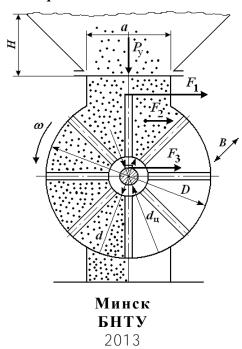


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ


Белорусский национальный технический университет

Кафедра «Горные машины»

П. В. Цыбуленко Н. И. Березовский

МАШИНЫ И ОБОРУДОВАНИЕ ОБОГАТИТЕЛЬНЫХ И ПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВ

Методическое пособие по практическим занятиям

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет

Кафедра «Горные машины»

П. В. Цыбуленко Н. И. Березовский

МАШИНЫ И ОБОРУДОВАНИЕ ОБОГАТИТЕЛЬНЫХ И ПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВ

Методическое пособие по практическим занятиям для студентов специальностей 1-36 10 01 «Горные машины и оборудование» и 1-36 13 01 «Технология и оборудование торфяного производства»

Рекомендовано учебно-методическим объединением высших учебных заведений Республики Беларусь по образованию в области горнодобывающей промышленности

Минск БНТУ 2013 УДК 622.73(076.5) ББК 34.7я73 П93

Рецензенты: А. А. Кологривко, В. В. Борисейко

Цыбуленко, П. В.

Щ93 Машины и оборудование обогатительных и перерабатывающих производств: методическое пособие по практическим занятиям для студентов специальностей 1-36 10 01 «Горные машины и оборудование» и 1-36 13 01 «Технология и оборудование торфяного производства / П.В. Цыбуленко, Н.И. Березовский. — Минск: БНТУ, 2013. — 35 с.

ISBN 978-985-550-307-2.

Изложена методика расчета оборудования и машин обогащения и переработки горных пород на примерах решения конкретных задач. Приведены примеры расчетов машин и оборудования общего назначения, затворов, питателей и дозаторов сыпучих материалов горных пород.

Учебно-методическое пособие предназначено для практического усвоения теоретического материала по дисциплинам «Машины и оборудование обогатительных и перерабатывающих производств» и «Машины и оборудование переработки торфа».

УДК 622.73(076.5) ББК 34.7я73

ISBN 978-985-550-307-2

© Цыбуленко П.В., Березовский Н.И., 2013

© Белорусский национальный технический университет, 2013

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. РАСЧЕТ ПИРАМИДАЛЬНОГО БУНКЕРА	4
2. РАСЧЕТ ШИБЕРНОГО ЗАТВОРА БУНКЕРА	11
3. РАСЧЕТ ПЛАСТИНЧАТОГО ПИТАТЕЛЯ	15
4. РАСЧЕТ ШЛЮЗОВОГО ПИТАТЕЛЯ	18
5. РАСЧЕТ ДИСКОВОГО ДОЗАТОРА	22
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	25

ВВЕДЕНИЕ

Основная цель пособия: помочь студентам усвоить основные принципы расчета и проектирования перерабатывающих машин и оборудования, навыки решения инженерных задач.

Обогащение полезных ископаемых представляет собой совокупность операций по первичной переработке руды, угля, торфа и других ископаемых с целью удаления пустой породы, воды, разделения минералов, что приводит к повышению качественных характеристик обогащаемых материалов. Для этого на обогатительно-перерабатывающих производствах применяется комплекс машин и оборудования:

- машины и оборудование общего назначения (бункеры, бункерные установки, затворы бункеров, питатели, вагоноопрокидыватели);
- машины и оборудование подготовительных процессов (грохоты, дозаторы, смесители, классификаторы и др.);
- машины для дробления и измельчения горных пород (щековые, конусные, молотковые, валковые дробилки, мельницы);
- машины и оборудование для уплотнения горных пород (прессы, грануляторы, формователи);
- машины для обезвоживания сыпучих материалов (центрифуги, гидроциклоны, сгустители, фильтры, сушилки);
 - машины по хранению и упаковке готовой продукции.

1. РАСЧЕТ ПИРАМИДАЛЬНОГО БУНКЕРА

Исходные данные:

- форма бункера пирамидальный, равносторонний;
- производительность бункера Q, т/ч;
- насыпная плотность материала $\rho_{\rm H}$, кг/м³;
- угол естественного откоса материала φ, град;
- максимальный размер куска материала в смеси D_{\max} , м;
- время сработки полного объема бункера t, ч.

Расчет выполняется по зависимостям, изложенным в литературе [1], [2].

На рис. 1.1 представлена схема бункера с указанием размеров: a — сторона выпускного отверстия; b — сторона верхней кромки бункера; H — высота бункера; H — высота стенки бункера; α — угол наклона бункера.

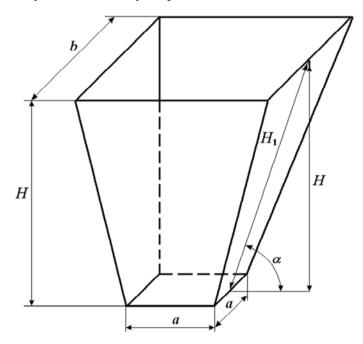


Рисунок 1.1 – Схема пирамидального бункера

1.1. Определим объемную производительность бункера:

$$Q_V = \frac{Q}{\rho_{\rm H}}, \quad {\rm M}^3/{\rm Y}. \tag{1.1}$$

1.2. Необходимый объем бункера с учетом запаса сыпучего материала на время t:

$$V = Q_V \cdot t, \quad \mathbf{M}^3. \tag{1.2}$$

1.3. Размер стороны выпускного отверстия бункера:

$$a = 2.4 (0.01 D_{\text{max}} + 0.08) \text{ tg}\phi$$
, м. (1.3)

1.4. Примем размер стороны b (стороны верхней кромки бункера) по зависимости

$$b = (8 \div 12) a$$
, м. (1.4)

1.5. Определим высоту бункера

$$H = \frac{6V}{(2b+a)b + (2a+b)a}, \quad M. \tag{1.5}$$

1.6. Угол наклона стенки бункера

$$\alpha = \operatorname{arctg} \frac{2H}{b-a}$$
, град. (1.6)

1.7. Для самотечной разгрузки бункера необходимо соблюдение условия

$$\alpha > \varphi.$$
 (1.7)

Если условие не соблюдается, принимается меньшее значение стороны бункера b.

1.8. Высота стенки бункера

$$H_1 = \frac{H}{\sin \alpha}, \quad M. \tag{1.8}$$

1.9. Определим гидравлический радиус выпускного отверстия бункера

$$R = \frac{S}{\Pi}, \quad M, \tag{1.9}$$

где S – площадь выпускного отверстия бункера, M^2 ;

 Π – периметр, м.

1.10. Скорость истечения материала из выпускного отверстия бункера

$$\vartheta = 5,65 \,\mu \sqrt{R}, \quad \text{m/c}, \tag{1.10}$$

где μ – коэффициент истечения материала (0,6...0,7 – для хорошо сыпучих материалов; 0,4...0,5 – для материалов, склонных к слипанию).

1.11. Производительность по истечению материала через выпускное отверстие бункера

$$Q_{\text{ист}} = \vartheta \cdot S$$
, м³/с, или $Q = 3600\vartheta \cdot S$, м³/ч. (1.11)

1.12. Для обеспечения требуемой производительности бункера необходимо соблюдать условие

$$Q_{\text{ист}} > Q. \tag{1.12}$$

1.13. Вертикальное давление от массы материала, действующее на нижнюю кромку бункера (рис. 1.2):

$$P_y = \rho_{\rm H} g H K_3$$
, Πa , (1.13)

где K_3 – коэффициент зависания материала (0,7...0,9); g – ускорение силы тяжести, м/ c^2 .

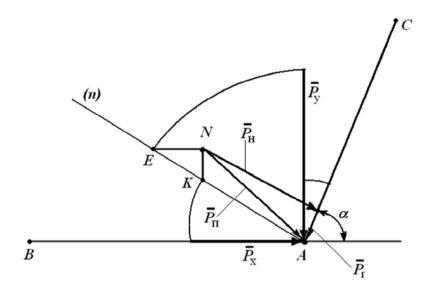


Рисунок 1.2 – Расчетная схема давлений на наклонную стенку бункера

1.14. Боковое давление, действующее на вертикальную плоскость у нижней кромки бункера:

$$P_x = P_y \cdot \varepsilon$$
, Πα, (1.14)

где ε – коэффициент бокового давления:

$$\varepsilon = \frac{1 - \sin^2 \varphi}{1 + \sin^2 \varphi}.\tag{1.15}$$

1.15. Определим полное P_{Π} , нормальное P_{H} и тангенциальное P_{τ} давления на наклонную стенку бункера (рис. 1.2) графическим методом.

Для этого проведем горизонтальную линию кромки бункера BA и под углом наклона стенки бункера α линию AC.

Затем в выбранном масштабе определим длины векторов вертикального и горизонтального давлений:

$$\bar{P}_y = P_y/\mu_p$$
, MM, $\bar{P}_x = P_x/\mu_p$, (1.16)

где $\mu_p = P/l$, Па/мм, – масштабный коэффициент,

l – выбранная длина вектора, мм.

Отложим их из точки A на вертикальную и горизонтальную плоскость. Проведем из точки A нормаль (n) к наклонной стенке. Отложим на нормаль векторы \bar{P}_y и \bar{P}_x . Получим точки E и K. Из точки E проведем линию, параллельную \bar{P}_x , а из точки K – линию, параллельную \bar{P}_y . Пересечение этих линий дает точку N. Соединив точку N с точкой A, получим вектор полного давления \bar{P}_n , действующего на наклонную стенку в точке A. По правилу параллелограмма разложим его на вектор нормального давления \bar{P}_{π} , и вектор тангенциального давления \bar{P}_{τ} .

Величины этих давлений:

$$P_{\Pi} = \bar{P}_{\Pi} \cdot \mu_{p}$$
, Πa ; $P_{H} = \bar{P}_{H} \cdot \mu_{p}$, Πa ; $P_{\tau} = \bar{P}_{\tau} \cdot \mu_{p}$, Πa . (1.17)

1.16. Для трапецеидальной степени бункера (рис. 1.3) найдем эквивалентное равномерное давление, действующее по всей высоте стенки бункера:

$$P_{3} = \frac{b \cdot 2P_{\rm H} + a \cdot P_{\rm H}}{3(b+a)}, \quad \Pi a.$$
 (1.18)

1.17. Условно преобразуем трапецеидальную стенку бункера в прямоугольную и определим размеры сторон преобразованного прямоугольного листа (рис. 1.3):

$$a_{\Pi} = \frac{2}{3}b\left(\frac{b+2a}{b+a}\right)$$
, M; $b_{\Pi} = H_1 - \frac{1}{6}\left(\frac{b^2 - ba}{b+a}\right)$, M. (1.19)

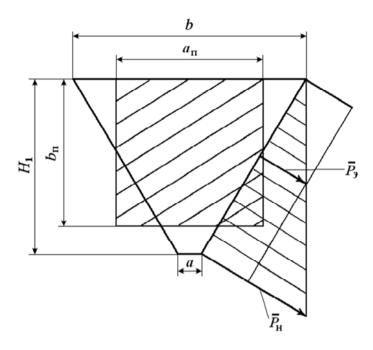


Рисунок 1.3 – Схема преобразования формы листа стенки бункера

1.18. Определим максимальный изгибающий момент на боковой стенке бункера

$$M_{\text{\tiny M}} = \beta \cdot P_{\text{\tiny 3}} \cdot a_{\text{\tiny \Pi}}^2 \cdot b_{\text{\tiny \Pi}}, \text{H} \cdot \text{M},$$
 (1.20)

где β – коэффициент, зависящий от размеров преобразованного прямоугольного листа (выбирается по таблице 1.1).

Таблица 1.1

$\frac{b_{\Pi}}{a_{\Pi}}$	1,0	1,25	1,5	1,75	2,0	2,25
β	0,0513	0,0665	0,0757	0,0813	0,0829	0,0833

1.19. Толщина стенки бункера

$$\delta = \sqrt{\frac{6M_{\text{\tiny M}}}{b_{\text{\tiny \Pi}} \cdot [\sigma_{\text{\tiny M}}]}} + K, \text{M}, \qquad (1.21)$$

где $[\sigma_{\rm u}]$ – предел прочности на изгиб материала стенки бункера, Па (для ст. 2 – $[\sigma_{\rm u}]$ = 110...120 МПа, ст. 3 – $[\sigma_{\rm u}]$ = 130...140 МПа);

K — коэффициент, учитывающий дефект от коррозии металла (0,001...0,0015 м).

1.20. Определим массу материала в полностью заполненном бункере

$$m_{\scriptscriptstyle \rm M} = \rho_{\scriptscriptstyle \rm H} \cdot V$$
, кг. (1.22)

1.21. Определим массу самого бункера

$$m_6 = 4\left(\frac{a+b}{2}\right)H_1 \cdot \delta \cdot \rho_{\rm ct}$$
, кг, (1.23)

где $\rho_{\rm ct}$ – плотность стали, кг/м³ (можно принять $\rho_{\rm ct}$ = 7850 кг/м³).

1.22. Приняв число опор бункера, определим нагрузку на одну опору:

$$P_{\text{off}} = \frac{(m_{\text{M}} + m_{6})g}{n}, \text{H},$$
 (1.24)

где n – число опор;

g – ускорение силы тяжести, м/ c^2 .

1.23. Площадь опоры, устанавливаемой на фундамент:

$$F = \frac{P_{\text{on}}}{\left[\sigma_{\phi}\right]}, M^2, \tag{1.25}$$

где $\left[\sigma_{\varphi}\right]$ — допускаемое напряжение сжатия для материала фундамента, Па $\left(\left[\sigma_{\varphi}\right]\right]$ для бетонов — 2 МПа, для кирпичной кладки $\left[\sigma_{\varphi}\right]$ = 0,7...0,8 МПа).

Исходные данные для выполнения расчетов приведены в таблице 1.2.

Таблица 1.2

№ варианта	1	2	3	4	5	6	7	8
Производительность бункера Q , т/ч	3	4,5	7	9,5	12	14	17	13
Насыпная плотность материала $\rho_{\rm H}$, $\kappa \Gamma/{\rm M}^3$	280	300	520	1100	1500	1500	1550	1600
Угол естественного от- коса материала φ, град	38	39	42	41	40	36	40	39
Максимальный размер куска материала в смеси D_{\max} , м	0,12	0,13	0,08	0,09	0,1	0,12	0,11	0,09
Время сработки полного объема бункера t , ч	0,2	0,25	0,3	0,4	0,5	0,4	0,3	0,45

2. РАСЧЕТ ШИБЕРНОГО ЗАТВОРА БУНКЕРА

Исходные данные:

- максимальный размер частиц материала D_{\max} , м;
- насыпная плотность материала $\rho_{\rm H}$, кг/м³;
- высота насыпки материала в бункере H, м;
- время открывания затвора t, c;
- угол естественного откоса материала φ, град.

Расчет выполняется в соответствии с рекомендациями [1] для шибера, перемещающегося в направляющих скольжения и качения.

На рис. 2.1 представлена схема затвора на направляющих скольжения с указанием размеров сторон выпускного отверстия бункера a и b, высоты насыпки материала в бункере H и сил, действующих при перемещении шибера P, F_1 , F_2 .

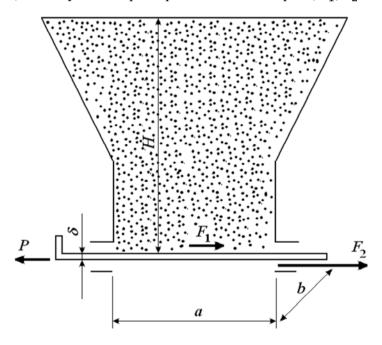


Рисунок 2.1 – Схема затвора на направляющих скольжения

2.1. Определим размер стороны выпускного отверстия бункера

$$a = 2.4(0.01 D_{\text{max}} + 0.08) \text{tg} \varphi, \text{ M}.$$
 (2.1)

2.2. Примем форму выпускного отверстия квадратной, тогда

$$a = b. (2.2)$$

2.3. Вертикальное давление, действующее на шибер:

$$P_{y} = \rho_{H} \cdot g \cdot H \cdot K_{3}, H, \qquad (2.3)$$

где g – ускорение силы тяжести, м/ c^2 ;

 K_3 – коэффициент зависания материала (0,8...0,9).

2.4. Определим максимальный изгибающий момент на шиберную заслонку

$$M_{\rm M} = \beta \cdot P_{\rm y} \cdot \alpha^2 \cdot b, H \cdot M, \tag{2.4}$$

где β — коэффициент, зависящий от отношения b/a, выбирается по таблице 1.1.

2.5. Толщина шибера

$$\delta = \sqrt{\frac{6M_{\rm u}}{[\sigma_{\rm u}] \cdot b}}, \,_{\rm M}, \qquad (2.5)$$

где $[\sigma_u]$ – предел прочности на изгиб материала, из которого выполнен шибер, Па (для ст. 3 $[\sigma_u]$ = $130\cdot 10^6$ Па).

2.6. Масса шибера

$$m_{\text{III}} = a \cdot b \cdot \delta \cdot \rho$$
, кг, (2.6)

где ρ – плотность материала шибера, кг/м³ (для ст. 3 ρ = $7850 \, \text{кг/m}^3$).

2.7. Определим силу трения материала по шиберу

$$F_1 = P_y \cdot a \cdot b \cdot f_1, H, \tag{2.7}$$

где f_1 – коэффициент трения материала по шиберу (0,6...0,8).

2.8. Сила трения шибера по направляющим скольжения

$$F_2 = (P_y \cdot a \cdot b + m_{III} \cdot g) \cdot f_2, H, \tag{2.8}$$

где g – ускорение силы тяжести, м/ c^2 ;

 f_2 — коэффициент трения шибера по направляющим скольжения (0,5...0,6).

2.9. Сила сопротивления перемещению шибера

$$P = (F_1 + F_2) \cdot K_3, H, \tag{2.9}$$

где K_3 — коэффициент запаса, учитывающий возможность перекоса затвора (1,25...1,5).

2.10. Скорость перемещения шибера

$$\vartheta = \frac{a}{t}, \text{ m/c.} \tag{2.10}$$

2.11. Мощность, затрачиваемая на привод шибера на направляющих скольжения:

$$N = \frac{P \cdot \vartheta}{1000 \cdot \eta}, \text{ KBT}, \tag{2.11}$$

где η – КПД привода.

2.12. При перемещении шибера на направляющих качения (рис. 2.2) определим силу сопротивления качению шибера по роликам:

$$F_3 = (P_y \cdot a \cdot b + m_{III} \cdot g) \cdot k, H, \qquad (2.12)$$

где k – коэффициент сопротивления качению (0,003...0,004).

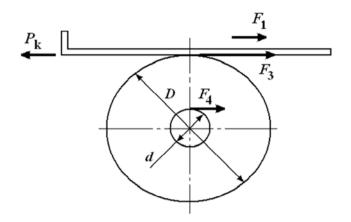


Рисунок 2.2 - Схема затвора на направляющих качения

2.13. Сила сопротивления качению ролика в цапфе

$$F_4 = (P_y \cdot a \cdot b + m_{\text{III}} \cdot g + m_p \cdot g) \cdot f_{\text{II}}, \text{H}, \qquad (2.13)$$

где $m_{\rm p}$ — масса роликов, кг (принимается 0,6...0,7 от массы шибера);

 $f_{\rm ц}$ — коэффициент сопротивления в оси ролика (для подшипника качения принимается 0,003...0,004, для подшипника скольжения — 0,03...0,04).

2.14. Сила сопротивления перемещению шибера на направляющих качения

$$P_k = F_1 + F_3 + F_4 \cdot \frac{d}{D}, H,$$
 (2.14)

где d и D – диаметры цапфы и ролика, м.

2.15. Мощность, затрачиваемая на привод шибера на направляющих качения:

$$N = \frac{P_k \cdot \vartheta}{1000 \cdot \eta}, \text{ KBT,} \tag{2.15}$$

Исходные данные для выполнения расчетов приведены в таблице 2.1.

Таблица 2.1

№ варианта	1	2	3	4	5	6	7
Высота насыпки материала в бункере H , м	4	3,5	5	4,5	3,0	4,8	3,7
Насыпная плотность материала ρ_{H} , кг/м ³	2700	2800	400	2200	1200	1600	1800
Максимальный размер частиц материала D_{\max} , м	0,1	0,08	0,06	0,12	0,08	0,1	0,09
Время открывания затвора t , с	5	8	6	4	8	7	6
Угол естественного откоса материала ϕ , град	42	40	39	43	40	38	41
Диаметр ролика D , м	0,06	0,05	0,04	0,06	0,05	0,06	0,07
Диаметр цапфы d , м	0,02	0,015	0,012	0,03	0,02	0,018	0,03

3. РАСЧЕТ ПЛАСТИНЧАТОГО ПИТАТЕЛЯ

Исходные данные:

- назначение питателя выдача материала из бункера сырья;
- производительность питателя Q, т/ч;
- длина бункера L, м;
- насыпная плотность материала $\rho_{\rm H}$, кг/м³;
- высота засыпки материала в бункере H, м;
- угол естественного откоса материала ф, град;
- высота расположения шиберной заслонки h, м.

При расчетах использованы зависимости и рекомендации, изложенные в [1] и [3]. Расчетная схема с указанием основных размеров и действующих сил представлена на рис. 3.1.

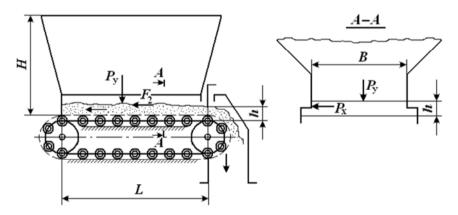


Рисунок 3.1 – Расчетная схема пластинчатого питателя

3.1. Ширина настила питателя

$$B = \frac{Q}{3.6 \cdot h \cdot \vartheta_{\text{H}} \cdot K_{3\Pi} \cdot \rho_{\text{H}}}, \text{M}, \tag{3.1}$$

где $\theta_{\rm H}$ – скорость перемещения настила, м/с (0,02...0,15);

 $K_{\rm 3\Pi}$ — коэффициент заполнения разгрузочной щели питателя, зависит от физико-механических свойств материала (0,85...0,95 —

для хорошо сыпучих материалов; 0,75...0,85 — для склонных к слипанию).

3.2. Вертикальное давление на подвижный настил

$$P_{\nu} = \rho_{\rm H} \cdot g \cdot H \cdot K_3, \Pi a, \tag{3.2}$$

где g – ускорение силы тяжести, м/ c^2 ;

 K_3 — коэффициент зависания, учитывающий зависание материала на стенках горловины питателя (0,7...0,9).

3.3. Боковое давление, действующее на боковые стенки питателя:

$$P_{\rm x} = P_{\rm y} \cdot \varepsilon$$
, Πa, (3.3)

где ε – коэффициент бокового давления:

$$\varepsilon = \frac{1 - \sin^2 \varphi}{1 + \sin^2 \varphi}.\tag{3.4}$$

3.4. Сила трения подвижного слоя материала о неподвижный

$$F_1 = P_y \cdot B \cdot L \cdot f_{\text{BH}}, H, \tag{3.5}$$

где $f_{\rm BH}$ – коэффициент внутреннего трения материала ($f_{\rm BH}={\rm tg}\phi$).

3.5. Сила трения подвижного материала о две боковые стенки питателя

$$F_2 = 2P_{\mathbf{x}} \cdot L \cdot h \cdot f = 2P_{\mathbf{y}} \cdot \varepsilon \cdot L \cdot h \cdot f, \mathbf{H}, \tag{3.6}$$

где f — коэффициент трения материала о боковую стенку (0,6...0,8).

3.6. Сопротивление движению грузовой ветви питателя

$$W_{\rm rp} = (P_y \cdot B + q_0 g) \cdot L \cdot \omega, H, \tag{3.7}$$

где q_0 – масса 1 м длины движущего настила, кг/м (выбирается по справочной литературе или с небольшой погрешностью по зависимости $q_0 = 25$ B, кг/м);

 ω – коэффициент сопротивления движению катков цепей питателя по направляющим:

$$\omega = f_{\kappa} + f_{\iota \iota} \frac{d_{\iota \iota}}{D_{\mathfrak{p}}},\tag{3.8}$$

где $f_{\rm K} = (0.05 \dots 0.2) \cdot 10^{-2}$ – коэффициент трения качения колес по направляющим;

 $f_{\rm ц} = (0.03 \dots 0.06)$ — коэффициент трения в цапфах на подшипниках качения;

 $d_{\rm ц}$ и $D_{\rm p}$ – диаметр цапфы и колеса-ролика соответственно, м (задается или выбирается по таблицам).

3.7. Сопротивление движению холостой ветви

$$W_{\Pi} = q_{0} \cdot g \cdot L \cdot \omega, H. \tag{3.9}$$

3.8. Сопротивление от перегиба цепей на звездочках

$$W_3 = 0.15(W_{\rm Tp} + W_{\rm n}), \text{H}.$$
 (3.10)

3.9. Тяговое усилие на звездочках

$$T = F_1 + F_2 + W_{\rm rp} + W_{\rm II} + W_3, \text{H.}$$
 (3.11)

3.10. Мощность двигателя привода питателя

$$N = \frac{T \cdot \vartheta_{\rm H}}{1000 \cdot \eta_{\rm np}}, \kappa BT, \tag{3.12}$$

где η_{np} – КПД привода (0,85...0,9).

Исходные данные для выполнения расчетов приведены в таблице 3.1.

Таблица 3.1

№ варианта	1	2	3	4	5	6	7
Производительность питателя Q , т/ч	28	32	18	24	10	26	30
Длина бункера L , м	6	5	7	5	8	5	6
Насыпная плотность материала $\rho_{\rm H}$, $\kappa \Gamma/{\rm M}^3$	1200	600	1600	800	400	110	2700
Высота засыпки материала в бункере H , м	3	4	5	4	4,5	5	3
Угол естественного откоса материала ф, град	42	38	44	40	39	41	42
Высота расположения шиберной заслонки h , м	0,2	0,15	0,25	0,3	0,32	0,19	0,3
Коэффициент полезного действия привода η _{пр}	0,85	0,9	0,92	0,8	0,86	0,9	0,8
Диаметр ролика $D_{\rm p}$, м	0,04	0,05	0,04	0,04	0,03	0,04	0,06
Диаметр цапфы $d_{ m ц}$, м	0,01	0,015	0,01	0,016	0,01	0,015	0,2

4. РАСЧЕТ ШЛЮЗОВОГО ПИТАТЕЛЯ

Исходные данные:

- назначение питателя выдача материала из бункера в перерабатывающую машину;
 - производительность питателя Q, т/ч;
 - насыпная плотность материала $\rho_{\rm H}$, кг/м³;
 - высота засыпки материала в бункере H, м;
 - длина питателя, B, м;
 - угол естественного откоса материала φ, град;
 - частота вращения барабана n, c^{-1} ;
 - число ячеек барабана z, шт.

При расчетах использованы зависимости и рекомендации, изложенные в [1] и [3].

Расчетная схема питателя представлена на рис. 4.1.

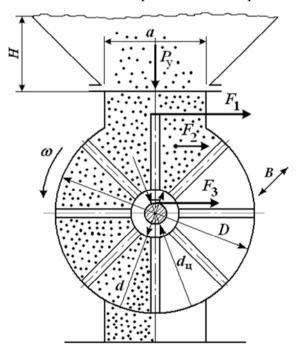


Рисунок 4.1 – Расчетная схема шлюзового питателя

4.1. Из формулы производительности питателя

$$Q = 3.6 \cdot V_0 \cdot n \cdot \rho \cdot z \cdot \varphi, \text{T/Y},$$

находим объем одной ячейки:

$$V_{\rm o} = \frac{Q}{3.6 \, n \cdot \rho \cdot z \cdot \varphi}, \, \mathsf{M}^3, \tag{4.1}$$

где ϕ – коэффициент использования объема ячейки (0,7...0,8).

4.2. Определим диаметр барабана

$$d = \frac{z \cdot l}{\pi}, M, \tag{4.2}$$

где l – длина дуги по месту установки лопастей, м.

Принимается по конструктивным соображениям с учетом возможности установки лопастей на барабане ($l_{\min} = 0.03$ м).

4.3. Определим рабочий объем питателя с учетом толщины лопастей

$$V_{\rm p} = \frac{z \cdot V_{\rm o}}{K}, \, \mathsf{m}^3, \tag{4.3}$$

где K — коэффициент, учитывающий уменьшение рабочего объема за счет толщины лопастей (0,9...0,95).

4.4. Из формулы объема полого цилиндра

$$V = \left(\frac{\pi D^2}{4} - \frac{\pi d^2}{4}\right) B$$

найдем диаметр ротора по концам лопастей

$$D = \sqrt{\frac{\pi d^2 + 4 V_{\rm p}}{\pi \cdot B}}, \text{M}.$$
 (4.4)

4.5. Определим ширину загрузочной и выпускной горловины питателя

$$a = (0.6 \dots 0.7) D, M.$$
 (4.5)

4.6. Скорость истечения материала из бункера в питатель

$$\vartheta = 5.65 \,\mu \cdot \sqrt{R_{\rm r}} \,\text{, M/c,} \tag{4.6}$$

где μ — коэффициент истечения материала зависит от сыпучести материала (0,4...0,5 — для слабосыпучих материалов; 0,6...0,7 — для хорошо сыпучих материалов);

 $R_{\rm r}$ – гидравлический радиус загрузочной горловины:

$$R_{\Gamma} = \frac{a \cdot B}{2 a + 2B}$$
, M.

4.7. Производительность по истечению материала через загрузочную горловину

$$Q_{\text{\tiny MCT}} = \vartheta \cdot a \cdot B, \, \text{M}^3/\text{c}. \tag{4.7}$$

4.8. Для обеспечения требуемой производительности питателя необходимо соблюдение условия

$$Q_{\text{HCT}} > \frac{Q}{3.6 \cdot \rho_{\text{H}}}, \text{M}^3/\text{c.} \tag{4.8}$$

4.9. Вертикальное давление от массы материала, действующее в загрузочной горловине питателя:

$$P_{v} = \rho_{H} \cdot g \cdot H \cdot K_{3}, \Pi a, \tag{4.9}$$

где K_3 – коэффициент зависания материала (0,8...0,9).

4.10. Боковое давление, действующее на торцевые крышки питателя,

$$P_{x} = P_{y} \cdot \varepsilon, \Pi a, \qquad (4.10)$$

где ε – коэффициент бокового давления:

$$\varepsilon = \frac{1 - \sin^2 \varphi}{1 + \sin^2 \varphi}.$$

4.11. Сила сдвига материала по концам лопастей барабана

$$F_1 = P_{\nu} \cdot a \cdot B \cdot f_{\text{BH}}, H, \tag{4.11}$$

где $f_{\rm BH}$ — коэффициент внутреннего трения материала ($f_{\rm BH}={
m tg}\phi$).

4.12. Сила трения материала о боковые стенки питателя

$$F_2 = 2\left(P_{\rm X} \frac{\pi(D^2 - d^2)}{4} + \frac{3}{4}V_o \cdot z \cdot \rho_{\rm H} \cdot g \cdot \varepsilon\right) f$$
, H, (4.12)

где f — коэффициент трения материала о стенки питателя (0,6...0,8);

g – ускорение силы тяжести, м²/с.

4.13. Масса барабана питателя

$$m_{6} = \left(\frac{\pi d^{2}}{4} - \frac{\pi (d - t_{\text{CT}})^{2}}{4}\right) B \cdot \rho_{\text{CT}} + z \left(\frac{D - d}{2} \cdot B \cdot t_{\text{J}}\right) \rho_{\text{CT}}, \text{KG}, \tag{4.13}$$

где $t_{\rm CT}$ — толщина стенки барабана, м (принимается конструктивно);

 $\rho_{\rm cr}$ – плотность стали ($\rho_{\rm cr}$ = 7850 кг/м³);

 $t_{\rm л}$ – толщина лопасти, м (принимается конструктивно).

4.14. Сила сопротивления в подшипниковых опорах барабана

$$F_3 = (P_{v} \cdot a \cdot B + zV_o \cdot \rho_{H} \cdot g + m_6 \cdot g) f_{H}, \quad (4.14)$$

где $f_{\rm u}$ — коэффициент сопротивления в подшипниках качения $(0,03\dots0,06).$

4.15. Момент сопротивления вращению ротора питателя

$$M = F_1 \frac{D}{2} + F_2 \left(\frac{D - d}{4} + \frac{d}{2} \right) + F_3 \frac{d_{II}}{2}, \text{H} \cdot \text{M}.$$
 (4.15)

4.16. Угловая скорость вращения барабана

$$\omega = 2 \pi n, c^{-1}.$$
 (4.16)

4.17. Мощность, необходимая на привод питателя:

$$N = \frac{M \cdot \omega}{1000 \cdot \eta_{\text{πD}}}, \text{κBT,}$$

где η_{np} – КПД привода (0,85...0,9).

Исходные данные для выполнения расчетов приведены в таблице 4.1.

Таблица 4.1

№ варианта	1	2	3	4	5	6
Производительность питателя Q , т/ч	4,8	6	10	15	20	16
Насыпная плотность материала $\rho_{\rm H}$, кг/м ³	320	420	1200	1800	2700	1900
Высота засыпки материала в бункере H , м	3	2,5	3,5	2,9	3,6	2,4
Угол естественного откоса материала ф, град	42	38	44	42	39	41
Частота вращения барабана n, c^{-1}	0,5	0,8	0,4	0,7	0,9	1,0
Число ячеек барабана z , шт.	6	8	8	6	8	8
Длина питателя B , м	0,35	0,4	0,38	0,42	0,4	0,30

5. РАСЧЕТ ДИСКОВОГО ДОЗАТОРА

Исходные данные:

- производительность дозатора Q, т/ч;
- насыпная плотность материала $\rho_{\rm H}$, т/ч;
- угол естественного откоса материала ф, град;
- высота установки манжеты h, м;
- длина питателя B, м;
- время сработки полного объема бункера t, c;
- угол установки скребка β, град.

Расчет выполнен по методике и рекомендациям, изложенным в [1] и [3].

Расчетная схема дозатора представлена на рис. 5.1.

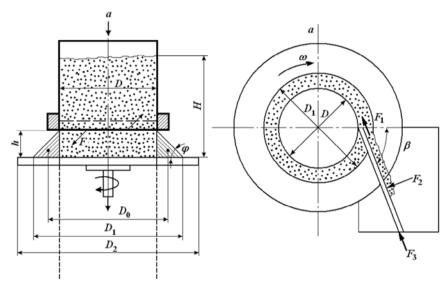


Рисунок 5.1 – Расчетная схема дозатора

5.1. Объемная производительность дозатора

$$Q_V = \frac{Q}{3.6\rho_{\rm H}}, \, \text{m}^3/\text{c}.$$
 (5.1)

5.2. Необходимый объем цилиндрического бункера с учетом запаса сыпучего материала на время t:

$$V = Q_V \cdot t, \mathbf{M}^3. \tag{5.2}$$

5.3. Задавшись рекомендуемым соотношением высоты бункера и его диаметра H = (2 ... 3) D определим диаметр бункера:

$$D = \sqrt{\frac{4V}{(2...3)\pi}}, \text{M}.$$
 (5.3)

5.4. Диаметр кольца материала

$$D_1 = D + \frac{2h}{\mathsf{tg}\varphi}, \mathsf{M} \,. \tag{5.4}$$

5.5. Высота бункера

$$H = \frac{4V}{\pi D^2}, \text{ M.} \tag{5.5}$$

5.6. Объем материала, снимаемого скребком за один оборот диска:

$$V_{\rm o} = \frac{h^2}{2 \operatorname{tg} \varphi} \cdot \pi D_{\rm o}, \,\mathrm{M}^3, \tag{5.6}$$

где D_o – диаметр по центрам тяжести сечений кольца, м:

$$D_{\rm o} = D + \frac{2h}{3 \text{tg} \varphi}.$$

5.7. Частота вращения диска

$$n = \frac{Q_V}{V_o}, c^{-1}. (5.7)$$

5.8. Расчетная частота вращения диска должна соответствовать условию

$$n \le \sqrt{\frac{g \cdot f}{2 \pi^2 \cdot D_o}}, c^{-1}, \tag{5.8}$$

где f – коэффициент трения материала по диску (0,6...0,8).

5.9. Диаметр диска

$$D_2 = 1.1 \cdot D_1, \,\mathrm{M}. \tag{5.9}$$

5.10. Вертикальное давление, действующее на уровне сдвига подвижного и неподвижного слоя материала:

$$P_{y1} = \rho_{\mathrm{H}} \cdot g(H - h) \cdot K_{\mathrm{3}}, \Pi \mathrm{a}, \tag{5.10}$$

где K_3 – коэффициент зависания материала (0,7...0,9);

g – ускорение силы тяжести, м/ c^2 .

5.11. Сила сопротивления сдвигу материала на уровне нижней кромки кольца

$$F = P_{y1} \cdot \frac{\pi D^2}{4} \cdot f_{\text{BH}}, \text{H}, \tag{5.11}$$

где $f_{\rm BH}$ – коэффициент внутреннего трения материала ($f_{\rm BH}={
m tg}\phi$).

5.12. Момент силы трения F:

$$M = F \cdot \frac{D}{4}, H \cdot M. \tag{5.12}$$

5.13. Мощность, затраченная на сопротивление сдвигу материала:

$$N_1 = M \cdot 2\pi n, B_T. \tag{5.13}$$

5.14. Сила трения материала при его сбрасывании по поверхности диска

$$F_1 = V_0 \cdot \rho_H \cdot g \cdot f_1, \text{ H,} \tag{5.14}$$

где f_1 – коэффициент трения материала по диску (0,6...0,8).

5.15. Скорость перемещения материала вдоль скребка

$$\vartheta_{\rm M} = 2\pi n \, \frac{D_{\rm o}}{2}, {\rm M/c.} \tag{5.15}$$

5.16. Мощность на трение материала по диску

$$N_2 = F_1 \cdot \vartheta_{\text{M}}, \text{Bt.} \tag{5.16}$$

5.17. Нормальная к скребку сила

$$F_2 = F_1 \cdot \cos \beta, \text{H.} \tag{5.17}$$

5.18. Сила трения материала по скребку

$$F_3 = F_2 \cdot f_2 \, \text{H.} \tag{5.18}$$

где f_2 – коэффициент трения материала по скребку (0,6...0,8).

5.19. Мощность, затраченная на трение материала по скребку:

$$N_3 = F_3 \cdot \vartheta_{\text{M}}, \text{Bt.} \tag{5.19}$$

5.20. Мощность на привод дозатора

$$N = \frac{N_1 + N_2 + N_3}{1000 \cdot \eta_{\text{np}}}, \text{ kBT}, \tag{5.20}$$

где η_{np} – КПД привода (0,85...0,9).

Исходные данные для выполнения расчетов приведены в таблице 5.1.

Таблица 5.1

№ варианта	1	2	3	4	5	6
Производительность дозатора Q , т/ч	6	3	4	5	7	8
Насыпная плотность материала $\rho_{\rm H}$, т/ч	1300	600	1000	700	1200	1500
Угол естественного откоса материала ф, град	42	38	40	44	39	41
Высота установки манжеты h , м	0,15	0,09	0,1	0,12	0,15	0,18
Время сработки полного объема бункера t , с	1200	800	900	700	1300	900
Угол установки скреб- ка β, град	60	68	70	75	65	72

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Горфин, О. С. Машины и оборудование по переработке торфа / О. С. Горфин. М. : Недра, 1990. 206 с.
- 2. Борщев, В. Я. Оборудование для переработки сыпучих материалов / В. Я. Борщев, Ю. И. Гусев, М. А. Промтов. М. : Машиностроение-1, 2006. 208 с.
- 3. Каталымов, А. В. Дозирование сыпучих материалов / А. В. Каталымов. Л. : Химия, 1990. 240 с.