XVI МЕЖДУНАРОДНЫЙ ФЕОФИЛОВСКИЙ СИМПОЗИУМ

УДК 535.34, 666.24, 621.373.8

ОПТИЧЕСКИЕ СВОЙСТВА ПРОЗРАЧНЫХ КОБАЛЬТ-СОДЕРЖАЩИХ СТЕКЛОКРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ МАГНИЕВОАЛЮМОСИЛИКАТНОЙ СИСТЕМЫ С ДОБАВКОЙ ОКСИДА ГАЛЛИЯ ДЛЯ ПАССИВНЫХ ЗАТВОРОВ

© 2016 г. П. А. Лойко*, Н. А. Скопцов*, О. С. Дымшиц**, А. М. Маляревич*, К. В. Юмашев*, А. А. Жилин**, И. П. Алексеева**

* Центр оптических материалов и технологий, Белорусский национальный технический университет, 220013 Минск, Беларусь

** Научно-исследовательский и технологический институт оптического материаловедения Всероссийского научного центра "Государственный оптический институт им. С.И. Вавилова", 192171 Санкт-Петербург, Россия

E-mail: kinetic@tut.by, vodym1959@gmail.com Поступила в редакцию 29.04.2016 г.

Синтезированы прозрачные стеклокристаллические материалы на основе стекол системы MgO–Al₂O₃–SiO₂–TiO₂ с добавкой CoO и Ga₂O₃. Вторичная термическая обработка исходных стекол при температурах $800-950^{\circ}$ С приводит к выделению наноразмерных (6-7 нм) кристаллов магниевоалюмогаллиевой шпинели, активированных ионами кобальта, и твердых растворов алюмотитанатов магния. Изучены спектры оптического поглощения исходного стекла и стеклокристаллических материалов. Показано, что полоса поглощения, обусловленная переходами $^4A_2(^4F) \rightarrow ^4T_1(^4F)$ тетраэдрически координированных ионов Co^{2+} для стеклокристаллических материалов с наноразмерными кристаллами $\mathrm{Co:Mg}(\mathrm{Al},\mathrm{Ga})_2\mathrm{O_4}$ смещена в длинноволновую область спектра вплоть до ~ 1.67 мкм по сравнению с положением этой полосы в материалах с кристаллами $\mathrm{Co:MgAl_2O_4}$. Синтезированные стеклокристаллические материалы характеризуются относительно низкой плотностью энергии насыщения на длине волны 1.54 мкм, $F_8 \sim 0.5 \pm 0.1$ Дж/см 2 , а также высокой лучевой стойкостью к лазерным импульсам наносекундной длительности, не менее $\sim 15 \pm 2$ Дж/см 2 . Этим обусловлена их привлекательность как материалов для пассивных затворов эрбиевых лазеров, излучающих в спектральной области 1.5-1.7 мкм.

DOI: 10.7868/S0030403416100159

введение

Источники импульсного лазерного излучения для спектральной области ~1.5 мкм находят широкое применение в системах локации и зондирования атмосферы. Трехвалентные ионы эрбия (Er³⁺) обеспечивают лазерную генерацию на переходе ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ в этой условно безопасной для глаз области спектра [1]. Для генерации импульсного излучения наносекундной длительности в лазерный резонатор обычно помещается нелинейный элемент – пассивный затвор на основе насыщающегося поглотителя. Это позволяет создать полностью твердотельную лазерную систему. Двухвалентные ионы кобальта (Co^{2+}), расположенные в кристаллах в позициях с тетраэдрической симметрией локального окружения, характеризуются широкополосным поглощением в области длин волн 1.3-1.5 мкм [2]. Данная полоса связана с переходом ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F)$ [3]. Тетраэдрическая

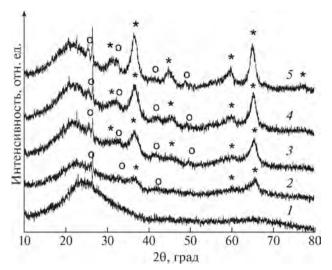
координация ионов Co^{2+} обеспечивает высокие поперечные сечения поглощения из основного состояния и, следовательно, небольшие значения плотности энергии насыщения в пределах данной полосы (около 1 Дж/см²). Это делает Co^{2+} -содержащие материалы подходящими для модуляции добротности лазеров на ионах Er^{3+} .

Наиболее распространенным материалом, который используется в качестве пассивного затвора, являются монокристаллы алюмомагниевой шпинели с ионами $\mathrm{Co^{2+}}$, $\mathrm{Co:MgAl_2O_4}$ [4]. Затворы на основе монокристаллов $\mathrm{Co:MgAl_2O_4}$ характеризуются малыми значениями плотности энергии насыщения, высоким контрастом просветления, хорошим оптическим качеством и лучевой стойкостью. В последнее десятилетие большое распространение получили пассивные затворы из магниевоалюмосиликатных стеклокристалических материалов (СКМ), содержащих нанораз-

мерные кристаллы Co:MgAl₂O₄ [5]. СКМ — это, как правило, продукты вторичной термической обработки исходных стекол, полученных высокотемпературным синтезом исходных реагентов. Спектроскопические свойства СКМ определяются свойствами как наноразмерных кристаллов, так и остаточного стекла. Хорошие термомеханические свойства магиевоалюмосиликатных СКМ [6] обеспечивают высокие значения их лучевой стойкости.

Помимо относительной простоты синтеза преимуществом СКМ также является возможность обеспечить спектральный сдвиг полос поглощения ионов Co²⁺ за счет изменения параметров поля лигандов ионов Со²⁺ при изменении состава нанокристаллической фазы, в которую эти ионы входят [7]. Необходимость спектрального сдвига связана с тем, что в настоящее время исследуются и находят широкое применение в лазерной технике новые кристаллические среды для ионов Er³⁺. Эти среды обеспечивают генерацию в области длин волн 1.6—1.7 мкм, в которой использование кристаллов Co:MgAl₂O₄ не является эффективным. Например, кристаллы Er³⁺:YAG позволяют получать генерацию на длине волны 1617 нм (в условиях резонансной накачки) [8]. Недавно нами продемонстрирована возможность смещения в область больших длин волн полосы поглошения ионов Со²⁺ в прозрачных СКМ с нанокристаллической фазой у-Ga₂O₃ [9]. Наноразмерная кристаллическая фаза у-Ga₂O₃ выделяется в этих материалах в результате процесса гомогенного зарождения, начинающегося на стадии отлива и отжига исходного стекла, причем скорость охлаждения стекломассы, зависящая от массы и формы отливки, влияет на свойства получаемого СКМ. Гетерогенное зарождение кристаллической фазы с использованием специально подобранных концентраций нуклеаобъемной кристаллизации позволяет управлять процессами кристаллизации и обеспечивает высокую воспроизводимость свойств получаемых СКМ. Ранее нами было показано, что вторичная термообработка галлийсодержащих магниевоалюмосиликатных стекол приводит к выделению наноразмерных кристаллов магниевоалюмогаллиевой шпинели [10], а нелинейнооптические свойства СКМ с нанокристаллами $Mg(Al,Ga)_2O_4$ были предварительно оценены в работах [5, 11, 12]. В настоящей работе нами исследованы оптические свойства прозрачных кобальтсодержащих СКМ магниевоалюмосиликатной системы с добавкой оксида галлия, нуклеированных диоксидом титана.

МЕТОДЫ


В настоящей работе представлены результаты исследования фазовых превращений и оптических свойств ситаллизирующегося титансодержащего магниевоалюмосиликатного стекла состава (мол. %) 20 MgO, $20 Al_2 O_3$, $60 SiO_2$, $10 TiO_2$ с добавкой 0.1 мас. % CoO, а также 2.5 мол. % Ga_2O_3 . Диоксид титана, оксиды кобальта и галлия вводились сверх 100% основного состава.

Исходное стекло массой 400 г было синтезировано в лабораторной силитовой печи при температуре 1580°С в течение 8 ч в кварцевых тиглях с перемешиванием кварцевыми мешалками. Стекло было отлито на холодную металлическую плиту и отожжено при 660°С. Термообработка проводилась по одно- и двухстадийным режимам в интервале температур 750—1000°С в течение 6 ч. Режимы указаны в подписях к рисункам.

Рентгенофазовый анализ (РФА) исходного и термообработанных стекол проводился на рентгеновском дифрактометре XRD-6000 фирмы Shimadzu, излучение Cu K_{α} с Ni фильтром в диапазоне $10^{\circ}-80^{\circ}$ (20). Средний размер кристаллов определялся из уширения рентгеновских линий.

Спектры поглощения исходного стекла и СКМ были измерены на спектрофотометре Cary-5000 (спектральное разрешение — 0.1 нм) в спектральном диапазоне 300—2000 нм. Образцы представляли собой плоскопараллельные полированные пластины толщиной 1 мм.

Кривые насыщения поглощения для СКМ были измерены по методу Z-scan. Для этого использовался лазер на основе Ег, Үb:стекла с ламповой накачкой с пассивной модуляцией добротности затвором на основе монокристалла Co^{2+} : MgAl₂O₄. Параметры выходного излучения лазера: длина волны — 1.54 мкм. энергия импульса — 2 мДж. частота следования импульсов – 1 Гц, длительность импульса -70 нс, TEM_{00} -мода излучения. Импульсы имели гауссов временной профиль, их длительность определена по уровню 1/2 от максимальной интенсивности. Выходное излучение лазера фокусировалось при помощи сферической линзы (f = 35 мм), диаметр пучка в перетяжке составлял ~80 мкм. Исследуемые полированные образцы СКМ толщиной 2-3 мм перемещались вдоль оси лазерного пучка, что обеспечивало изменение падающей плотности энергии лазерного излучения $F_{\rm inc} = 2 E_{\rm inc}/(\pi w^2)$ в диапазоне 0.4— $12.0\,\mathrm{Д}$ ж/см 2 (здесь E_inc — энергия импульса, w радиус пучка лазерного излучения, коэффициент "2" учитывает гауссов профиль пучка лазерного излучения). Энергия импульсов падающего и прошедшего через образец излучения измерялась при помощи измерителя Ophir PE-10C с точностью 0.1 мДж. На основе этих измерений определялись пропускание образца T(F) и коэффици-

Рис. 1. Рентгенограммы исходного стекла (*1*) и СКМ, полученных термообработкой при температурах 800 (*2*); 850 (*3*); 900 (*4*); 950°C (*5*). Условные обозначения кристаллов: * - Mg(Al,Ga)₂O₄, o - xMgTi₂O₅ · yAl₂TiO₅.

ент поглощения $\alpha(F)$. В последнем случае вычитались френелевские потери на обеих поверхностях образца (показатель преломления СКМ, полученных термообработкой в интервале температур $800-950^{\circ}$ C, n=1.62-1.67).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исходное стекло прозрачно и окрашено в фиолетовый цвет, в результате термической обработки его окраска изменяется на синюю при сохранении прозрачности. Рентгенограммы исходного стекла и СКМ, прошедших термообработку при температурах 800-950°C, приведены на рис. 1. Исходное стекло и стекло, термообработанное при 750°C, рентгеноаморфны, в результате вторичной термообработки при температурах 800-950°C в стекле кристаллизуются твердые растворы алюмотитаната магния и магниевоалюмогаллиевая шпинель [10]. Размер кристаллов растет с ростом температуры термообработки и составляет 4-8 нм для кристаллов твердых растворов алюмотитаната ма́гния и 6—7 нм для кристаллов магниевоалюмогаллиевой шпинели.

Спектры поглощения исходного стекла и СКМ, прошедших термообработку при температурах 800—950°С, показаны на рис. 2a.

Спектр поглощения стекла отражает характерные особенности поглощения ионов Co^{2+} в алюмосиликатных стеклах и подробно обсуждался ранее [13—16]. Спектр содержит две широкие полосы поглощения в области длин волн 430—710 нм (14090—23250 см⁻¹) и 1.1—1.8 мкм (5500—9100 см⁻¹). Полоса в видимой области спектра

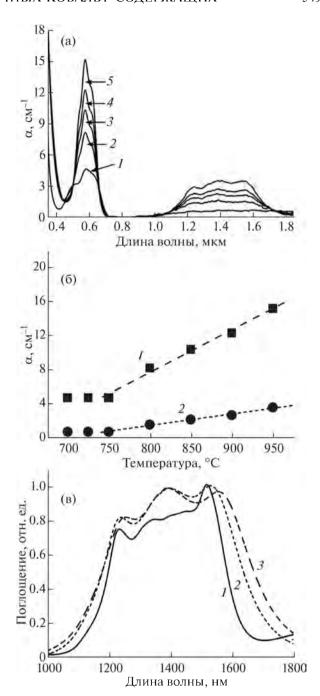


Рис. 2. (а) Спектры поглощения исходного стекла (I) и СКМ, полученных термообработкой при температурах 800 (2), 850 (3), 900 (4), 950°С (5); (6) зависимость коэффициента поглощения α СКМ на длинах волн излучения 0.58 (I) и 1.54 мкм (2) от температуры термической обработки; (α) сравнение полосы поглощения тетракоординированных ионов α 0°C, связанной с переходами α 4 α 2(α 1), СКМ α 2 и нанокристаллами MgAl2O4 (α 2) и СКМ α 3 нанокристаллами Mg(Al,Ga)2O4 (α 3).

имеет максимумы при 520, 590 и 645 нм. Полоса в ИК области спектра бесструктурна и характеризуется слабым поглощением. Основываясь на ре-

зультатах работы [13], спектры поглощения такого вида обычно приписывают ионам Co²⁺ в тетраэдрической координации. Однако о присутствии некоторого количества октаэдрически координированных ионов Со²⁺ говорит характеристическая полоса поглощения на длине волны 520 нм. а то, что ее интенсивность сопоставима с интенсивностями полос поглощения в области 580-640 нм, свидетельствует о преобладающем вкладе ионов ^{VI}Co²⁺ в спектр поглощения исходного стекла [16]. Согласно работе [16], полоса поглощения при 520 нм обусловлена электронным переходом ${}^{4}T_{1} \rightarrow {}^{4}T_{1}({}^{4}P)$ октаэдрически координированных ионов Co^{2+} , полосы при 590 нм (переход ${}^4\!A_2 \to {}^4\!T_1({}^4\!P)$) и при 645 нм (переходы ${}^4\!A_2 \to$ \rightarrow ${}^4T_1({}^4P)$ и ${}^4A_2 \rightarrow {}^2T_1$, ${}^2E({}^2G)$) обусловлены тетраэдрически координированными ионами Co²⁺.

В ИК области спектра положение полос поглощения, обусловленных ионами кобальта в октаэдрической и тетраэдрической координациях. близки друг к другу, а их ширины велики. Таким образом, трудно определить координационное состояние ионов кобальта из положения полос поглощения в ИК области спектра. Однако можно судить о координации ионов Со²⁺ на основании интенсивностей полос поглощения, так как интенсивность полос, обусловленных тетраэдрически координированными ионами Со, в 2-3 раза больше, чем интенсивность полос, обусловоктаэдрически координированными ленных ионами [15]. Интенсивность полос поглощения в ИК области спектра низка, а полосы не имеют ярко выраженных максимумов. Следовательно, спектр поглощения исходного стекла формируется полосами поглошения ионов кобальта в октаэдрической и тетраэдрической координациях с преобладанием октаэдрической координации.

Вторичная термообработка при температурах 800-950°C приводит к существенным изменениям спектра поглощения. Во-первых, УФ край поглощения сдвигается от $\lambda_{g} = 342$ нм для исходного стекла до 352 нм для СКМ, полученного термообработкой при 950°C. Обе полосы поглощения -ионов ${
m Co}^{2^+}$ и в видимой, и в ИК области спектра становятся более интенсивными, при этом изменяется также и их форма. В видимой области спектра это проявляется в последовательном уменьшении поглощения на длине \sim 520 нм, а также в смещении пиков при 590 и 645 нм в область длин волн 585 и 630 нм соответственно, т.е. в сужении полос, и в увеличении их интенсивности. В частности, для исходного стекла коэффициент поглощения на длине волны 590 нм $\alpha = 4.7 \text{ см}^{-1}$, а для СКМ, обработанного при 950° C, $\alpha = 15.3$ см⁻¹ на 585 нм. Широкая полоса в области 1.1-1.8 мкм также сужается и приобретает структуру. В пределах данной полосы

для СКМ наблюдаются четыре пика при ~1.24, 1.33, 1.39 и 1.55 мкм. При термической обработке исходного стекла возрастает поглощение в пределах данной полосы. Так, $\alpha \approx 0.7$ см⁻¹ для исходного стекла и $\alpha = 3.7$ см⁻¹ на длине волны 1.39 мкм для СКМ, полученного термообработкой при 950°С. Уменьшение интенсивности, а затем и исчезновение полосы при 520 нм, обусловленной поглощением октаэдрически координированных ионов Co²⁺, а также рост интенсивности полос поглощения тетраэдрически координированных ионов кобальта свидетельствуют о заметном, если не полном исчезновении октаэдрически координированных ионов кобальта в процессе термообработки исходного стекла. Заметим, что, учитывая низкую интенсивность полос поглощения октаэдрически координированных ионов кобальта по сравнению с тетраэдрически координированными ионами, на основании анализа только спектров поглошения трудно делать надежные выводы о полном переходе ионов кобальта в тетраэдрическую координацию.

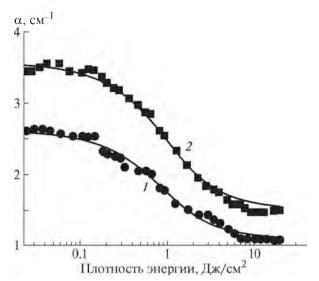
Спектры поглощения СКМ содержат характерные полосы поглощения тетракоординированных ионов Со²⁺. Поглощение в области длин волн 1.2–1.7 мкм связано с разрешенным по спину переходом из основного состояния ${}^{4}A_{2}({}^{4}F)$ в возбужденное состояние ${}^4T_1({}^4F)$. Данная полоса используется для пассивной модуляции лазеров на основе ионов Er³⁺. Отдельные пики в пределах данной полосы связаны со спин-орбитальным расшеплением уровня 4 Г. Интенсивная структурированная полоса в видимой области спектра связана с разрешенными переходами ${}^4A_2({}^4F) \to$ \rightarrow $^4T_1(^4P)$, а отдельные пики связаны как со спинорбитальным расщеплением уровня 4P , так и с накладывающимися на эту полосу полосами, вызванными запрещенными по спину переходами ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{2}E({}^{2}G)$ и ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{2}A_{1}({}^{2}G)$. Чисто электронный дипольный переход в нижнее возбужденное состояние ионов Co^{2+} $^4T_2(^4F)$ запрещен для неискаженного поля лигандов симметрии T_d и, вероятно, искажение поля лигандов вокруг ионов кобальта недостаточно для снятия этого запрета, поэтому в спектрах СКМ соответствующая полоса поглощения не наблюдается. Описанные изменения в спектрах поглощения СКМ при их термической обработке связаны с вхождением ионов Со²⁺ в тетраэдрические позиции в нанокристаллах $Mg(Al,Ga)_2O_4$ за счет сокращения количества ионов Co²⁺ в остаточной стеклофазе.

Как показано на рис. 26, повышение температуры термической обработки приводит к увеличению коэффициентов поглощения тетракоординированных ионов Co²⁺, что связано с увеличением объемной доли нанокристаллической фазы

Мg(Al,Ga) $_2$ O $_4$. В частности, α на длине волны \sim 0.58 мкм возрастает от 4.7 до 15.3 см $^{-1}$, а на длине волны \sim 1.54 мкм — от 0.7 до 3.5 см $^{-1}$ при увеличении температуры термической обработки от 750 до 950°C.

На рис. 2в приведено сравнение спектральной формы полосы поглощения, обусловленной переходами ${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F)$ тетракоординированных ионов Co²⁺ для СКМ с нанокристаллами $Co:Mg(Al,Ga)_2O_4$, полученного термообработкой при 900°C, СКМ с нанокристаллами алюмомагниевой шпинели Co:MgAl₂O₄ и монокристалла алюмомагниевой шпинели Co:MgAl₂O₄ спектры нормированы). Исходя из спектров, был определен длинноволновый край полосы поглощения λ_{th} (по уровню 1/2 от максимума интенсивности полос). Для СКМ с нанокристаллами $Co:Mg(Al,Ga)_2O_4$ $\lambda_{th} = 1.67$ мкм, что существенно больше, чем для СКМ с нанокристаллами алюмомагниевой шпинели ($\lambda_{th} = 1.63$ мкм) и монокристалла Co:MgAl₂O₄ ($\tilde{\lambda}_{th} = 1.58 \text{ мкм}$).

Таким образом, синтезированные СКМ перспективны для пассивной модуляции добротности кристаллических лазеров на ионах ${\rm Er^{3+}}$, излучающих в спектральной области 1.6-1.7 мкм. Для подтверждения этого вывода было исследовано насыщение поглощения для образцов СКМ, прошедших термическую обработку при температурах 900 и 950° С. Выбор данных образцов связан с тем, что они характеризуются значительной долей ионов ${\rm Co^{2+}}$, вошедших в нанокристаллическую фазу ${\rm Co:Mg(Al,Ga)_2O_4}$, а также малыми потерями на рассеяние света (образец СКМ, обработанный при $1000~{\rm C}$, характеризуется существенным светорассеянием).


Следует отметить, что для исходных стекол насыщение поглощения в области длины волны ~ 1.5 мкм не наблюдается. Экспериментальные данные по зависимости коэффициента поглощения для СКМ от плотности энергии падающего лазерного излучения $\alpha(F_{\rm inc})$ моделировались в рамках приближения "медленного" пассивного затвора. Действительно, характерное время восстановления начального поглощения для ионов Со²⁺ в нанокристаллах магниевоалюмогаллиевой шпинели составляет порядка сотен наносекунд. что гораздо больше длительности лазерного импульса (в наших экспериментах ~70 нс). Ввиду достаточно большой толщины образцов (t = 2— 3 мм) их нельзя рассматривать в качестве тонких затворов. Поэтому для моделирования использовалась формула, учитывающая распространение излучения в затворе [17, 18]:

$$\frac{dF}{dz} = -\alpha_0 F_S \left[(1 - \gamma)(1 - e^{-F/F_S}) + \gamma \frac{F}{F_S} \right]. \tag{1}$$

Здесь z — координата в затворе в направлении распространения излучения, α_0 — начальный коэффициент поглощения (для малых $F_{\rm inc}$), $F_{\rm S}$ = $=hv/\sigma_{\rm GSA}-$ плотность энергии насыщения затвора; у – контраст просветления, который определяется отношением $\sigma_{ESA}/\sigma_{GSA}$; h — постоянная Планка, $v = c/\lambda$ — частота лазерного излучения, c – скорость света; $\sigma_{\rm ESA}$ и $\sigma_{\rm GSA}$ – поперечные сечения поглощения из возбужденного состояния $(^4T_1(^4F))$ и из основного состояния $(^4A_2(^4F))$ для тетракоординированных ионов Со²⁺ соответственно. В уравнении (1) величины F_S и γ являются варьируемыми параметрами. Для каждого значения падающей плотности энергии лазерного излучения F_{inc} уравнение (1) решалось при z = 0 - t, и определялось теоретическое значение плотности энергии излучения, прошедшего через образец, а на его основе — теоретический коэффициент поглощения $\alpha'(F_{\rm inc})$. Моделирование набора экспериментальных данных $\alpha(F_{\rm inc})$ при помощи данной расчетной кривой позволяет определить величины F_S и γ .

Измеренные кривые насыщения поглошения. а также расчетные кривые, полученные при помощи уравнения (1), приведены на рис. 3. Для образцов СКМ, полученных термообработкой при 900 и 950°C, начальный коэффициент поглошения α₀ на длине волны излучения 1.54 мкм составляет 2.6 и 3.5 см $^{-1}$ соответственно. Для плотности мощности энергии падающего излучения >10 Дж/см² α уменьшается до 1.1 и 1.5 см⁻¹ соответственно. Неполное просветление образцов СКМ связано как с поглощением из возбужденного состояния, так и с наличием ненасыщаемых потерь α_{NS} , связанных с поглощением ионов Co^{2+} в остаточной стеклофазе, и потерями на рассеяние света. Оценка величины α_{NS} для исследованных образцов составила $\alpha_{\rm NS} \sim 0.7 \pm 0.2~{\rm cm}^{-1}$. Для СКМ, термообработанного при 900°С, при помощи уравнения (1) определены параметры $F_S =$ $= 0.45 \pm 0.05$ Дж/см² и $\gamma = 0.15 \pm 0.05$. Для СКМ, термообработанного при 950°С, эти параметры имеют следующие величины: $F_S=0.50~\pm$ ± 0.05 Дж/см² и $\gamma = 0.23 \pm 0.05$. Данные значения близки к величинам, полученным для монокристалла $Co:MgAl_2O_4$ толщиной ~ 3 мм, который был исследован для сравнения: $F_S = 0.5 \pm 0.1 \, \text{Дж/см}^2$ и $\gamma = 0.11 \pm 0.02$. Это позволяет оценить величину поперечного сечения поглощения из основного состояния σ_{GSA} для ионов Co^{2+} в нанокристаллах $Mg(Al,Ga)_2O_4$ как $\sim 2.5 \pm 0.3 \times 10^{-19}$ см² на длине волны излучения 1.54 мкм. Поперечное сечение поглощения из возбужденного состояния $\sigma_{ESA} \le$ $\leq 0.6 \pm 0.2 \times 10^{-19} \,\mathrm{cm}^2$.

Лучевая стойкость образцов СКМ к лазерным импульсам наносекундной длительности на дли-

Рис. 3. Кривые насышения поглощения для СКМ с нанокристаллами $Co:Mg(Al,Ga)_2O_4$, прошедших термическую обработку при температурах 900 (1) и 950°С (2): длина волны излучения 1.54 мкм, точки — экспериментальные данные, кривые — моделирование в рамках модели "медленного" насыщающегося поглотителя.

не волны излучения 1.54 мкм составляет не менее \sim 15 \pm 2 Дж/см² (для образцов, термообработанных при 900—950°С), что сопоставимо со значениями для монокристаллов Co:MgAl₂O₄ (10—20 Дж/см² в зависимости от качества полировки поверхности). Это указывает на перспективность полученных материалов для генерации импульсов наносекундной длительности с энергиями >1 мДж в лазерах на основе ионов $\rm Er^{3+}$.

ЗАКЛЮЧЕНИЕ

Прозрачные стеклокристаллические материалы, содержащие нанокристаллы магниевоалюмогаллиевой шпинели Co:Mg(Al,Ga)₂O₄, перспективны в качестве пассивных затворов для модуляции добротности кристаллических эрбиевых лазеров, излучающих в области длин волн 1.6-1.7 мкм. Это обусловлено рядом причин, а именно: 1) смещением полосы поглощения, обусловленной переходами ${}^4A_2({}^4F) \to {}^4T_1({}^4F)$ тетракоординированных ионов Co²⁺ в длинноволновую область спектра вплоть до \sim 1.67 мкм; 2) относительно низкой плотностью энергии насыщения, $F_S \sim 0.5 \pm$ $\pm 0.1 \, \text{Дж/см}^2$ на длине волны 1.54 мкм; и 3) высокой лучевой стойкостью к лазерным импульсам наносекундной длительности, не менее $\sim 15~\pm$ $\pm 2 \, \text{Дж/см}^2$, для данных материалов. В настоящей работе СКМ были синтезированы на основе магниевоалюмосиликатных стекол системы MgO- $Al_2O_3-SiO_2-TiO_2$ с добавкой 0.1 мас. % CoO, а также 2.5 мол. % Ga_2O_3 путем их вторичной термической обработки при температурах 800— 950°C.

Работа выполнена при частичной поддержке РФФИ, грант 16-03-01130.

СПИСОК ЛИТЕРАТУРЫ

- Karlsson G., Laurell F., Tellefsen J., Denker B., Galagan B., Osiko V., Sverchkov S. // Appl. Phys. B. 2002. V. 75. P. 41.
- Yumashev K.V., Denisov I.A., Posnov N.N., Prokoshin P.V., Mikhailov V.P. // Appl. Phys. B. 2000. V. 70. P. 179.
- 3. *Papalardo R., Wood D.L., Linares R.C., Jr.* // J. Chem. Phys. 1961. V. 35. P. 2041.
- 4. Stulz R.D., Carmargo M.B., Birnbaum M. // Advanced Solid-State Lasers / Ed. by Chai D.H.T., Payne S.A. Washington: OSA, 1995. V. 24. P. 460.
- 5. Malyarevich A.M., Denisov I.A., Yumashev K.V., Dymshits O.S., Zhilin A.A. // Proc. SPIE. 2002. V. 4751. P. 326.
- 6. *Holand W., Beall G.H.* Glass Ceramic Technology, 2nd Edition. Wiley, 2012, 440 p.
- 7. Alekseeva I., Dymshits O., Tsenter M., Zhilin A., Golubkov V., Denisov I., Skoptsov N., Malyarevich A., Yumashev K. // J. Non-Cryst. Solids. 2010. V. 356. № 52–54. P. 3042.
- 8. Kim J.W., Shen D.Y., Sahu J.K., Clarkson W.A. // Opt. Express. 2008. V.16. P. 5807.
- Loiko P.A., Dymshits O.S., Vitkin V.V., Skoptsov N.A., Kharitonov A.A., Zhilin A.A., Alekseeva I.P., Zapalova S.S., Malyarevich A.M., Glazunov I.V., Yumashev K.V. // Laser Phys. Lett. 2015. V. 12. № 3. P. 035803. doi 10.1088/1612-2011/12/3/035803
- 10. Голубков В.В., Дымшиц О.С., Жилин А.А., Чуваева Т.И., Шашкин А.В. // Физ. и хим. стекла. 2003 Т. 29. № 3. С. 359; Golubkov V.V., Dymshits O.S., Zhilin A.A., Chuvaeva T.I., Shashkin A.V. // Glass Phys. Chem. 2003. V. 29. № 3. Р. 254.
- Malyarevich A.M., Denisov I.A., Volk Y.V., Yumashev K.V., Dymshits O.S., Zhilin A.A. // J. Alloy Compd. 2002. V. 341. P. 247.
- 12. Volk Y.V., Malyarevich A.M., Yumashev K.V., Alekseeva I.P., Dymshits O.S., Shashkin A.V., Zhilin A.A. // J. Non-Cryst. Solids. 2007. V. 353. № 24–25. P. 2408.
- 13. *Weyl W.A.* Coloured Glasses. London: Dawson's of Pall Mall, 1959. 557 p.
- 14. *Bamford C.R.* // Phys. Chem. Glasses. 1962. V. 3. № 6. P. 189.
- Богданова Г.С., Антонова С.Л., Джуринский Б.Ф. // Изв. АН СССР. Неорг. матер. 1969. № 5. С. 204.
- Kang U., Dymshits O.S., Zhilin A.A., Chuvaeva T.I., Petrovsky G.T. // J. Non-Cryst. Solids. 1996. V. 204. P. 151.
- 17. Volk Yu.V., Denisov I.A., Malyarevich A.M., Yuma-shev K.V., Dymshits O.S., Shashkin A.V., Zhilin A.A., Kang U., Lee K.-H. // Appl. Opt. 2004. V. 43. P. 682.
- 18. Goldstein A., Loiko P., Burshtein Z., Skoptsov N., Glazunov I., Galun E., Kuleshov N., Yumashev K. // J. Amer. Ceram. Soc. 2016. doi 10.1111/jace.14102