К вопросу влияния эффекта диафрагмы жесткости из профилированного листа на устойчивость несущих элементов покрытия каркасных зданий

Азизи А.С.

Научный руководитель: Сырица И.С. Белорусский национальный технический университет Минск, Беларусь

В статье рассмотрены вопросы оценки и анализа эффекта диафрагмы жесткости из профилированного листа на несущие элементы. Приведены расчеты, позволяющие оценить степень влияния диафрагмы из профлиста на обеспечение устойчивости элементов путем их полного раскрепления в плоскости настила.

Аннотация. Листы несущего профнастила, достаточно жесткие и прикрепленные к конструкции образуют единый жесткий диск – сдвиговую диафрагму жесткости, способную воспринимать и перераспределять горизонтальные нагрузки по принципу стенки балки, данное явление получило название – эффект диафрагмы жесткости.

Общий обзор влияния эффекта диафрагмы жесткости на несущие элементы. Выработка начальных предпосылок для создания методики проектирования с введением диафрагм жесткости на основании рекомендаций Европейских и национальных норм.

В процессе исследования использовались рекомендации по проектированию металлических настилов, работающих в качестве диафрагм и расчетный программный комплекс на основе метода МКЭ (Метод конечных элементов).

Введение. При новом строительстве для инженера наиболее важным из аспектов является оценка раскрепления элементов конструкции от потери устойчивости, поскольку это позволяет уменьшить количество либо вовсе отказаться от горизонтальных связей в плоскости настила, уменьшить ресурсоемкость конструкции и трудоемкость монтажа.

Учет повышения жесткости и перераспределения горизонтальных нагрузок в результате эффекта диафрагмы также позволяет добиться экономии при новом строительстве, но на практике вводится в расчетную схему реже. Учет данных эффектов может быть частью

процесса изыскания резервов несущей способности при реконструкции и усилении, либо как дополнительный фактор при раскреплении элементов. В данной статье рассмотрено влияние эффекта диафрагмы жесткости на конструкции, а оценка произведена по методике Публикации ЕССЅ №88 «Европейские рекомендации по применению металлических настилов, работающих в качестве диафрагмы» и «Рекомендаций по учету жесткости диафрагм из стального профилированного настила в покрытиях одноэтажных производственных зданий при горизонтальных нагрузках» ЦНИИпроектстальконструкция.

Аналитический обзор. При монтаже и проектировании каркаса с учетом эффекта диафрагмы жесткости необходимо выполнять обязательные требования, которые перечислены в рекомендациях и несоблюдение которых может привести к отсутствию влияния эффекта и преждевременному разрушению конструкции.

Учет эффекта диафрагмы наиболее актуален для невысоких зданий как элемент оптимизации, а также для перекрытий и фасадов многоэтажных и высотных зданий, где критерии горизонтальных перемещений и равномерного распределения усилий являются критическими. Не следует вводить в расчет эффект диафрагмы при большом количестве проемов, отсутствии путей для передачи усилий от диафрагм на фундаменты, в покрытиях сложной конфигурации, а также для элементов обшивки, которые могут быть в последствии демонтированы. При вводе в расчетную схему каркаса диафрагмы настила, он становится важным элементом конструкции при проектировании, монтаже и эксплуатации.

Сущность и методика расчета. Для оценки повышения жесткости путем расчета с использованием европейских рекомендаций заменяют, для упрощения моделирования, профнастил связевыми элементами, шарнирно соединенными с раскрепляемыми элементами. При этом по методике Публикации ЕССЅ №88 [1] для покрытий и перекрытий для определения площади сечения одиночного фиктивного связевого элемента используется значение податливости панели диафрагмы на сдвиг "с". При расчете по методике ЦНИИпроектстальконструкции [3] профнастил заменяется сдвоенными крестовыми связевыми элементами с половиной расчетной площади сечения, а взамен податливости вводится обратная величина жесткости "С".

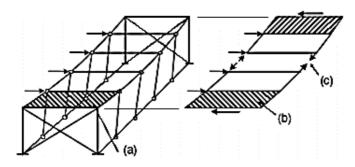


Рис. 1. Работа диафрагмы настила в плоской конструкции a — настил; b — сдвиговая поверхность настила; c — усилия в обрамляющих поясах

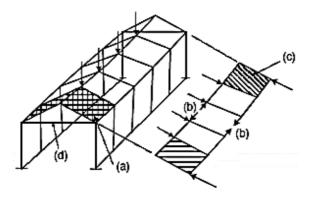


Рис. 2. Работа диафрагмы настила в двускатной конструкции: a — настил; b — усилия в обрамляющих поясах; c — сдвиговая поверхность настила; d — затяжка фахверка для замыкания усилий в настиле

По степени раскрепление может быть полным либо частичным. В зависимости от направления настил может обеспечить поперечное раскрепление в плоскости листа и раскрепление от кручения. Для высоких элементов раскрепление в плоскости настила и раскрепление от кручения всегда следует рассматривать раздельно.

Полное раскрепление для низких профилей позволяет исключить проверки потери устойчивости по изгибно-крутильным формам, сопровождающимся перемещениями в плоскости настила, а для высоких элементов - убрать связи, которые соответствуют рассматривае-

мому направлению. Частичное раскрепление дает возможность повысить предельные усилия потери устойчивости.

На примере ферм: настил может раскрепить верхний пояс из плоскости, но не препятствует монтажу вертикальных связевых блоков и распорок нижнего пояса.

Еврокод 3, Часть 1-3 (ТКП EN 1993-1-3) приводит критерии полного раскрепления при помощи профилированного стального листа для неразрезных кровельных и стеновых тонкостенных прогонов. По данному документу раскрепленным элемент является, после выполнения условия при сравнении, сдвиговой жесткости настила с трапецеидальными гофрами и сдвиговой жесткости раскрепляемого элемента [2].

Для схем, когда планируется учитывать диафрагму жесткости для раскрепления несущих элементов из других профилей необходимо оценивать достаточность сдвиговой жесткости диафрагмы и несущей способности диафрагмы на сдвиг.

Заключение. Применение эффекта диафрагмы жесткости при проектировании зданий и сооружений способствует частичному или полному отказу в применении дополнительных связевых элементов, раскрепляющих несущие элементы в плоскости настила, что положительно сказывается на экономическом и эстетическом аспектах проектирования, повышению жесткости конструкций и общей надежности и живучести каркасов.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. European Recommendations for the Application of Metal Sheetingacting as a Diaphragm Stressed Skin Design.. ECCS Publication №88, 1995.- 263 c.
- 2. ТКП EN 1993-1-3-2009. Проектирование стальных конструкций. Часть 1-3. Общие правила. Дополнительные правила для холодноформованных элементов и профилированных листов Минск: МАиС РБ, 2010.- 116 с.
- 3. Рекомендации по учету жесткости диафрагм из стального профилированного настилав покрытиях одноэтажных производственных зданий. ЦНИИПРОЕКТСТАЛЬКОНСТРУКЦИЯ им. Мельникова, Союзметаллстройниипроект, 1980.- 25 с.