ЗАВИСИМОСТЬ ПРОЧНОСТНЫХ И ДЕФОРМАЦИОННЫХ ХАРАКТЕРИСТИК ОЗЁРНО-ЛЕДНИКОВЫХ ГЛИНИСТЫХ ГРУНТОВ ОТ ВЛАЖНОСТИ

Полещук Е. В.

Научный руководитель – Сернов В. А., Тронда Т. В. Белорусский национальный технический университет г. Минск, Беларусь

Аннотация. В данной статье были выведены корреляционные зависимости прочностных и деформационных характеристик озерных пылевато-глинистых грунтов от показателя текучести. Анализ зависимостей был проведен на основе технических отчетов по инженерно-геологическим изысканиям, выполненным на территории Республики Беларусь за последние 15 лет.

Ввеление

В основании более чем 30% зданий и сооружений, возводимых на территории Республики Беларусь, лежат пылевато-глинистые грунты озерного происхождения четвертичных отложений. Известно, что влажность сильно влияет на прочностные и деформационные свойства пылевато-глинистых грунтов. Многими отечественными и зарубежными учеными были установлены различные корреляционные зависимости характеристик пылевато-глинистых грунтов от их влажности [1-3].

В настоящее время при определении прочностных и деформационных характеристик пылевато-глинистых грунтов по таблицам ТНПА, действующих на территории РБ, мы всегда руководствуемся значением показателя текучести таких грунтов, однако прямых зависимостей не установлено.

Цель работы

Целью исследования является уточнение корреляционных зависимостей прочностных и деформационных характеристик озёрноледниковых глинистых грунтов от их влажности.

Исследования

Для выведения зависимостей было рассмотрено 103 технических отчета об инженерно-геологических изысканиях выполненных на последние 15 лет УП «Геосервис», ООО «Геоплюс», Государственным предприятием «НПЦ по геологии», ООО «ГеоСтройИзыскание», НЧПУП «БЕЛОРИТ», ООО «Гео-стройИнвест», УП «ЦНТУС», «Геоспецпроект», Филиал "БЕЛОРУСНЕФТЬ - НЕФТЕХИМПРОЕКТ". На основании технических была создана база данных, которая включает в себя 559 инженерно-геологических элементов с перечислением набора деформационных и прочностных характеристик.

Нами были рассмотрены инженерно-геологические элементы озерных супесей в диапазоне -0,15 \leq $I_L \leq$ 1,03 и суглинков в диапазоне -0,35 \leq $I_L \leq$ 0,93 для построения корреляционных зависимостей охватывающих более широкий диапазон значений показателя текучести I_L .

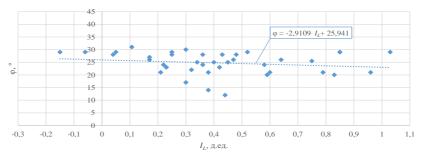


Рисунок 2. - График зависимости $\varphi = f(I_L)$ для супесей озёрных

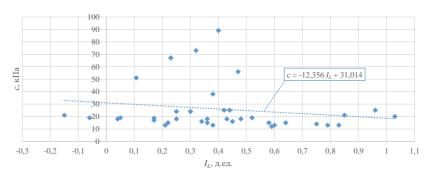


Рисунок 3. - График зависимости $c = f(I_L)$ для супесей озёрных

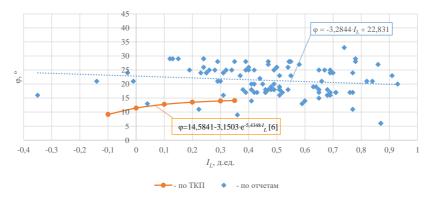


Рисунок 4. - График зависимости $\phi = f(I_L)$ для суглинков озёрных

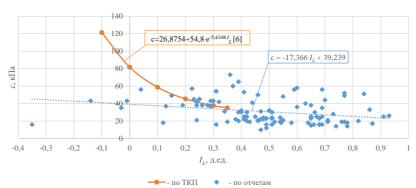
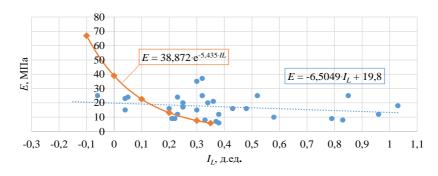
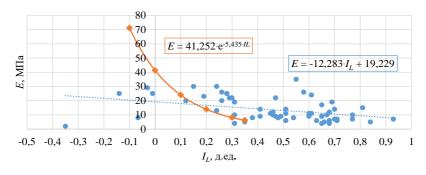




Рисунок 5. - График зависимости $c = f(I_L)$ для суглинков озёрных

● по отчетам ◆ по ТКП Рисунок 6. - График зависимости $E = f(I_L)$ для супесей озёрных по результатам статического зондирования

по отчетам ◆по ТКП

Рисунок 7. - График зависимости $E = f(I_L)$ для суглинков озёрных по результатам статического зондирования

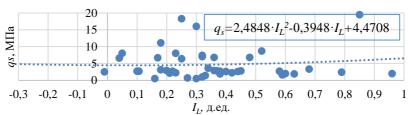


Рисунок 8. - График зависимости $qs = f(I_L)$ для супесей озерных

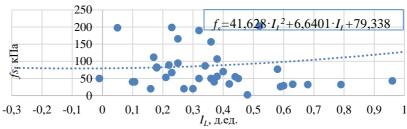


Рисунок 9. - График зависимости fs = f(IL) для супесей озёрных

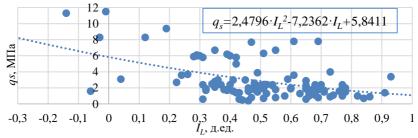


Рисунок 10. - График зависимости $qs = f(I_L)$ для суглинков озерных

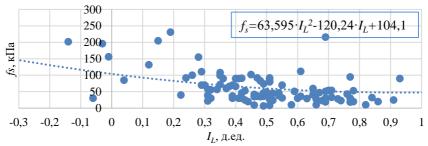


Рисунок 11. - График зависимости $fs = f(I_L)$ для суглинков озёрных

Таблица 1. – Зависимости, определенные по инженерно-геологическим изысканиям РБ для озерных пылевато-глинистых грунтов

Генетиче- ский тип грунтов	Вид грунтов	Обозначения характери- стик грунтов	Формула
Озерно- ледниковые	супеси	c , к Π а	$c = 31,014 - 12,356 \cdot I_L$
		φ, °	$\varphi = 25,941 - 2,9109 \cdot I_L$
		E, МПа	$E = 19.8 - 6.5049 \cdot I_L$
		f_{s} , к Π а	f_s =41,628· I_L ² +6,6401· I_L +79,338
		q_s , МПа	q_s =2,4848 \cdot I_L ² -0,3948 \cdot I_L +4,4708
	су- глинки	c , к Π а	$c = 39,239 - 17,366 \cdot I_L$
		φ, °	$\varphi = 22,831 - 3,2844 \cdot I_L$
		Е, МПа	$E = 19,229 - 12,283 \cdot I_L$
		$f_{s,}$ к Π а	f_s =63,595 · I_L ² -120,24 · I_L +104,1
		qs, МПа	q_s =2,4796· I_L ² -7,2362· I_L +5,8411

Заключение

Таким образом, в ходе работы были выведены корреляционные зависимости прочностных характеристик озерных пылевато-глинистых грунтов Беларуси от показателя текучести. Полученные зависимости $c = f(I_L)$ и $\varphi = f(I_L)$ применимы для супесей в диапазоне -0,15 $\leq I_L \leq$ 1,03 и для суглинков в диапазоне -0,35 $\leq I_L \leq$ 0,93.

Литература

- 1. Бусел И.А. Прогнозирование строительных свойств грунтов. Минск: Наука и техника, 1989. 246 с.
- 2. Dysli M., Steiner W. Correlations in soil mechanics / Presses polytechniques et universitaires romandes, 2011.-92 p.
- 3. Тронда Т.В., Кохан П.В. Анализ зависимостей прочностных и деформационных характеристик пылевато-глинистых грунтов от по-казателя текучести // Геотехника Беларуси: наука и практика: материалы междунар. науч.-техн. конф., Минск, 23-26 окт. 2018 г. / Белорус. нац. техн. ун-т: сост.: В. А. Сернов [и др.]. Минск, 2018. С. 368-374.
- 4. Технический кодекс установившейся практики. Прочностные и деформационные характеристики грунтов по данным статического зондирования и пенетрационного каротажа. Правила определения: ТКП 45-5.01-15-2005. Введ. 19.09.2005. Минск: Минстройархитектуры Республики Беларусь, 2006. 24 с.