам за январь:

$$v_{cp} = 4.4 \, \text{m/c},$$

продолжительность отопительного периода:

$$z_{om} = 197 \, cym.$$

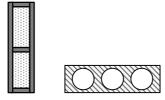
2 Определение расчетного сопротивления теплопередаче наружных ограждающих конструкций

Для выполнения курсовой работы необходимо знать *расчетные* (то есть определяемые расчетным путем исходя из известных конструкций ограждений) сопротивления теплопередаче для следующих ограждающих конструкций:

- наружной стены (H.c.) $R_{oh.c}$;

- кровельного покрытия (К.п.) $R_{o\kappa.n}$ или чердачного перекрытия (Ч.п.) $R_{oч.n}$ (в зависимости от предложенного варианта);
 - подвального перекрытия (П.п.) $R_{on.n}$;
 - заполнения световых проемов (Ок.) R_{ook} .

Расчетное сопротивление теплопередаче ограждающих конструкций (кроме заполнений световых проемов) определяется по [3, формула 5.6] в зависимости от типа конструкции:


- однородная однослойная конструкция;

многослойная конструкция с последовательно расположенными однородными слоями;

многослойная неоднородная конструкция.

Следует обратить внимание, что при определении величины расчетного сопротивления теплопередаче наружных ограждений со сплошными воздушными прослойками, вентилируемыми наружным воздухом, в расчетах учитываются только та часть конструкции, которая расположена между прослойками и помещением.

Многослойные неоднородные конструкции характеризуются неодинаковым сечением при делении какой-либо плоскостью. Типичными примерами таких конструкций являются ограждения, имеющие толстые сквозные швы раствора, горизонтальные и вертикальные стыки панелей, ребра жесткости, плитные пустоты, ригели железобетонного каркаса, диафрагмы. Всегда термически неоднородны панельные стены, а также стены из колодцевой кладки с теплоизоляционными вкладышами.

Изложенная в [3, пункт 5.11] методика расчета термически неоднородных конструкций достаточно трудоемка и требует точных сведений о схеме

теплопроводных включений и их параметрах. В этом случае расчетное сопротивление теплопередаче можно определять по формуле

$$R_o = R_o^{ycn} \cdot r, \frac{M^2 \cdot K}{Bm},\tag{1}$$

где R_o^{ycn} – условное сопротивление теплопередаче конструкции, определяемое по [3, формула 5.6] без учета теплопроводных включений; r – коэффициент термической неоднородности конструкции (принимается на основании расчета температурного поля или находится экспериментально).

В курсовой работе термически неоднородны следующие ограждения: наружные панельные стены (коэффициент термической неоднородности указан в соответствующих вариантах приложения А), покрытия/ перекрытия с многопустотной плитой в основе (методика расчета приведена ниже).

Расчетное сопротивление теплопередаче заполнений световых проемов находят для принятой их конструкции по [3, приложение Γ].

Ш Типовой вариант:

Определяем расчетные сопротивления теплопередаче наружных ограждений заданной конструкции:

1) Наружная стена (В-0):

Слой	Материал	Толщина	Плотность,					
CHOH	ivia i opriasi	слоя, м	$K\Gamma/M^3$					
— (сн	аружи помещения)							
1	Плитка	0,020	1600					
1	керамическая*	0,020	1000					
2	Кирпич глиняный	0,520	1800					
2	обыкновенный	0,320	1800					
3	Сложный раствор	0,005	1700					
+ (BH	+ (внутри помещения)							

^{* -} теплотехнические характеристики принять как для керамического кирпича плотностью 1400 кг/м^3 (брутто).

Заданная конструкция наружной стены представляет собой многослойную конструкцию с последовательно расположенными однородными слоями. В этом случае расчетное сопротивление теплопередаче ограждения определяем по [3, формулы 5.6, 5.7]:

$$R_{_{0\,\text{H.C.}}} = \frac{1}{\alpha_{_{B}}} + \frac{\delta_{_{1}}}{\lambda_{_{1}}} + \frac{\delta_{_{2}}}{\lambda_{_{2}}} + \frac{\delta_{_{3}}}{\lambda_{_{3}}} + \frac{1}{\alpha_{_{H}}} \,, \, \frac{\text{M}^2 \cdot K}{B_T} \;. \label{eq:Roberts}$$

Коэффициенты теплоотдачи внутренней и наружной поверхностей ограждающей конструкции принимаем по [3, таблицы 5.4, 5.7]:

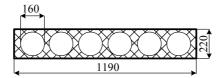
$$\alpha_{\rm g} = 8.7 \, \frac{Bm}{{\rm m}^2 \cdot K} \, \alpha_{\rm H} = 23 \, \frac{Bm}{{\rm m}^2 \cdot K}.$$

Коэффициенты теплопроводности і-ого слоя ограждения с учетом условий эксплуатации Б принимаем по [3, таблица А.1]:

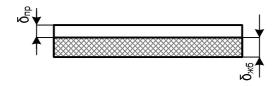
$$\lambda_1 = 0.78 \, \frac{Bm}{M \cdot K} \,$$
 (позиция 58), $\lambda_2 = 0.81 \, \frac{Bm}{M \cdot K} \,$ (позиция 52), $\lambda_3 = 0.87 \, \frac{Bm}{M \cdot K} \,$ (позиция 40).

Следовательно,

$$R_{o\ H.C.} = \frac{1}{8.7} + \frac{0.020}{0.78} + \frac{0.520}{0.81} + \frac{0.005}{0.87} + \frac{1}{23} = 0.83 \frac{M^2 \cdot K}{Bm}.$$


2) Кровельное покрытие (Г-0):

Слой	Материал	Толщина	Плотность,	
	1	слоя, м	кг/м ³	
_				
	Кровельный			
1	материал (битумы	0,070	1400	
	нефтяные)			
2	Асфальтобетонная	0.020	2100	
2	стяжка	0,030		
	Засыпка	0,040-		
3	керамзитом* по	0,040-	600	
	уклону	0,220		
	Сборная			
4	железобетонная	0.220	2500	
4	многопустотная	0,220	2300	
	плита			
-	•			


^{* -} теплотехнические характеристики принять как для керамзитового гравия

Заданная конструкция кровельного покрытия представляет собой многослойную неоднородную конструкцию, поскольку в ее состав входит многопустотная плита.

В задании указаны характеристики многопустотной железобетонной плиты $(A \times B - \text{геометрические размеры}, N - количество пустот в одной плите):$

Заменим конструкцию плиты эквивалентной ей конструкцией, состоящей из слоя замкнутой воздушной прослойки и однородного слоя железобетона:

Для этого применим следующий прием:

Площадь пустот в плите:

$$S = N \cdot \frac{\pi \cdot d^2}{4} = 6 \cdot \frac{3,14 \cdot 0,16^2}{4} = 0,121 \text{ m}^2.$$

Толщина приведенной замкнутой воздушной прослойки, по площади эквивалентной площади пустот в плите:

$$\delta_{np} = \frac{S}{A} = \frac{0.121}{1.19} = 0.10 \text{ m}.$$

Приведенная толщина железобетона:

$$\delta_{\mathcal{H}CO} = B - \delta_{np} = 0.220 - 0.10 = 0.12 \text{ M}.$$

Теперь конструкцию кровельного покрытия можно считать многослойной с последовательно расположенными однородными слоями. Расчетное сопротивление теплопередаче ограждения определяем по [3, формулы 5.6, 5.7]:

$$R_{o \kappa.n.} = \frac{1}{\alpha_{e}} + \frac{\delta_{1}}{\lambda_{1}} + \frac{\delta_{2}}{\lambda_{2}} + \frac{\delta_{3}}{\lambda_{3}} + \frac{\delta_{\mathcal{H}\tilde{O}}}{\lambda_{4}} + R_{e.np} + \frac{1}{\alpha_{H}}, \frac{M^{2} \cdot K}{Bm},$$

где коэффициенты теплоотдачи внутренней и наружной поверхностей ограждающей конструкции принимаем по [3, таблицы 5.4, 5.7]; коэффициенты теплопроводности i-ого слоя ограждения с учетом условий эксплуатации Б принимаем по [3, таблица A.1]; термическое сопротивление замкнутой воздушной прослойки (температуру воздуха в прослойке считаем положительной) находим по [3, таблица Б.1] с учетом ее толщины $\delta_{\text{пр}}$ и

направления потока тепла снизу вверх; толщину слоя керамзита δ_3 берем среднюю в заданном интервале.

$$R_{o \ \kappa.n.} = \frac{1}{8.7} + \frac{0.070}{0.27} + \frac{0.030}{1.05} + \frac{0.130}{0.20} + \frac{0.12}{2.04} + 0.15 + \frac{1}{23} = 1.31 \frac{M^2 \cdot K}{Bm}.$$

3) Подвальное перекрытие (Д-0):

Слой	Моторион	Толщина	Плотность,	
Слои	Материал	слоя, м	$\kappa\Gamma/M^3$	
+				
	Доска половая			
1	сосновая	0,030	500	
	$(\lambda_{\text{cyx}} = 0.18 \text{ BT/(M·K)})$			
2	Воздушная	0,050		
	прослойка	0,030		
2	Плита	0,020	800	
3	древесноволокнистая	0,020	800	
1	Железобетонная	0,220	2500	
4	плита	0,220	2300	
_	·			

Заданная конструкция подвального перекрытия представляет собой многослойную конструкцию с последовательно расположенными однородными слоями. Расчетное сопротивление теплопередаче ограждения определяем по [3, формулы 5.6, 5.7]:

$$R_{o n.n.} = \frac{1}{\alpha_e} + \frac{\delta_1}{\lambda_1} + R_{e.np} + \frac{\delta_3}{\lambda_3} + \frac{\delta_4}{\lambda_4} + \frac{1}{\alpha_H}, \frac{M^2 \cdot K}{Bm},$$

где коэффициенты теплоотдачи внутренней и наружной поверхностей ограждающей конструкции принимаем по [3, таблицы 5.4, 5.7]; коэффициенты теплопроводности *i*-ого слоя ограждения с учетом условий эксплуатации А принимаем по [3, таблица A.1]; термическое сопротивление замкнутой воздушной прослойки (температуру воздуха в прослойке считаем положительной) находим по [3, таблица Б.1] с учетом ее толщины и направления потока тепла сверху вниз.

$$R_{o\ n.n.} = \frac{1}{8.7} + \frac{0.030}{0.29} + 0.17 + \frac{0.020}{0.19} + \frac{0.220}{1.92} + \frac{1}{12} = 0.69 \frac{M^2 \cdot K}{Bm}.$$

4) Заполнение наружных световых проемов (Е-1):

Расчетное сопротивление теплопередаче для двойного остекления в деревянных раздельных переплетах находим согласно [3, приложение Г]:

$$R_{o\ o\kappa.} = 0.42 \frac{M^2 \cdot K}{Bm}.$$

3 Определение фактического сопротивления теплопередаче наружных ограждающих конструкций

В теплотехнических расчетах должно участвовать фактическое сопротивление теплопередаче R_{ϕ} наружных ограждений, которое всегда меньше расчетного, что особенно проявляется для конструкций с длительным сроком эксплуатации.

Причины тому следующие:

- Нарушение технологии при промышленном производстве строительных конструкций, приводящее к отклонению реальных физических свойств материалов от нормативных;
- Наличие производственно-технологического брака, особенно это справедливо для сборных бетонных конструкций (сколы, трещины, заужения и т.д.);
- Нарушения на стадии строительства зданий (низкое качество монтажных и отделочных работ, перерасход или недорасход материалов, несоблюдение проектных толщин и т.д.);
- Необратимое ухудшение теплотехнических качеств наружных ограждений при их длительной эксплуатации (физическое разрушение и увлажнение материалов, возникновение трещин, усадка теплоизоляционного материала в панелях и т.д.).

Фактическое (реальное) сопротивление теплопередаче наружных ограждений определяют на основании расчета температурного поля.

В курсовой работе фактическое сопротивление теплопередаче наружных ограждающих конструкций следует определить с помощью поправочного коэффициента:

$$R_{\phi} = R_o \cdot \varepsilon, \ \frac{M^2 \cdot K}{Rm} \tag{2}$$

где R_o – расчетное сопротивление теплопередаче конструкции; ε – поправочный коэффициент, в работе условно принимаемый равным: 0.90 – для наружных стен, кровельных покрытий и заполнений наружных световых проемов, 0.95 – для чердачных и подвальных перекрытий.

Пиповой вариант:

Определяем фактические сопротивления теплопередаче ограждений по формуле (2), полагая в ней величину поправочного коэффициента для

наружных стен, кровельного покрытия и заполнений наружных световых проемов $\epsilon = 0.90$, для подвального перекрытия $\epsilon = 0.95$:

$$\begin{split} R_{\phi \ \text{h.c.}} &= R_{o \ \text{h.c.}} \cdot \varepsilon = 0.90 \cdot 0.83 = 0.75 \, \frac{\text{m}^2 \cdot \text{K}}{\text{Bm}}, \\ R_{\phi \ \text{K.n.}} &= R_{o \ \text{K.n.}} \cdot \varepsilon = 0.90 \cdot 1.31 = 1.18 \, \frac{\text{m}^2 \cdot \text{K}}{\text{Bm}}, \\ R_{\phi \ \text{n.n.}} &= R_{o \ \text{n.n.}} \cdot \varepsilon = 0.95 \cdot 0.69 = 0.66 \, \frac{\text{m}^2 \cdot \text{K}}{\text{Bm}}, \\ R_{\phi \ \text{o.k.}} &= R_{o \ \text{o.k.}} \cdot \varepsilon = 0.90 \cdot 0.42 = 0.38 \, \frac{\text{m}^2 \cdot \text{K}}{\text{Bm}}. \end{split}$$

4 Определение трансмиссионных тепловых потерь

Трансмиссионные тепловые потери через наружные ограждения обусловлены процессами теплообмена.

Расчетный (наибольший) расход тепловой энергии на компенсацию трансмиссионных тепловых потерь через наружные ограждающие конструкции Q_m определяют согласно [5, пункт Ж.1]:

$$Q_{m} = \frac{A \cdot (t_{g} - t_{H}) \cdot (1 + \Sigma \beta) \cdot n}{R_{\phi}}, Bm, \qquad (3)$$

где A — расчетная площадь ограждающей конструкции, M^2 ; R_{ϕ} — фактическое сопротивление теплопередаче ограждающей конструкции, $(M^2 \cdot K)/BT$; t_{θ} — расчетная температура внутреннего воздуха, C; t_{θ} — расчетная зимняя температура наружного воздуха, C; $\Sigma \beta$ — добавочные теплопотери в долях от основных теплопотерь; n — коэффициент, учитывающий положение наружной поверхности ограждающей конструкции по отношению к наружному воздуху, принимается по [3, таблица 5.3].

Согласно [5] расчетная зимняя температура наружного воздуха соответствует температуре наиболее холодной пятидневки обеспеченностью 0,92.

В курсовой работе: расчетную площадь наружных стен (H.c.), подвального перекрытия (П.п.), чердачного перекрытия (Ч.п.) или кровельного покрытия (К.п.) определить, используя данные о размерах по наружному габариту, этажности и высоте этажа здания (учитывается высота, ограничивающая отапливаемый объем). Расчетную площадь заполнений наружных световых проемов (Ок.) — через заданный коэффициент остекления здания ф, то есть отношение площади окон к площади наружных вертикальных ограждений.

К добавочным теплопотерям $\Sigma \beta$ в данной работе будем относить только потери, связанные с ориентацией наружных вертикальных ограждений по сторонам горизонта. Их принимают согласно [5, пункт Ж.2].

Следует обратить внимание, что при определении трансмиссионных теплопотерь через перекрытие над неотапливаемым подвалом или через чердачное перекрытие расчетная зимняя температура наружного воздуха принимается равной фактической температуре воздуха, создаваемой в подвале или на чердаке. Последняя определяется из уравнения теплового баланса подвала или чердака.

В курсовой работе фактические температуры воздуха, создаваемые в подвале и на чердаке (в вариантах с чердачной крышей) при расчетной зимней температуре наружного воздуха указаны в бланках заданий.

Результат расчета трансмиссионных тепловых потерь записывают в «Ведомость расчета трансмиссионных тепловых потерь жилого здания» (Таблица 1).

🕮 Типовой вариант:

Определяем трансмиссионные тепловые потери для 5-этажного жилого дома, расположенного в г. Славгород Могилевской области.

Жилой дом в плане имеет прямоугольную форму с ориентацией главного (большего) фасада на северо-запад (СЗ), размеры по наружному габариту $11,8\times65,4$ м, высота этажа 3,0 м. Под всем зданием расположен неотапливаемый подвал со световыми проемами. Крыша здания — совмещенная малоуклонная невентилируемая. Коэффициент остекления здания $\phi = 0,20$. Фактическая температура в подвале при расчетной зимней температуре наружного воздуха $t_{\mu}^{n} = 4,0\,^{o}C$.

Фактические сопротивления теплопередаче ограждений определены:

$$R_{\phi \ n.n.} = 0.75 \frac{M^2 \cdot K}{Bm},$$
 $R_{\phi \ \kappa.n.} = 1.18 \frac{M^2 \cdot K}{Bm},$
 $R_{\phi \ n.n.} = 0.66 \frac{M^2 \cdot K}{Bm},$
 $R_{\phi \ o\kappa.} = 0.38 \frac{M^2 \cdot K}{Bm}.$

Выполним расчет для главного фасада:

Расчетная площадь наружной стены и заполнений световых проемов:

$$A_{_{\text{H.C.}}} = (1 - \phi) \cdot A_{_{\phi ac}} = (1 - 0.2) \cdot (65.4 \cdot 15) = 784.8 \text{ м}.$$
 $A_{_{\text{OK.}}} = \phi \cdot A_{_{\phi ac}} = 0.2 \cdot (65.4 \cdot 15) = 196.2 \text{ м}.$

Здесь $A_{\phi ac}$ – площадь фасада здания, где 65,4 м – длина здания по наружному габариту, 15 м — высота, ограничивающая отапливаемый объем (5 этажей каждый высотой 3 м), φ – заданный коэффициент остекления.

Расчетная зимняя температура наружного воздуха [5]:

$$t_{H} = t_{x.5}(0.92) = -24 \, {}^{o}C$$
.

Расчетная разность температур с учетом коэффициента, учитывающего положение наружной поверхности ограждения по отношению к наружному воздуху, принимаемого по [3, таблица 5.3]:

$$(t_{B} - t_{H}) \cdot n = (18 + 24) \cdot 1 = 42$$
 °C.

Добавочные теплопотери для наружных вертикальных ограждений, обращенных на северо-запад, согласно [5, пункт Ж.2]: $\Sigma \beta = 0,1$.

Следовательно, по [5, формула Ж.1]:

$$Q_{m \ H.C.} = \frac{784,8 \cdot 42 \cdot (1+0,1)}{0,75} \cdot 10^{-3} = 48,3 \ \kappa Bm,$$

$$Q_{m \ OK.} = \frac{196,2 \cdot 42 \cdot (1+0,1)}{0.38} \cdot 10^{-3} = 23,9 \ \kappa Bm.$$

По остальным ограждениям расчет выполняется аналогично (результаты расчетов сведены в таблицу 1), расчетный расход тепловой энергии на компенсацию трансмиссионных тепловых потерь в целом по дому составит: $Q_m = 205,7 \ \kappa Bm$.

 Таблица 1 – Ведомость расчета трансмиссионных тепловых потерь жилого здания

_		xanakteni	истика наружног	о огражле	ния				
Расчетная температура внутреннего воздуха t_{e} $^{\circ}$ С	наименование	ориентация по сторонам горизонта	размеры, м	коэффициент остекления ϕ	площадь <i>А</i> , м ²	фактическое сопротивление теплопередаче ограждения R_{ϕ} , $(\mathrm{M}^2 \cdot \mathrm{K})/\mathrm{Br}$	расчетная разность температур $(t_{\mathfrak{g}}-t_{n})\cdot n,^{\circ}\mathbb{C}$	добавочные теплопотери Σeta	расчетные тепловые потери, Q_m ,к $B_{ m T}$
1	2	3	4	5	6	8	9	10	11
	H.c.	C3	65,4.15,0		784,80	0,75	42	0,1	48,3
	Ок.	<u></u>	05,4 15,0		196,20	0,38	72	0,1	23,9
	H.c.	СВ	11,8.15,0		141,60	0,75	42	0,1	8,7
	Oк.	<u>CB</u>	11,015,0	0,20	35,40	0,38		0,1	4,3
18	H.c.	ЮВ	65,4.15,0	0,20	784,80	0,75	42	0,05	46,1
10	Ок.	IOD	05,4 15,0		196,20	0,38	72	0,03	22,8
	H.c.	ЮЗ	11,8.15,0		141,60	0,75	42	0	7,9
	Ок.	103	11,613,0		35,40	0,38	42	U	3,9
	К.п.	_	11,8.65,4	_	771,72	1,18	42	_	27,5
	П.п.	_	11,8.65,4	_	771,72	0,66	(18-4)·0,75=10,5	_	12,3
								Всего	205,7

5 Определение тепловых потерь с воздухообменом

Проникновение наружного воздуха в помещения происходит путем инфильтрации (воздухопроницание через поры, щели и неплотности в ограждениях, обусловленное ветровым и тепловым давлением) и при их вентиляции, обусловленной санитарными нормами. В случае естественной вытяжной вентиляции наружный воздух поступает в помещения через открытые проемы (окна, двери, ворота, вентиляционные каналы)

В помещениях жилых зданий при естественной вытяжной вентиляции удаляемый воздух не компенсируется подогретым приточным воздухом. Согласно [5, пункты К.1, К.2] расчетный (наибольший) расход тепловой энергии на компенсацию тепловых потерь с воздухообменом Q_{6030} следует принимать равным

$$Q_{eo3\partial} = max\{Q_1, Q_2\},$$

где Q_1 – расход тепловой энергии на компенсацию тепловых потерь инфильтрацией, Bt; Q_2 – расход тепловой энергии на компенсацию тепловых потерь по расчетному удалению вытяжного воздуха, обеспечивающему санитарные нормы, Bt.

B курсовой работе величину Q_1 для здания следует определять через коэффициент инфильтрации μ , представляющий собой отношение теплопотерь Q_1 к трансмиссионным теплопотерям и определяемый по формуле

$$\mu = \frac{Q_1}{Q_m} = b \sqrt{2gL\left(1 - \frac{T_H}{T_g}\right) + K_{a \ni p} (v_{cp} \cdot \beta)^2}$$
 (4)

где b — постоянная инфильтрации, для жилого здания b = 0,035 с/м; g — ускорение свободно падающего тела, g = 9,81 м/с²; L — расчётная высота для среднего этажа здания, $L \approx 0,25 \cdot H$ (H — свободная высота здания, м); T_{H} , T_{G} — расчетные температуры наружного и внутреннего воздуха, K; K_{GSP} — аэродинамический коэффициент, K_{GSP} = 0,6; V_{CP} — максимальная из средних скоростей ветра по румбам в январе, м/с; β — поправочный коэффициент, учитывающий несовпадение во времени принятых в расчёте скорости ветра и температуры наружного воздуха, для условий РБ β = 0,6.

Величина Q_2 для здания определяется по формуле

$$Q_2 = 0.28 \cdot L_n \cdot \rho_{\mathcal{B}} \cdot c \cdot (t_{\mathcal{B}} - t_{\mathcal{H}}) \cdot k, \ Bm, \tag{5}$$

где L_n — расход удаляемого воздуха, не компенсируемого подогретым приточным воздухом, м³/ч, для жилых зданий санитарный удельный нормативный расход равен 3 м³/ч на 1 м² жилой площади; ρ_e — плотность воздуха в помещении, определяемая по [3, формула 8.4], кг/м³; k — коэффициент

учета влияния встречного теплового потока в конструкциях, равный: 0.8 - для окон с раздельными переплетами; 1.0 - для окон со спаренными переплетами.

B курсовой работе жилую площадь здания $A_{\mathcal{R}}$ следует определять через заданный объемный коэффициент здания K_{o6} :

$$K_{o\delta} = \frac{V}{A_{\mathcal{H}}} \tag{6}$$

Ш Типовой вариант:

Определяем тепловые потери с воздухообменом для предложенного жилого здания.

Расчетный (наибольший) расход тепловой энергии на компенсацию тепловых потерь с воздухообменом $Q_{sos\partial}$ принимается равным

$$Q_{BO3JI} = max\{Q_1, Q_2\}.$$

Определяем величину тепловых потерь инфильтрацией вследствие ветрового и теплового давления Q_1 , для чего предварительно находим коэффициент инфильтрации (формула 4):

$$\mu = b \sqrt{2gL \left(1 - \frac{T_{H}}{T_{B}}\right) + K_{asp} (v_{cp} \cdot \beta)^{2}},$$

$$L \approx 0.25H = 0.25 \cdot 16.2 = 4.05 \text{ m}.$$

$$T_{e} = 291 \ K.$$

$$T_{_{H}} = 249 \ K.$$

Максимальная из средних скоростей ветра по румбам за январь [4, таблица 3.1]: $v_e = 4.4 \ m/c$.

$$\mu = 0.035 \cdot \sqrt{2 \cdot 9.81 \cdot 4.05 \cdot \left(1 - \frac{249}{291}\right) + 0.6 \cdot (4.4 \cdot 0.6)^2} = 0.138.$$

Тогда:

$$Q_{_1} = \mu \cdot Q_{_{\mathrm{T}}} = 0,138 \cdot 205,7 = 28,4$$
 кВт.

Находим величину тепловых потерь Q_2 по расчетному удалению вытяжного воздуха, обеспечивающему санитарные нормы, определив компоненты [5, формула К.2].

Исходя из санитарного удельного нормативного расхода 3 ${\rm m}^3/{\rm q}$ на 1 ${\rm m}^2$ жилой площади, расход удаляемого воздуха, не компенсируемого подогретым приточным воздухом:

$$L_n = 3 \cdot A_{_{\mathcal{H}}} , \frac{M^3}{q}.$$

Общая жилая площадь через заданный объемный коэффициент здания:

$$A_{\mathcal{H}} = \frac{V_{_{H}}}{K_{ob}} = \frac{11,8 \cdot 65,4 \cdot 16,2}{6,2} = 2016,4 \text{ m}^2,$$

$$L_n = 2016, 4 \cdot 3 = 6049, 2 \frac{M^3}{4}.$$

Плотность внутреннего воздуха [3, формула 8.4]:

$$\rho_{e} = \frac{11,90}{9,8} = 1,21 \frac{\kappa z}{M^{3}}.$$

Следовательно,

$$Q_2 = 0.28 \cdot 6049.2 \cdot 1.21 \cdot 1.42 \cdot 0.8 = 68.9 \text{ } \kappa Bm,$$

$$Q_{603\partial} = \max\{28,4;68,9\} = 68,9 \text{ } \kappa Bm.$$

6 Определение свободных теплопоступлений

В жилых зданиях учитывают общие бытовые теплопоступления, источниками которых являются люди, искусственное освещение, бытовые приборы. В соответствии с [5, изменение №4 от 19.04.2010, пункт 6.1] теплопоступления принимают из расчета 9 Вт на 1 м² жилых помещений и кухонь:

$$Q_c = 9 \cdot A_{\mathcal{H}} \quad , Bm \tag{7}$$

B курсовой работе жилая площадь здания $A_{\mathcal{H}}$ (площадью кухонь пренебрегаем) определяется из выражения (6).

Пиновой вариант:

Определяем величину свободных теплопоступлений для предложенного жилого здания.

Исходя из расчета 9 Вт на 1 м^2 жилых помещений и кухонь, общие бытовые теплопоступления Q_c , источниками которых являются люди, искусственное освещение, бытовые приборы, составят:

$$Q_c = 21 \cdot A_{co} \cdot 10^{-3} = 9 \cdot 2016, 4 \cdot 10^{-3} = 18,1 \text{ } \kappa Bm.$$

7 Определение расходов тепловой энергии на отопление жилого здания

Расчетный (наибольший) расход тепловой энергии на отопление жилого здания Q_o определяется по условию наибольшего дефицита теплоты ($Q_c = 0$):

$$Q_o = Q_m + Q_{oo3\partial}, Bm, \tag{8}$$

где Q_m – расчетный расход тепловой энергии на компенсацию трансмиссионных тепловых потерь; Q_{soso} – расчетный расход тепловой энергии на компенсацию тепловых потерь с воздухообменом;

Средний расход тепловой энергии на отопление жилого здания за отопительный период Q_a^{cp} :

$$Q_o^{cp} = \left(Q_m + Q_{BO3\partial}\right) \cdot \frac{t_B - t_{H.OM}}{t_B - t_H}, Bm, \qquad (9)$$

где $t_{{\scriptscriptstyle H.OM}}$ – средняя температура наружного воздуха за отопительный период, °С.

Годовой расход тепловой энергии на отопление жилого здания $Q_o^{\it 200}$ следует определять с учетом [5, приложение A]:

$$Q_o^{\text{год}} = 0.024 \cdot \left(Q_o^{\text{cp}} - \eta \cdot Q_c\right) \cdot Z_{\text{ot}}, \kappa B_T \cdot \Psi, \tag{10}$$

где z_{om} – продолжительность отопительного периода, сут; η_1 – коэффициент, принимаемый в зависимости от способа регулирования системы отопления по [5, таблица A.1], в курсовой работе: водяное отопление без регулирования $\eta_1 = 0.2$.

Для сведений: через участки наружных ограждений, расположенные за отопительными приборами, а также в результате остывания теплоносителя в трубопроводах, проложенных в неотапливаемых помещениях, имеют место дополнительные тепловые потери, на величину которых реальный расход тепловой энергии на отопление и вентиляцию здания больше величины, рассчитанной по формуле (13). Согласно [5, пункт М.4] величина дополнительных тепловых потерь должна приниматься не более 7%, в курсовой работе дополнительные тепловые потери не учитываем.

🕮 Типовой вариант:

Определяем требуемые расходы тепловой энергии на отопление жилого дома, используя определенные ранее величины.

Расчетный (наибольший) расход тепловой энергии на отопление жилого здания Q_o :

$$Q_o = Q_m + Q_{6030} = 205,7 + 68,9 = 274,6 \ \kappa Bm,$$

Средний расход тепловой энергии на отопление жилого здания за отопительный период Q_o^{cp} :

$$Q_o^{cp} = \left(Q_m + Q_{_{6030}}\right) \cdot \frac{t_{_{\scriptscriptstyle B}} - t_{_{_{\scriptscriptstyle H.OM}}}}{t_{_{\scriptscriptstyle B}} - t_{_{_{\scriptscriptstyle H}}}} = \left(205,7 + 68,9\right) \cdot \frac{18 + 1,4}{18 + 24} = 126,8 \text{ } \kappa Bm.$$

Годовой расход тепловой энергии на отопление жилого здания Q_o^{2o0} с учетом [5, приложение A]:

$$Q_o^{zoo} = 0.024 \cdot \left(Q_o^{cp} - \eta \cdot Q_c\right) \cdot z_{om} = 0.024 \cdot \left(126.8 - 0.2 \cdot 18.1\right) \cdot 197 = 582.4 \ MBm \cdot v \ \left(500.9 \ \Gamma \kappa a \pi\right),$$

где $\eta_1 = 0,2$ соответствует водяному отоплению без регулирования.

8 Анализ фактического теплопотребления жилого дома

Эффективность теплопотребления гражданских зданий определяется их классом по показателю удельного расхода тепловой энергии на отопление и вентиляцию в отопительном периоде. Согласно принятой классификации энергетической эффективности зданий [6] выделяют семь классов: A+, A, B, C, D, E, F.

Классы А+, А, В, С устанавливают для модернизируемых и реконструируемых зданий на стадии разработки проекта с последующим их уточнением по результатам эксплуатации.

Соответствие зданий классам В, А и А+ по потреблению тепловой энергии на отопление и вентиляцию достигается:

- рациональным объемно-планировочным решением и компактностью здания;
- рациональным остеклением фасада здания;
- рациональным уровнем тепловой защиты ограждающих конструкций;
- применением в инженерных системах здания теплоутилизирующих установок или других технических средств.

Классы D, E, F устанавливают для эксплуатируемых зданий с целью разработки очередности и мероприятий по реконструкции и тепловой модернизации этих зданий.

Проектирование вновь возводимых жилых зданий классов по потреблению тепловой энергии на отопление и вентиляцию – C, D, E, F – не допускается.

Критерием отнесения здания к тому или иному классу служит величина удельного расхода тепловой энергии на отопление и вентиляцию в отопительный период $q_{3\partial}$ [6].

B курсовой работе величину $q_{3\partial}$ определяем по формуле:

$$q_{3\partial} = \frac{Q_o^{2o\partial}}{A_{om}} , \frac{Bm}{M^2}, \tag{11}$$

где отапливаемую площадь здания (суммарная площадь пола этажей здания, определяемая по внутреннему периметру наружных вертикальных ограждающих конструкций) условно находим следующим образом:

$$A_{om} = 0.9 \cdot N \cdot (A \cdot B) , \quad m^2$$
 (12)

Здесь N, A, B – соответственно заданные этажность, ширина и длина здания.

В курсовой работе необходимо определить класс жилого здания по показателю удельного расхода тепловой энергии на отопление и вентиляцию в отопительном периоде.

Пиповой вариант:

Отапливаемая площадь жилого дома:

$$A_{om} = 0.9 \cdot N \cdot (A \cdot B) = 0.9 \cdot 5 \cdot (11.8 \cdot 65.4) = 3472.74 \text{ m}^2$$

Годовой удельный расход тепловой энергии на отопление жилого дома:

$$q_{3\partial} = \frac{Q_o^{20\partial}}{A_{om}} = \frac{582,4 \cdot 10^3}{3472,74} = 167,7 \frac{\kappa Bm \cdot u}{M^2}.$$

$$q_{_{3д}}(5)$$
 этажей) $\succ 134 \frac{\kappa B_{T} \cdot \Psi}{M^{2}} \Rightarrow$

Согласно [6, таблица 4] жилой дом относится к классу F по показателю удельного расхода тепловой энергии на отопление и вентиляцию отопительном периоде, говорит эффективности что 0 низкой теплопотребления: здание нуждается модернизации инженерного В оборудования и тепловой модернизации.

9 Определение тепловых нагрузок горячего водоснабжения

Средненедельная тепловая нагрузка горячего водоснабжения жилого здания $Q_{\epsilon}^{cp.h}$ определяется согласно [7, приложение A]:

$$Q_c^{cp.H} = \frac{1,2 \cdot a \cdot m \cdot c \cdot (55 - t_x)}{24 \cdot 3,6}, Bm, \qquad (13)$$

где a – норма расхода горячей воды с температурой t_2 = 55°C на одного жителя в средние сутки, принимаемая в зависимости от степени комфортности здания по [8, приложение Б], л; m – число жителей в здании, чел, c – удельная теплоемкость воды, равная 4,19 кДж/(кг·К); t_x – температура холодной (водопроводной) воды в отопительный период, принимаемая равной 5°C.

Число жителей в курсовой работе следует определять исходя из заданной обеспеченности жилой площадью (с округлением до следующего целого числа):

$$m = \frac{A_{\mathcal{H}}}{f_{\mathcal{H}}} \tag{14}$$

Средняя за сутки максимального водопотребления тепловая нагрузка горячего водоснабжения жилого здания $Q_z^{cp.c}$ определяется по [9, формула 2.32]:

$$Q_{\scriptscriptstyle \mathcal{Z}}^{cp.c} = \chi_{\scriptscriptstyle H} \cdot Q_{\scriptscriptstyle \mathcal{Z}}^{cp.H} , Bm , \qquad (15)$$

где $\chi_{\scriptscriptstyle H}$ – коэффициент недельной неравномерности расхода теплоты, для жилых зданий $\chi_{\scriptscriptstyle H}$ =1,14.

Расчетная (максимально-часовая) тепловая нагрузка горячего водоснабжения жилого здания Q_z^p определяется по [9, формула 2.33]:

$$Q_{z}^{p} = \chi_{H} \cdot \chi_{C} \cdot Q_{z}^{cp.H} , Bm , \qquad (16)$$

где χ_c – коэффициент суточной неравномерности расхода теплоты за сутки максимального водопотребления, для жилых зданий $\chi_c = 2,00$.

Годовой расход теплоты на горячее водоснабжение Q_z^{cod} определяется по [9, формула 2.35]:

$$Q_{\varepsilon}^{\rho o \partial} = 0.024 \cdot Q_{\varepsilon}^{cp.H} \cdot \left(z_{om} + \beta \cdot \frac{55 - t_{x.n}}{55 - t_{x}} \left(z_{\varepsilon} - z_{om} \right) \right), \kappa Bm \cdot \psi, \tag{17}$$

где z_z , z_{om} – продолжительность работы системы горячего водоснабжения и длительность отопительного периода соответственно, сут; β – коэффициент снижения расхода воды на горячее водоснабжение в летний период, β = 0,8;

 $t_{x,n}$ – температура холодной (водопроводной) воды в летний период, принимаемая равной 15°C.

Ш Типовой вариант:

Определяем требуемые тепловые нагрузки горячего водоснабжения.

Число жителей жилого дома, исходя из заданной обеспеченности жилой площадью:

$$m = \frac{A_{\mathcal{H}}}{f_{\mathcal{H}}} = \frac{2016,4}{12} = 168,03 \approx 169$$
 чел.

Средненедельная тепловая нагрузка горячего водоснабжения жилого здания согласно [7, приложение А]:

$$Q_{\varepsilon}^{cp.h} = \frac{1,2 \cdot a \cdot m \cdot c \cdot (55 - t_{x}) \cdot 10^{-3}}{24 \cdot 3,6} =$$

$$= \frac{1,2 \cdot 105 \cdot 169 \cdot 4,19 \cdot (55 - 5) \cdot 10^{-3}}{24 \cdot 3.6} = 51,6 \ \kappa Bm,$$

где $a = 105 \, n / (чел \cdot cym)$ для жилых домов с ваннами длиной от 1500 до 1700 мм, оборудованными душами, согласно [8, приложение Б].

Средняя за сутки максимального водопотребления тепловая нагрузка горячего водоснабжения жилого здания по [9, формула 2.32]:

$$Q_{\scriptscriptstyle \mathcal{E}}^{cp.c} = \chi_{\scriptscriptstyle H} \cdot Q_{\scriptscriptstyle \mathcal{E}}^{cp.H} = 1{,}14\cdot51{,}6 = 58{,}8~\kappa Bm$$
 ,

где коэффициент недельной неравномерности расхода теплоты $\chi_{_H} = 1,14$.

Расчетная (максимально-часовая) тепловая нагрузка горячего водоснабжения жилого здания по [9, формула 2.33]:

$$Q_{z}^{p} = \chi_{H} \cdot \chi_{c} \cdot Q_{z}^{cp.H} = 1.14 \cdot 2.00 \cdot 51.6 = 117.7 \,\kappa Bm$$
,

где коэффициент суточной неравномерности расхода теплоты за сутки максимального водопотребления $\chi_c = 2{,}00$.

Годовой расход теплоты на горячее водоснабжение по [9, формула 2.35]:

$$\begin{split} &Q_{_{\Gamma}}^{^{\mathrm{rog}}}=0,\!024\cdot Q_{_{\Gamma}}^{^{\mathrm{cp.H}}}\cdot\!\left(z_{_{\mathrm{OT}}}\!+\!\beta\cdot\!\frac{55\!-\!t_{_{_{\mathrm{X.J.}}}}}{55\!-\!t_{_{_{\mathrm{X}}}}}\!\left(z_{_{\Gamma}}\!-\!z_{_{\mathrm{OT}}}\right)\right)\!=0,\!024\cdot51,\!6\times\\ &\times\!\left(197\!+\!0,\!8\cdot\!\frac{55\!-\!15}{55\!-\!5}\cdot\!\left(350\!-\!197\right)\right)\!=365,\!2\;\mathrm{MBt}\cdot\mathbf{q}\;\left(314,\!1\Gamma\mathrm{кал}\right). \end{split}$$

ЛИТЕРАТУРА

- 1. ТКП 45-1.01-4-2005 Национальный комплекс технических нормативных правовых актов в области архитектуры и строительства. Основные положения.
- 2. ТКП 45-3.02-113-2009 Тепловая изоляция наружных ограждающих конструкций зданий и сооружений. Строительные нормы проектирования.
- 3. ТКП 45-2.04-43-2006 Строительная теплотехника.
- 4. СНБ 2.04.02-2000 Строительная климатология.
- 5. СНБ 4.02.01-03 Отопление, вентиляция и кондиционирование воздуха.
- 6. ТКП 45-2.04-196-2010 Тепловая защита зданий. Теплоэнергетические характеристики.
- 7. ТКП 45-4.02-182-2009 Тепловые сети. Строительные нормы проектирования.
- 8. ТКП 45-4.01-52-2007 Системы внутреннего водоснабжения зданий. Строительные нормы проектирования.
- 9. Соколов Е.Я. Теплофикация и тепловые сети: Учебник для вузов. 7 -е изд., стереот. М.: Издательство МЭИ, 2001. 472 с.: ил.
- 10. Горбач А.В. Энергоэффективность в жилищно-коммунальном хозяйстве: учебно-методическое пособие ПО курсовой работе «Тепловая модернизация реконструкцией жилого здания участка внутриквартальной тепловой сети» для студентов специальности 1-43 01 «Энергоэффективные технологии энергетический И менеджмент»/А.В. Горбач. – Минск: БГТУ, 2010. – 104 с.

приложение а

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Факультет технологии управления и гуманитаризации

y_{TI}	верждаю		
Зав	едующий	кафедрой	
		1 / 1	
~	»	20	- Г.

ЗАДАНИЕ ПО КУРСОВОМУ ПРОЕКТИРОВАНИЮ

Обучающемуся
1. Тема курсовой работы « Теплотехнический расчет наружных ограждений и тепловой баланс здания»
 Сроки сдачи законченной работы 20 г.
 Исходные данные к работе. Вариант №
Жилое зданиег. постройки, расположенное в
г Республики Беларусь.
Здание в плане имеет прямоугольную форму с ориентацией главного фасада
(δ) на и размерами по наружному габариту (а×в)×м. Свободная
высота здания (Н) составляетм.
В планировочном плане зданиесекционное,этажное с высотой этажа
(h)M.
Под всем зданием расположен не отапливаемый подвал со световыми
проемами.
Крыша здания
Конструкции наружных ограждений здания: Наружная стена (приложение В)
Кровельное покрытие/чердачное перекрытие (приложение Γ)
Подвальное перекрытие (приложение Д)
проемов (приложение Е)
Коэффициент остекления злания (ф)
Коэффициент остекления здания (ϕ) Объемный коэффициент здания (K_{of}) M^3/M^2 .
Обеспеченность жилой площадью (f_{w}) $m^{2}/\text{чел}$.
Фактическая температура при расчетной зимней температуре наружного
воздуха: в подвале $(t_{H}^{\text{ п}})$ °С и на чердаке $(t_{H}^{\text{ ч}})$ °С (в случае чердачной
кровли).
4. Содержание расчетно-пояснительной записки (перечень вопросов, которые подлежат разработке):
4.1. Введение.

4.2. Определение расчетных условий.

- 4.3. Определение расчетного сопротивления теплопередаче наружных ограждающих конструкций.
- 4.4. Определение фактического сопротивления теплопередаче наружных ограждающих конструкций.
- 4.5. Определение трансмиссионных тепловых потерь.
- 4.6. Определение тепловых потерь с воздухообменом.
- 4.7. Определение свободных теплопоступлений.
- 4.8. Определение расходов тепловой энергии на отопление.
- 4.9. Анализ фактического теплопотребления.
- 4.10. Определение тепловых нагрузок горячего водоснабжения.
- 4.11. Заключение.

Список использованных источников.

5. Консультант по курсовой работе
6. Дата выдачи задания 20 г.
7. Примерный календарный график выполнения курсовой работы с указанием
сроков выполнения и трудоемкости отдельных этапов: п.4.14.3;
$_{} - \pi.4.44.5; _{} - \pi.4.64.8; _{} - \pi.4.94.11.$
Руководитель
(подпись)
Подпись обучающегося
<u> </u>

приложение б

Задание к курсовой работе

	Характеристика здания									
Вари-	Год	Город	δ	а, м	<i>b</i> , м	Н, м	Этаж-		<i>h</i> , м	
1	2	3	4	5	6	7	8	9	10	11
0*	1968	Славгород	C3	11,8	65,4	16,2	5	4	3,0	Совмещенная малоуклонная невентилируемая
1	1970	Брест	C	12,4	50,6	10,2	3	3	3,0	Совмещенная плоская невентилируемая
2	1972	Пинск	CB	12,6	81,5	15,9	5	5	3,0	Совмещенная плоская невентилируемая
3	1974	Барановичи	В	11,8	52,8	16,0	5	3	3,0	Совмещенная малоуклонная невентилируемая
4	1976	Минск	ЮВ	12,6	64,8	28,4	9	4	3,0	Совмещенная малоуклонная невентилируемая
5	1978	Борисов	Ю	12,4	50,3	9,8	3	3	3,0	Совмещенная плоская невентилируемая
6	1980	Витебск	Ю3	12,5	34,1	13,1	4	2	3,0	Плоская рулонная с полупроходным чердаком
7	1982	Полоцк	3	13,4	67,2	17,8	5	4	3,0	Чердачная с кровлей из рулонных материалов
8	1984	Гомель	C3	12,6	49,6	11,8	3	3	3,0	Чердачная с кровлей из штучных материалов
9	1986	Жлобин	C	11,9	62,8	16,0	5	4	3,0	Совмещенная плоская невентилируемая
10	1987	Могилев	CB	12,5	46,4	10,0	3	3	3,0	Совмещенная плоская невентилируемая
11	1969	Бобруйск	В	12,8	63,0	16,4	5	5	3,0	Совмещенная малоуклонная невентилируемая
12	1971	Гродно	ЮВ	12,0	32,0	13,8	4	2	3,0	Совмещенная малоуклонная невентилируемая
13	1973	Лида	Ю	12,4	45,5	10,5	3	3	3,0	Совмещенная плоская невентилируемая
14	1975	Волковыск	Ю3	12,2	30,6	11,0	3	2	3,0	Чердачная с кровлей из штучных материалов
15	1977	Новогрудок	3	13,2	58,2	29,0	9	4	3,0	Плоская рулонная с полупроходным чердаком
16	1979	Брест	C3	12,8	35,1	10,6	3	3	3,0	Чердачная с кровлей из рулонных материалов
17	1981	Пинск	C	12,4	88,2	28,0	9	6	3,0	Совмещенная плоская невентилируемая
18	1983	Барановичи	CB	12,7	64,8	10,0	3	4	3,0	Совмещенная плоская невентилируемая
19	1985	Минск	В	11,8	33,6	13,2	4	2	3,0	Совмещенная малоуклонная невентилируемая
20	1987	Борисов	ЮВ	12,2	39,4	16,0	5	3	3,0	Совмещенная малоуклонная невентилируемая

^{* –} типовой вариант

Приложение Б – окончание

			ſ	Кон	Конструкция наружных				
	φ	$K_{o\delta}$, M^3/M^2	$f_{\!\scriptscriptstyle \mathcal{H}}, \ { m M}^2$ /чел		огражд			$t_{\scriptscriptstyle H}^{n}$, °C	$t_{\scriptscriptstyle H}^{\scriptscriptstyle q}$, °C
			м /чел	H.c.	К.п./Ч.	П.п.	Ок.		
1	12	13	14	15	16	17	18	19	20
0*	0,20	6,2	12	B - 0	Γ-0	Д-0	E - 1	4,0	ı
1	0,22	5,8	10	B - 1	Γ - 1	Д-1	E - 1	6,0	-
2	0,20	5,9	11	B - 2	Γ - 2	Д-2	E - 2	7,0	-
3	0,20	6,0	12	B - 3	Γ - 3	Д-3	E - 1	2,5	-
4	0,18	6,1	13	B - 4	Γ - 4	Д-1	E - 2	1,5	ı
5	0,22	6,2	14	B - 5	Γ - 5	Д-2	E - 1	7,5	-
6	0,22	6,3	15	B - 6	Γ-6	Д-3	E - 2	3,2	2,6
7	0,20	6,4	10	B - 7	Γ - 7	Д-1	E - 1	6,4	5,8
8	0,22	6,5	11	B - 8	Γ-8	Д-2	E - 2	7,0	7,2
9	0,20	6,6	12	B - 9	Γ - 1	Д-3	E - 1	3,8	_
10	0,22	5,8	13	B - 1	Γ - 2	Д-1	E - 2	7,0	-
11	0,20	5,9	14	B - 2	Γ - 3	Д-2	E - 1	7,4	-
12	0,22	6,0	15	B - 3	Γ - 4	Д-3	E - 2	4,4	-
13	0,22	6,1	10	B - 4	Γ - 5	Д-1	E - 1	7,2	-
14	0,22	6,2	11	B - 5	Γ-6	Д-2	E - 2	7,8	3,2
15	0,18	6,3	12	B - 6	Γ - 7	Д-3	E - 1	1,6	1,4
16	0,22	6,4	13	B - 7	Γ-8	Д - 1	E - 2	2,4	4,8
17	0,18	6,5	14	B - 8	Γ - 1	Д-2	E - 1	7,2	ı
18	0,22	6,6	15	B - 9	Γ - 2	Д-3	E - 2	6,0	ı
19	0,22	5,8	10	B - 1	Γ - 3	Д-1	E - 1	5,5	ı
20	0,20	5,9	11	A - 2	Γ - 4	Д-2	E - 2	7,0	

приложение в

Варианты конструкции наружных стен

B-0 Конструкция наружной стены представляет собой кладку из сплошного обыкновенного кирпича с облицовкой керамической плиткой под «кабанчик» и оштукатуренного с внутренней стороны.

Слой	Материал	Толщина	Плотность,				
Слои	Материал	слоя, м	$\kappa\Gamma/M^3$				
— (сна	аружи помещения)						
1	Плитка	0,020	1600				
1	керамическая*	0,020	1000				
2	Кирпич глиняный	0,520	1800				
2	обыкновенный	0,320	1000				
3	Сложный раствор	0,005	1700				
+ (внутри помещения)							

^{* -} теплотехнические характеристики принять как для керамического кирпича плотностью 1400 кг/м³ (брутто)

B-1 Конструкция наружной стены представляет собой кладку из сплошного силикатного кирпича с двусторонней штукатуркой.

	1	1	<i>J</i>	
Слой	Материал	Толщина	Плотность,	
Слои	материал	слоя, м	$\kappa\Gamma/M^3$	
— (сна	аружи помещения)			
1	Известково-	0,020	1600	
1	песчаный раствор	0,020	1600	
2	Кирпич сплошной	0,510	1800	
	силикатный	0,310	1000	
	Листы гипсовые			
3	обшивочные	0,020	800	
3	(сухая	0,020	800	
	штукатурка)			
+ (вну	три помещения)			

B-2 Конструкция наружной стены представляет собой кладку из керамического пустотелого кирпича, облицованного снаружи силикатным кирпичом и оштукатуренного с внутренней стороны.

Слой	Материал	Толщина	Плотность,
Слои	Материал	слоя, м	кг/м ³
— (сн	аружи помещения)		
1	Кирпич сплошной	0,130	1700
1	силикатный	0,130	1700
	Кирпич	0,380	
	керамический		
2	пустотелый		1600
	плотностью 1400		
	кг/м ³ (брутто)		
3	Гипсоперлитовый	0,020	600
	раствор	0,020	000
+ (внутри помещения)			

B-3 Наружная стена выполнена из монолитного аглопоритобетона с

двусторонней штукатуркой.

Слой	Материал	Толщина	Плотность,
Слои	тугатериал	слоя, м	$\kappa\Gamma/M^3$
— (сна	аружи помещения)		
1	Цементно-	0,025	1400
1	шлаковый раствор		
2	Аглопоритобетон	0,520	1600
3	Известково-	0,010	1600
3	песчаный раствор	0,010	1000
★ (внутри помещения)			

<u>B-4</u> Наружная стена выполнена из монолитного керамзитобетона с наружным фактурным слоем и обшивкой гипсовыми листами с внутренней стороны.

Слой	Материал	Толщина	Плотность,
		слоя, м	$\kappa\Gamma/M^3$
(снаружи помещения)			
1	Сложный раствор	0,030	1700
2	Керамзитобетон	0,500	1800
3	Плиты из гипса	0,010	1200
+ (внутри помещения)			

 ${\bf B} - {\bf 5}$ Наружная стена выполнена из калиброванных силикатных блоков с

двусторонней штукатуркой.

Слой	Материал	Толщин а слоя, м	Плотност ь, кг/м ³
— (сна	аружи помещения)		
1	Известково- песчаный раствор	0,030	1600
2	Силикатные блоки	0,500	1700
3	Поризованный гипсоперлитовый раствор	0,020	500
★ (внутри помещения)			

B-6 Наружная стена выполнена из трехслойных панелей с ребристой железобетонной оболочкой и теплоизоляционным слоем из минеральной ваты.

Слой	Материал	Толщина	Плотность,
Слои	материал	слоя, м	$\kappa\Gamma/M^3$
— (сна	аружи помещения)		
1	Железобетон	0,080	2500
	Жесткие		
	минераловатные		
2	плиты на	0,120	250
	синтетическом		
	связующем		
3	Железобетон	0,050	2500
◆ (внутри помещения)			

Коэффициент термической неоднородности: r = 0.70.

 $\underline{\mathbf{B}-\mathbf{7}}$ Наружная стена выполнена из трехслойных панелей с ребристой железобетонной оболочкой, заполненной вкладышами из пеностекла.

Слой	Материал	Толщина	Плотность,	
Слои		слоя, м	$\kappa\Gamma/M^3$	
— (сна	(снаружи помещения)			
1	Железобетон	0,070	2500	
2	Пеностекло	0,120	180	
3	Железобетон	0,060	2500	
+ (внутри помещения)				

Коэффициент термической неоднородности: r = 0.80.

B-8 Наружная стена выполнена из сборных панелей с замкнутой воздушной прослойкой, покрытых изнутри сухой штукатуркой.

Слой	Материал	Толщина	Плотность,
Слои	Материал	слоя, м	$\kappa\Gamma/M^3$
— (сна	аружи помещения)		
	Керамзитобетон		
1	(на керамзитовом	0,200	600
	песке)		
2	Воздушная прослойка	0,050	
3	Железобетон	0,200	2500
	Листы гипсовые		
4	обшивочные (сухая	0,020	800
	штукатурка)		
+ (вну	три помещения)		

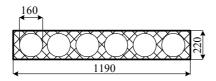
Коэффициент термической неоднородности: r = 0.90.

B-9 Наружная стена выполнена из однослойных керамзитопенобетонных панелей с наружным фактурным слоем и отделкой фибролитовыми плитами с внутренней стороны.

Слой	Материал	Толщи на слоя, м	Плотност ь, кг/м ³	
(снаружи помещения)				
1	Известково-песчаный раствор	0,020	1600	
2	Керамзитопенобетон	0,400	1000	
3	Плиты фибролитовые	0,030	800	
+ (внутри помещения)				

Коэффициент термической неоднородности: r = 0.95.

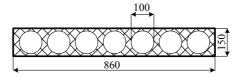
приложение г


Варианты конструкции кровельного покрытия/чердачного перекрытия

$\underline{\Gamma - 0}$ Кровельное покрытие

Слой	Материал	Толщи на слоя, м	Плотност ь, кг/м ³
— (сна	пружи помещения)		
1	Кровельный материал (битумы нефтяные)	0,070	1400
2	Асфальтобетонная стяжка	0,030	2100
3	Засыпка керамзитом* по уклону	0,040- 0,220	600
4	Сборная железобетонная многопустотная плита	0,220	2500
+ (вну	три помещения)		

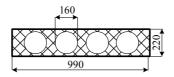
^{* -} теплотехнические характеристики принять как для керамзитового гравия


Характеристика многопустотной железобетонной плиты:

$\Gamma - 1$ Кровельное покрытие

Слой	Материал	Толщина	Плотность,
Citori	Trial opiiasi	слоя, м	кг/м ³
— (сн	аружи помещения)		
1	Битум кровельный	0,015	1200
2	Стяжка из сложного	0,010	1700
2	раствора		
3	Пенобетон	0,100	400
1	Пароизоляция	0,010	600
_ +	(пергамин)	0,010	000
5	Железобетонная	0,150	2500
	панель	0,130	2300
+ (BH	утри помещения)		

Характеристика железобетонной панели:


 $\Gamma - 2$ Кровельное покрытие

Сло й	Материал наружи помещения)	Толщин а слоя, м	Плотност ь, кг/м ³
1	Гидроизоляционное покрытие из перлита	0,050	400
2	Аглопоритобетонная ребристая плита	0,035	1800
3	Воздушная прослойка	0,250	
4	Пакля	0,060	150
5	Аглопоритобетонная ребристая плита	0,035	1800
+ (BI	нутри помещения)		

$\underline{\Gamma - 3}$ Кровельное покрытие

Слой	Материал	Толщина слоя, м	Плотность, $\kappa \Gamma/M^3$
— (сн	аружи помещения)		
1	Гидроизоляционный ковер (рубероид)	0,020	600
2	Стяжка из битума	0,040	1000
3	Засыпка керамзитом* по уклону	0,040- 0,260	600
4	Пароизоляция (пергамин)	0,005	600
5	Сборная железобетонная многопустотная плита	0,220	2500
+ (внутри помещения)			

^{* -} теплотехнические характеристики принять как для керамзитового гравия Характеристика многопустотной железобетонной плиты:

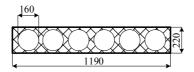
$\Gamma - 4$ Кровельное покрытие

0.0	Материал	Толщина	Плотность,
Слой		слоя, м	$\kappa\Gamma/M^3$
— (сн	аружи помещения)		
1	Гидроизоляционный	0,010	600
1	ковер (толь)		
2	Стяжка из	0,030	2100
	асфальтобетона		
	Засыпка из	0,060- 0,200	200
3	котельного шлака* по		
	уклону	0,200	
4	Железобетонная	0,200	2500
	плита	0,200	2300
★ (внутри помещения)			

^{* -} теплотехнические характеристики принять как для керамзитового гравия $\Gamma - 5$ Кровельное покрытие

Слой	Материал	Толщина	Плотность, $\kappa\Gamma/M^3$
— (сн	аружи помещения)	слоя, м	KI / M
1	Гидроизоляционный ковер (пергамин)	0,050	600
2	Цементно-песчаная стяжка	0,025	1800
3	Битум кровельный	0,020	1400
4	Железобетонная плита	0,035	2500
5	Воздушная прослойка	0,200	
6	Плиты минераловатные	0,060	200
7	Железобетонная плита	0,035	2500
+ (внутри помещения)			

$\Gamma - 6$ Чердачное перекрытие


Слой	Материал	Толщина	Плотность,	
		слоя, м	$\kappa\Gamma/M^3$	
— (сн	(снаружи помещения)			
1	Битумоперлит	0,100	400	
2	Железобетонная	0,100	2500	
2	плита	0,100	2300	
3	Плиты фибролитовые	0,020	800	
+ (BH)	★ (внутри помещения)			

$\underline{\Gamma-7}$ Чердачное перекрытие

Слой	Материал	Толщи на слоя, м	Плотност ь, кг/м ³
— (C	наружи помещения)	T	T
1	Стяжка из цементно-	0,040	1400
1	шлакового раствора	0,040	1400
2	Засыпка из котельного	0.100	800
	шлака*	0,100	800
3	Пароизоляция (толь)	0,010	600
	Сборная		
4	железобетонная	0,220	2500
	многопустотная плита		
★ (внутри помещения)			

^{* -} теплотехнические характеристики принять как для керамзитового гравия

Характеристика многопустотной железобетонной плиты:

 $\Gamma - 8$ Чердачное перекрытие

Слой	Материал	Толщина	Плотность,
Слои		слоя, м	$\kappa\Gamma/M^3$
— (сн	аружи помещения)		
1	Засыпка из	0,100	800
1	керамзитового гравия		
2	Пароизоляция	0,020	600
	(рубероид)		
	Накат из сосновых		
3	досок	0,080	500
	$(\lambda_{\text{cyx}} = 0.18 \text{ BT/(M·K)})$		
4	Гипсоперлитовая	0,020	600
	штукатурка по драни		
+ (внутри помещения)			

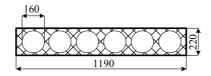
приложение д

Варианты конструкции подвального перекрытия

$\underline{\underline{\mathcal{I}} - \mathbf{0}}$ Подвальное перекрытие

Слой	Материал	Толщина	Плотность,
Слои		слоя, м	$\kappa\Gamma/M^3$
+ (BH	утри помещения)		
	Доска половая		
1	сосновая	0,030	500
	$(\lambda_{\rm cyx} = 0.18 \; {\rm BT/(M \cdot K)})$		
2	Воздушная прослойка	0,050	
3	Плита	0,020	800
3	древесноволокнистая		800
4	Железобетонная	0,220	2500
	плита		2300
— (снаружи помещения)			

$\underline{\mathbf{J}} - \mathbf{1}$ Подвальное перекрытие


Слой	Материал	Толщина	Плотность,
Слои		слоя, м	$\kappa\Gamma/M^3$
+ (BH	утри помещения)		
1	Древесноволокнистая	0,018	1000
1	плита		
2	Воздушная прослойка	0,030	
3	Утеплитель	0,060	400
3	(котельный шлак*)		
4	Железобетонная	0,035	2500
	плита		2300
(снаружи помещения)			

^{* -} теплотехнические характеристики принять как для керамзитового гравия

$\underline{\underline{\mathcal{I}} - 2}$ Подвальное перекрытие

Слой	Материал	Толщина	Плотность,
CHOH		слоя, м	$\kappa\Gamma/M^3$
+ (BH	утри помещения)		
1	Линолеум	0,005	1600
	(многослойный)		
2	Стяжка из		
	сложного	0,030	1700
	раствора		
3	Железобетонная		
	многопустотная	0,220	2500
	плита		
(снаружи помещения)			

Характеристика многопустотной железобетонной плиты:

 $\underline{\mathcal{I}} - \underline{\mathbf{3}}$ Подвальное перекрытие

Слой	Материал	Толщина слоя, м	Плотность, $\kappa\Gamma/M^3$
+ (BH	утри помещения)		2-2-7-2-2
1	Паркетная клепка из дуба (λ _{сух} = 0,10 Вт/(м·К))	0,017	700
2	Асфальтобетонная стяжка	0,065	2100
3	Утеплитель (котельный шлак*)	0,070	400
4	Железобетонная плита перекрытия	0,035	2500
(снаружи помещения)			

^{* -} теплотехнические характеристики принять как для керамзитового гравия

приложение е

Варианты конструкции заполнений наружных световых проемов

- $\underline{E-1}$ Двойное остекление в деревянных раздельных переплетах.
- E-2 Двойное остекление в деревянных спаренных переплетах.