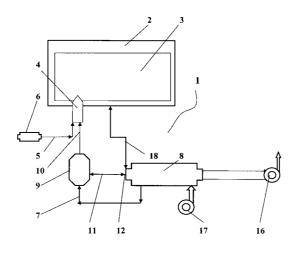
ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

(12)

(54)

РЕСПУБЛИКА БЕЛАРУСЬ

НАЦИОНАЛЬНЫЙ ЦЕНТР ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ


- (19) **BY** (11) **20541**
- (13) **C1**
- (46) **2016.10.30**
- (51) ΜΠΚ **F 27B 3/00** (2006.01)

ПЕЧНОЙ АГРЕГАТ

- (21) Номер заявки: а 20121861
- (22) 2012.12.28
- (43) 2014.08.30
- (71) Заявитель: Белорусский национальный технический университет (BY)
- (72) Авторы: Трусова Ирина Александровна; Кабишов Сергей Михайлович; Менделев Дмитрий Владимирович; Ратников Павел Энгелевич; Хлебцевич Всеволод Алексеевич (ВҮ)
- (73) Патентообладатель: Белорусский национальный технический университет (BY)
- (56) BY 11501 C1, 2009. RU 2017056 C1, 1994. RU 2050522 C1, 1995. RU 2278325 C1, 2006. SU 1401059 A1, 1988.

(57)

Печной агрегат, содержащий металлический футерованный корпус с рабочей камерой, горелочными устройствами, соединенными посредством трубопроводов со средством подачи природного газа, и патрубком для выхода дымовых газов; рекуперативный теплообменник, соединенный с патрубком для выхода дымовых газов и дымососом, отличающийся тем, что содержит нагнетатель воздуха, соединенный с рекуперативным теплообменником, и мембранное средство для разделения подогретого в рекуперативном теплообменнике воздуха на смесь кислорода с азотом и азот, включающее патрубок для выхода смеси кислорода с азотом, соединенный с горелочными устройствами, и патрубок для выхода азота, соединенный с рекуперативным теплообменником.

Фиг. 1

Изобретение относится к металлургической и машиностроительной отраслям промышленности, в частности к технологии и устройствам для высокотемпературного нагрева металлических заготовок перед их последующей технологической обработкой.

Известны способы нагрева металла путем сжигания газообразного топлива в замкнутом объеме камеры сжигания печи, футерованной огнеупорным материалом [1].

Недостатком технологии является значительный расход топлива на нагрев металла, традиционных массивных материалов футеровки и пода печи, отсутствие, как правило, подогрева воздуха на горение, рециркуляции отходящих газов в камере сжигания, наличие в ней застойных зон, низкие коэффициенты лучистого и конвективного теплообмена.

Реализующие известную технологию устройства - тепловые газовые печные нагревательные агрегаты - камерные, проходные, методические и т.н. нагревательные печи, которые, как следствие недостатков используемых способов нагрева, обладают крайне низким термическим коэффициентом полезного действия - КПД [2].

Используемые в них традиционные инжекционные факельные горелки, как правило, создают в объеме печи локальные зоны высокой температуры, которые определяет возникновение мощных локальных тепловых потоков, приводящих к разрушению футеровки и температурным деформациям заготовок, т.е. к браку.

С локальными тепловыми потоками борются путем увеличения внутреннего объема печи, что приводит к снижению полезного использования тепла дымовых газов собственно на нагрев металла, в результате чего генерированное тепло используется неэффективно.

Большинство промышленных нагревательных печей, как правило, не оборудованы системами рекуперации тепла уходящих дымовых газов, автоматическими системами управления и регулирования технологическими процессами, а тепловые и гидродинамические режимы этих печей требуют существенного совершенствования.

Совкупность вышеперечисленного приводит к тому, что известные технологии нагрева металла чрезмерно энергозатратны и имеют очень низкий тепловой КПД (5-15 %) [3].

В качестве прототипа принят печной нагревательный агрегат, включающий металлический послойно футерованный металлический корпус с горелочными устройствами, соединенным посредством трубопроводов со средством подачи газообразного топлива, например, природного газа и со средством подачи воздуха в рекуперативный теплообменник [4].

Наличие рекуперативного теплообменника, позволяет осуществлять подогрев первичного воздуха, подающегося на горение, за счет теплоты уходящих дымовых газов после сжигания газообразного топлива.

Недостаток прототипа проявляется в неэффективном использовании современных газогорелочных устройств, имеющих широкий диапазон регулирования мощности, позволяющих выполнять регулирование соотношения газ-воздух, осуществляющих более равномерный нагрев в рабочем пространстве печи.

Отсутствие технологичной рециркуляции подаваемого на горение воздуха и дымовых газов, изменяющей оптические характеристики высокотемпературного рабочего пространства печи, влияющие на качество и эффективность процесса горения и нагрева.

При сжигании топлива например природного газа, в высокотемпературных технологических установках в качестве окислителя используется кислород воздуха, стоимость которого соизмерима или превышает стоимость природного газа. Основные тепловые потери в таких установках определяются температурой и количеством уходящих газов. Воздух на 71 % состоит из азота, теплота, выделяющаяся при сжигании топлива, частично расходуется на нагрев азота, поступающего в составе воздуха горения. В результате возникают высокие потери с уходящими газами: перерасход топлива на подогрев азота, тепловое загрязнение атмосферы, высокое количество окиси азота-NO_x.

Энергетические потери можно уменьшить путем рекуперации теплоты уходящих газов для подогрева воздуха на горение по прототипу, но за счет большого объема продуктов сгорания, в которых более 70 % азота, теряется до 30-40 % и более теплоты.

Задачей изобретения является разработка комплексной технологии повышения энергоэффективности, экологии производительности печного нагревательного агрегата путем снижения количества окиси азота- NO_x и повышения КПД сжигании топлива.

Поставленная задача достигается тем, что печной агрегат, содержащий металлический футерованный корпус с рабочей камерой, горелочными устройствами, соединенными посредством трубопроводов со средством подачи природного газа, и патрубком для выхода дымовых газов; рекуперативный теплообменник, соединенный с патрубком для выхода дымовых газов и дымососом, также содержит нагнетатель воздуха, соединенный с рекуперативным теплообменником, и мембранное средство для разделения подогретого в рекуперативном теплообменнике воздуха на смесь кислорода с азотом и азот, включающее патрубок для выхода смеси кислорода с азотом, соединенный с горелочными устройствами, и патрубок для выхода азота, соединенный с рекуперативным теплообменником.

Технический результат изобретения проявляется в повышении коэффициента полезного действия (КПД) горелочного устройства и уменьшении тепловых потерь с уходящими газами их экологии и снижения количества NO_x .

Для лучшего понимания изобретение поясняется фигурами, где

фиг. 1 - общий вид печного нагревательного агрегата для нагрева металлических изделий перед последующей механической обработкой; фиг. 2 - в печном нагревательном агрегате средство для разделения воздуха на кислородоазотную смесь и азот выполнено по мембранной схеме разделения воздуха.

Печной агрегат 1 включает металлический футерованный корпус 2 с рабочей камерой 3 с горелочными устройствами 4, соединенными посредством трубопроводов 5 со средством 6 подачи газообразного топлива и посредством трубопроводов 7 со средством подачи воздуха в рекуперативный теплообменник 8.

Нагревательный агрегат 1 снабжен средством 9 для разделения и рециркуляции подогретого воздуха в рекуперативном теплообменнике 8 на смесь кислорода с азотом и азот. Выходной патрубок 10 смеси кислорода с азотом средства 9 соединен с горелочными устройствами 4, а выходной азотный патрубок 11 средства 9 соединен с одним из входов 12 рекуперативного теплообменника 8 для догрева в нем подогреваемого на горение воздуха. В печном агрегате 1 для рециркуляции подогретого воздуха в рекуперативном теплообменнике 8 и для разделения его на смесь кислорода и азота в соотношении около 40 % кислорода + 60 % азота средство 9 для разделения выполнено по фиг. 2 по мембранной схеме для разделения воздуха.

В основе разделения газовых сред с помощью мембранных кислородных установок лежит разница в скоростях проникновения компонентов в газовой смеси через вещество мембраны. Процесс разделения обусловлен разницей в парциальных давлениях на различных сторонах мембраны.

Средство 9, выполненное по мембранной схеме для разделения воздуха, характеризует современный мембранный модуль, используемый в кислородных установках. Мембранный модуль средства 9 состоит из сменного мембранного картриджа 13 и корпуса 14. Плотность упаковки волокон 15 в картридже 13 достигает значений 500-700 квадратных метров волокна 15 на один кубический метр картриджа 13, что позволяет минимизировать размеры кислородных установок.

Современная газоразделительная мембрана представляет собой не плоскую пластину или пленку, а полое волокно 15. Для технологий мембранного разделения газов применяется современная половолоконная мембрана, состоящая из пористого полимерного волокна 15 с нанесенным на его внешнюю поверхность газоразделительным слоем. Конструктивно половолоконная мембрана компонуется в виде цилиндрического картриджа 13, который представляет собой катушку с намотанным на нее особым образом полимерным волокном 15. Полимерное волокно 15 имеет сложную асимметричную структуру, плотность полимера возрастает по мере приближения к внешней поверхности волокна. Применение по-

ристых подложек с асимметричной структурой позволяет разделять газы и воздух атмо-сферы при высоких давлениях до 6,5 МПа.

Толщина газоразделительного слоя волокна не превышает 0,1 мкм, что обеспечивает высокую удельную проницаемость селективностью при разделении различных газов через полимерную мембрану.

Рекуперативный теплообменник 8 выполнен с возможностью нагрева газовых смесей или воздуха, транспортируемого на горение в смеси с газообразной топливной смесью.

Рекуперативный теплообменник 8 связан с атмосферой посредством дымососа 16. Атмосферный холодный воздух посредством нагнетателя холодного атмосферного воздуха, например, воздуходувки 17 нагнетают в рекуперативный теплообменник 8 по трубопроводу для его нагрева отходящими газами и оборотным азотом с последующей подачей в мембранный модуль средства 9 для разделения на смесь кислорода с азотом и подачей ее на горение.

Футеровка футерованного корпуса 2 печной агрегата 1 представляет собой, например, плиты из огнеупорного волокнистого теплоизоляционного материала. Общий принцип работы печного агрегата в следующем. Нагреваемый металл в форме, например, заготовки для горячей штамповки загружают в рабочую камеру нагрева. По заданной программе ЭВМ включает горелочные устройства с задаваемым количеством газообразного топлива и смесью кислорода с азотом и темпом нагрева. После окончания процесса наг рева заголовки до заданной температуры отключает горелки и подает команду на выдвижение выкатного пода из камеры нагрева для загрузки металла.

Средство подачи смеси кислорода с азотом на горение по фиг. 1, 2 совмещено газодинамически с рекуперативным теплообменником таким образом, что смесь может подогреваться в нем теплом отходящих дымовых газов по трубопроводу 18 до смесеобразования с топливом до температуры около 200 °С. После разделения воздуха, обогащенная кислородом кислородоазотная смесь подается в горелочное устройство. В результате возрастает температура факела, что способствует интенсификации лучистого теплообмена в рабочем пространстве высокотемпературной печного нагревательного агрегата, уменьшается количество продуктов сгорания и количество NO_x, сокращается расход топлива.

Максимально допустимая температура подаваемой на горение смеси кислорода с азотом не должна превышать 200 °C. Максимально допустимая температура дымовых газов на входе в рекуперативный теплообменник не должна превышать 900 °C.

Рекуперативный теплообменник может быть выполнен таким образом, что часть дымовых газов может принудительно возвращаться на рециркуляцию в камеру сжигания топлива, снижая тем самым затраты топлива на нагрев печной атмосферы и эмиссию оксидов азота при его сжигании.

Пример.

Расчет КПД печного нагревательного агрегата для выбранного режима нагрева дал следующие результаты. Полезное тепло процесса, необходимое для нагрева, например, трех заготовок массой 300 кг от температуры 120 °C до температуры 860 °C рассчитывалось по методике, предложенной в работе [5]. В расчете на один килограмм, это тепло равно 578,1 кДж/кг. Тогда полезное тепло процесса нагрева стальных заготовок равно: $Q_1 = 578,1$ кДж/кг*300 кг = 173,43 МДж. Низшая теплота сгорания природного газа принята равной 33,5 МДж/нм³. Тепло, полученное от сжигания природного газа при разогреве печи из холодного состояния равно: $Q_2 = 33,5$ МДж/нм^{3*}14,11 нм³ = 472,685 МДж. Таким образом, тепловой КПД рассмотренного режима нагрева стальных заготовок в предварительно разогретой печи составил $\eta_1 = Q_1/Q_1 = 36,7$ %. Расход топлива на нагрев металла при этом составил 53,8 кг условного топлива на тонну металла [5].

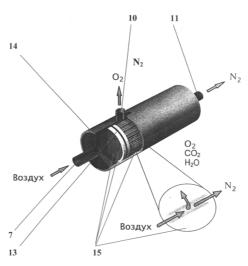
Промышленное внедрение печного агрегата должно повысить эффективность использования тепла как минимум в 2-2,5 раза.

Использование горелок, в которых коэффициент избытка смеси кислорода с азотом поддерживается на уровне 1,05, позволит уменьшить расход природного газа на величину в 40-45 % в зависимости от параметров процесса нагрева.

Полноценная реализация решаемой задачи объекта промышленной собственности повышения энергоэффективности и производительности печного агрегата и конструктивных решений позволит достичь декларируемых целей и задач.

Новый конструктив изобретения позволяет сократить потребление топлива нагревательной печью до 40-45 %, повысить ее термический КПД до 35-45 %, значительно повысить качество термообработки или горячей штамповки и готовых изделий.

Как следует из сравнительного анализа уровня техники и новой конструкции печного агрегата, выделение азотокислородной смеси и азота из воздуха совмещено с рекуперацией тепла отходящих дымовых газов, что позволяет утилизировать бросовое тепло нагревательной печи для нагрева воздуха на горение и другие технологические нужды, существенно снизить температуру отходящих газов и тепловое загрязнение окружающей среды.


Применение средства выделения азотокислородной смеси и азота из воздуха для трения топлива в печном агрегате, позволяет оптимизировать соотношение "газ-воздух", работу печи, снизить потребление топлива, уменьшить окалинообразование, повысить качество термообработки, безопасность работы.

Таким образом, новый конструктив печного агрегата, результаты исследований тепломассообменных и гидродинамических технологических режимов печного агрегата свидетельствует о том, что за счет его совершенствования можно добиться улучшения равномерности нагрева и снижения угара металла, повышения качества термообработки и существенного снижения расхода топлива.

Промышленное освоение нового печного агрегата предполагается на территории Беларуси и стран СНГ.

Источники информации:

- 1.RU 2002109544, MIIK F 27 B 3/00.
- 2. RU 2002109546, MΠK F 27 B 3/00.
- 3. RU 2278325, MIIK F 27 B 3/00.
- 4. Патент RU 2017056, МПК F 27 B 3/00-3/26, (прототип).
- 5. Тимошпольский В.И., Кабишов С.М., Калиневич Е.В, Вайс Р.Б. Анализ теплофизических свойств сталей с целью применения для решения нелинейных задач теории нагрева // Литье и металлургия. № 2. 2006. С. 17-22.

Фиг. 2