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STATISTICAL-MECHANICAL DESCRIPTION OF ORIENTATIONAL ORDER TENSOR 
FLUCTUATION BY MEANS OF FOKKER-PLANCK EQUATION

Nemtsov V.B.
This article is devoted to derivation the evolution equation for the distribution function offluctuations of tensor 

order parameter on bases ofsolving o f  the Liouville equation by Zubarev method.

The problem, which we pose, is an investigation of fluctuations in orientational order systems. 
This systems aie included, for example, the liquid crystals, liquid crystalline polymers, liquid crys­
tal elastomers, the ordered phases of DNA molecules. For description the orientation order we use 
the traceless second order tensor Ą , . This tensor is defined as

( 1)
V =1

where o'! is projection o f unit vector directed along the axis of the rigid fragment of molecule num­
bered V, x'' is the radius vector of the center of mass of molecule fragment, N  is the number of 
fiagment.

Therefore it is important to obtain the equation which describes the time evolution of fluctua­
tion of the tensor of orientational order.

Macromolecules in the above mentioned systems have the rigid fragments and due to this cir­
cumstance the considered materials possesses the orientation order.

We suppose that the nonequilibrium state our system can be described by the distribution 
function of discrete set of dynamical variables ар...,а^. This variables represent the components of 
the tensor the orientational order;

= f^ii’ 2̂ ~ ^ 12’ 3̂ ■̂ 13’ ~ ^ 22’

~ ^23’ 6̂ ~ А з ’

which obeys to relation ( =  0 , or a^+d^+a^=0).

The nonequilibrium distribution function f { a , t )  defined as

/(d (,t) = (8(d-<3)) = rr [5 (< 5 -a )p ( t)]  (2)

where a is the vector with components

Oj = Z)j|, ~ -^12’ 3̂ ~ -̂ 13’ ^4 ~ -^22’ 5̂ ~ -̂ 23’ ^6 ~ ^іЗ “  0 )•

Here a, are the given numerical values, but a, are functions of phase variables, p (i) is the 
nonequilibrium distribution function which obeys to the Liouville equation. The multidimensional 
§ -function is given by

й(а) = 6 ( a - a )  = Пб(<з,- a , ) . (3)

We note this for description orientation order may be introduced 5-vector without constraint 
the due = 0 , for example, if we use the Doi-Edvards [1] microscopic stress tensor as the tensor
parameter order.
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Our goal is derivation the evolution equitation for the function / {a,t) on the bases of statis­
tical-mechanical theory by Zubarev method. We start with Liouville equation for nonequilibrium 
phase distribution function with an infinitesimal source selecting the solution of required form,

d ^—  + iL 
dt

p(f) = - s (p ( /‘) - p ^ ( f ) ) ,  S ^ + 0 : (4)

where L is the Liouville operator, p  ̂(/) is quasiequilibrium distribution function or the relevant 

distribution function. The function p  ̂(t) is determined from the principle of the Shannon informa­
tion entropy maximum and therefore has the form

P, ( 0  = е х р (-Ф (^ )-р Я  -  ^daF{a,t )h{a )^ . (5)

Here p = (A:gr) Я  is Hamilton function for our system. The Massieu-Planck function 

0 ( f )  is introduced for normalization function p, (t) to unit. The function F[a,t)  is the thermo­

dynamical parameter conjugate to {h) , da = da^da^—da^.
Taking into account the presence 6 -function in the quantity ft (see (3)), we can represent 

Pg{t) in other forms

рД?) = е х р (-Ф (г ) -р Я -^ (а ,/) ) ,  (6)

Р Д 0 =  |ехр (-Ф (^ )-р Я -^ (а ,/))и (о )й ?а . (7)

For finding the F(^d,t) we will use the important self-consistency condition,

(« ) ,=(«>’ (8)

where we keep in mind that

{n)^^=Tr{p^h{a)) = n{a,t) ,  {h) = Tr{p,n{a)).  (9)

In the classical case the symbol Tr denote the integration over are the phase variables.
After the calculation n{a,t)  with help (9) and (6) we obtain

«(а,г) = Г г |е х р ^ - Ф - р Я - ^ ( а ,г ) |и ( а ) | 

or, taking into account the presence 5 -function in й ( а ) ,

и (a ,t) = exp(-Ф  + Ф o -F (a ,r ) )Г r [e x p ( -Ф o -p Я )й (a ) ] , 

where Ф,, is the normalized quantity for canonical Gibbs distribution 

Р о = е х р ( - Ф о - р я ) .

Introducing the quantity W as 

W {a) = Tr[p^fi{a)). 

one rewrite (11) in the form

( 10)

( 11)

( 12)

(13)
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и(<з,^) = ехр(+Фд - Ф { і ) -  Fi^ci,t)^Wi^d). (14)

Then we eliminate the Ф and F  from the expresions for . In the first place from (14) we 

find е х р (-Ф -^ (а ,г ) )  = ехр(Ф(,)й(а,^)іТ“' (a ) , secondly the equation (7) we represent in final
form

(15)P ,=  |p o /(a ,r)n (u )fF ''(a )f lfa , 

where / ( a , t )  = и(а,г) = 7>(рй).

In obtaining the evolution equation for / {a,t) we must use the Liouville equation. Following 
to Zubarev, we apply the Liouville equation in the form (4). For the function Ap = p -p ^  equation
(4) may be rewritten as follow

( d '' ( d Л— + iL + z Ap = -
\d t  J j

(16)

Differentiating the p  ̂ (15) with respect to the time we obtain

^ “ Ь  «'o -  I J p .  ■ (17)

The right-hand side o f this relation may be rewritten as result o f the action the projection op­
erator defined as

j p Q W ~ \ a ) T r ( A n ) n ( a ) d a . (18)

dp
Then the derivative — -  is defined by 

at

^  = -РДгХ р(0-Р,(ІІр,)). (19)

It is very important that the projection operator arises naturally as the result of the evaluation
^Pq—-  in contrast to many works where the such operators introduce by «hand» without the clearing 
dt

up of the necessity and the sense of their introducing. Then we calculate the quantity iLp^ with the 
next result

гХр = \dapf,niLd
J ^ d a X w ( a ) ,

After above simple algebra the Liouville equation (16) is transformed into

j9

dt
Л f d f

+ i^-p^)iL + e Ap = -  dap^x (a) —
;  J да  ̂ I, w{r)

where

y^M)^{l-Pq)n{d)iLa

(20)

(21)

(22)
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is the generalized force corresponding to the random force of the Mori theory.
By integrating the equation (21) we obtain the formal solution of the Liouville equation in the 

next form:

P(0 = (0  -  \da  ^dt’ exp[(t'-  0((1 -  )iL + s)]x  ̂(a)
_Э_

да, w{a) ^
(23)

The function p(0  depends from time via the function f {a , t )  in the past times. To establish 
the evolution equation for f  (a,t) = n{a,t) it is necessary to average the quantity й(<з) = iLh{a) with 
help of the nonequilibrium distribution function p(t) from equation (23).

To this end we write the mean value as

Эи (a ,/)
dt

=< h{a) >=< Й > + < (1 -  P )iLh) >,

or

dn(a,t)
dt

= Т г{р п {а ) ) ^Т гр {{ \ -Р Ж п ) .

(24)

(25)

The quality < В >=< (l -  P̂  ^iLh > is flux for quantity n[a , t ) . At the evaluation this flux we 
use expression for iLh{a) and the solution the Liouville equation (23). In result we obtain meem 
flux as

(26)

because <B>^=0.
In equation (26) the integral kernels K^. defined as

K,j {a,a' , t-1')  = Tr\xj  (a )exp [(t - f  )(l -  P̂  )iX]x, («)} .

The operator {\ -P^^iL  in (27) is so-called reduced evolution operator. 

After evaluation the quantity < h >^= Tr[p^iLh{a)^ we find

< h > = - ^ x ^ j { a ) f { a , t ) .

(27)

(28)

where u Д а) are represent the average fluxes in the state with fixed values of relevant variables. 

They forms the drift term. Using expression for <h>^ (28) and for <B>  (26) we obtain the gen­
eralized Fokker-Planck equation

dt ^  daj '' ’

U.f J -oo V /

(29)
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The equation (28) is the integro-differential equation, which is nonlocal in space eind non- 
Markovian in time.

If the space and the time variations of the function /  (a,t) are slow on the scales of micro­
scopic processes the right-side term in equation (28) may be represented in the Markovian approxi­
mation and then we obtain the traditional form of the Fokker-Planck equation that is

where

dt / д а , W ( a ) ^
(29)

I

Dj, (a ) = W '  (a) Jria ' jexp[e(ri-?)i<:^, (n ,o ')(r-r')}^ri (30)

is the kinetic coefficients.

The expression W(a)
da,i V

f ( a , 0
W(a)

fV(a)—
da./ V W(a)

f j a j )
da,

■ f{a , t ) - f {a , t )

may be represent by next manner

a In I f  (a)
da.

If lf(a ) = exp[a<3,a,] (b is some constant) the last member have the from

= - f { a , t ) b ą . 
da,

It is important that the kinetic coefficients in (31) and kernels in (27) are defined in the 
framework of the statistical theory of nonequilibrium processes.

In conclusion we note that description Fokker-Plank equation from Liouville equatrion is not 
meet with to Ito-Stratanovich problem.
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