УДК 621.316

СРАВНЕНИЕ ПОДСТАНЦИЙ НАПРЯЖЕНИЕМ 330 КВ С ДВУМЯ И ТРЕМЯ СИЛОВЫМИ АВТОТРАНСФОРМАТОРАМИ

Веракса Р.В., Качан П.С.

Научный руководитель – к.т.н., доцент Старжинский А.Л.

В Белорусской энергосистеме большое количество подстанций напряжением 330/110/10 кВ имеют три автотрансформатора, один из которых обычно находится в отключенном состоянии. Целью данной работы является эффективность дооснащения третьим автотрансформатором определить подстанций Гомельской энергосистемы: ПС Мозырь, ПС Гомсельмаш, ПС Жлобин. Оценку эффективности произведем по двум параметрам: капитальные вложения и исходя из достижения максимума надежности подстанции.

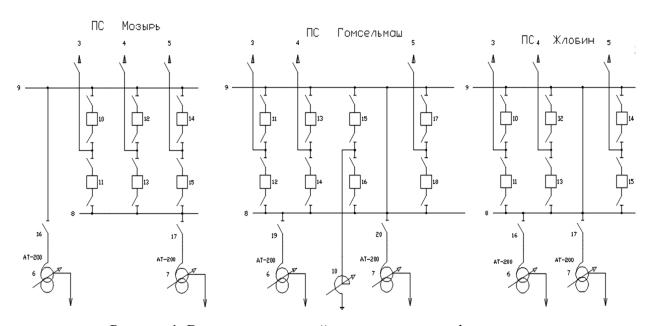


Рисунок 1. Вариант подстанций с двумя автотрансформаторами.

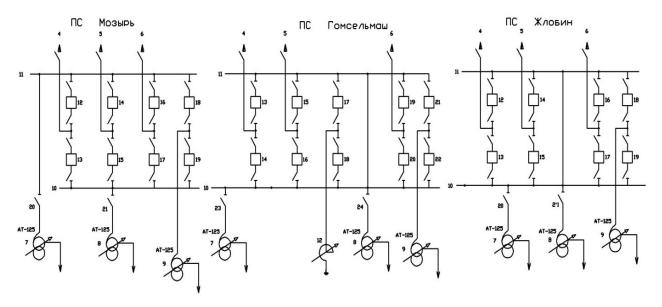


Рисунок 2. Вариант подстанций с тремя автотрансформаторами.

Капитальные затраты определяем по стоимости внедряемых автотрансформаторов. Произведем сравнение капитальных вложений в подстанцию напряжением 330/110/10 кВ в трех и двухтрансформаторном исполнении при одинаковых схемах распределительных устройств 330 кВ (таблица 1).

Таблица 1 - Капитальные вложения в подстанцию напряжением 330/110/10 кВ

Тип электрической схемы РУ	Количество трансформ. и их номинальная мощность	Капитальные затраты на строительство подстанции Кпс приведенные к 2015 году, млн. рос. руб.
Трансформаторы - шины с присоединением линий через один выключатель	2×200	488,32
Трансформаторы - шины с присоединением линий через один выключатель	3×125	533,16

Определим целесообразность сооружения трехтрансформаторной подстанции исходя из условия надежности электроснабжения потребителей, использую программу "TOPAS", реализующей таблично-логическим метод определения надёжности

Вычисление частот отказов функционирования k-го вида $\lambda(k)$ и длительностей аварийного восстановления T(k) в общем случае осуществляется по выражениям [7, с. 59]:

$$\lambda(k) = \sum_{j} \sum_{i} q(j) \cdot \lambda(i) \cdot Q(s/i) \cdot L(k), \qquad (2)$$

$$T(k) = \frac{1}{\lambda(k)} \cdot \sum_{j} \sum_{i} q(j) \cdot \lambda(i) \min\left\{\frac{t(j)}{2}; t(i); t_{\text{o.n.}}\right\} \cdot Q(s/i) \cdot L(k), \qquad (3)$$

где q(j) — относительная длительность j-го ремонтного режима, о.е.; $\lambda(i)$ — частота повреждения i-го элемента схемы, 1/год; t(i) — длительность послеаварийного восстановления i-го элемента схемы, ч; t(j) — длительность j-го ремонтного режима работы схемы; $t_{o.n.}$ — время оперативных переключений, ч; Q(s/i) — вероятность отказа в срабатывании релейной защиты или коммутационного аппарата.

Для расчёта с использованием программы "TOPAS" необходимо пронумеровать все элементы схемы в строго определённом порядке. Пример нумерации схем приведен на рисунках 1 и 2. Принимаемые показатели надёжности элементов схемы представим в таблице 2.

				,
	Частота	Время	Частота	Длительность
Элемент РУ	отказа	послеаварийного	планового	планового
STEWEHT 1 3	λ,	восстановления	ремонта	ремонта
	1/год	T_{e} ,ч	$\lambda_{\text{рем}}$, $1/год$	$T_{ m pem}$, ч
Трансформатор 330 кВ	0,04	45	0,5	9,5
Элегазовый				
выключатель	0,02	48	0,2	90
напряжением 330 кВ				
Сборные шины 330 кВ				
(на одно	0,039	15	0,498	9
присоединение)				
Линия				
электропередачи на 1	0,002	9	0,5	20

Таблица 2 - Показатели надежности элементов

Оценим надежность схем электрических соединений подстанций при различном количестве автотрансформаторов, представленных на рисунках 1 и 2. Вероятность отказа выключателя при отключении короткого замыкания была принята равной 0,002. Время оперативных переключений в расчетах принято равным 1 ч. Результаты вычислений представлены в таблице 3.

Таблица 3 - Показатели надёжности типовых электрических схем распределительного устройства напряжением 330 кВ при изменении количества трансформаторов на подстанции

Подстанция	Количество трансформ.	Частота отказа λ _{сум} 1/год	Время послеавари йного восстановл ения $T_{\text{сум}}$, ч	Коэффициент неготовности $k_{_{\!\scriptscriptstyle H\!\scriptscriptstyle Z}}$
ПС Мозырь 330 кВ	2	0,0202	56,09	$1,293 \cdot 10^{-4}$
	3	0,0201	82,66	$1,896 \cdot 10^{-4}$
ПС Гомсельмаш 330	2	0,021	55,21	$1,293 \cdot 10^{-4}$
кВ	3	0,0209	80,78	$1,93 \cdot 10^{-4}$
ПС Жлобин 330 кВ	2	0,0202	56,09	$1,293 \cdot 10^{-4}$
	3	0,0201	82,66	1,896 · 10 ⁻⁴

Выводы:

КМ

1. Выполнен расчёт показателей надёжности схем электроснабжения трёх подстанций Гомельской энергосистемы: ПС Мозырь 330, ПС Гомсельмаш 330 и ПС Жлобин.

2. Опираясь на результаты расчёта установлено, что коэффициент неготовности при установке третьего автотрансформатора на подстанции увеличился в 1,46 раз, т.к. при установке третьего автотрансформатора время послеаварийного восстановления увеличилось, то ставить третий автотрансформатор не целесообразно.

Литература

- 1. Малкин, П.А. Применение трехтрансформаторных подстанций 110 кВ для обеспечения надежного электроснабжения потребителей / П.А. Малкин // Методические вопросы исследования надежности больших систем энергетики, Иркутск: ИСЭМ СО РАН, 2011. Вып. 61, С. 79-82.
- 2. Герасименко, А.А. Передача и распределение электрической энергии / А.А. Герасименко, В.Т. Федин. Изд. 2-е. Ростов н/Д: Феникс, 2008. 715 с.
- 3. Справочник по проектированию электрических сетей / Под. Ред. Файбисовича. 3-е изд. Перераб. и доп. М.: Энас, 2009. 392 с.
- 4. Балаков, Ю.Н. Проектирование схем электроустановок / Ю.Н. Балаков, М.Ш. Мисриханов, А.В. Шунтов. М.: Издательский дом МЭИ, 2006. 288 с.
- 5. Папков, Б.В. Методика оценки надежности схем электрических соединений энергообъектов / Б.В. Папков, С.П. Крайнов // Методические вопросы исследования надежности больших систем энергетики, Иркутск: ИСЭМ СО РАН, 2009. Вып. 59, С. 131–140
- 6. Скопинцев, В.А. Качество электроэнергетических систем: надежность, безопасность, экономичность, живучесть / В.А. Скопинцев. М.: Энергоатомиздат, 2009. 332 с.
- 7. Черновец, А. К. Элементы САПР электрической части АЭС на персональных компьютерах / А. К. Черновец. СПб.: Санкт-Петербург. госуд. технич. универ., 1992. 89 с.
- 8. Гук, Ю.Б. Теория надежности в электроэнергетике / Ю.Б. Гук. Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. 208 с.
- 9. Электротехнический справочник: в 4 т. // Под. Общ. Ред. Профессоров МЭИ В.Г. Герасимова и др. (гл. ред. А.И. Попов). 9-е изд., стер. М.: Издательство МЭИ, 2004. Т. 3: Производство, передача и распределение электрической энергии. 964 с.