Использование нефтяных шламов в дорожном строительстве

Куприянчик А.А., Жуковский Е.М. Белорусский национальный технический университет Добрынович Я.А.

ОАО «Банк развития Республики Беларусь» г. Минск, Беларусь

Нефтяные шламы, образующиеся на нефтехимических нефтеперерабатывающих заводах, относятся к многотоннажным органо-минеральным отходам. Применение ux дорожном строительстве эффективно позволяет утилизировать данные расширить отходы, сырьевую базу снизить стоимость u строительства автомобильных дорог.

Введение

Современные ресурсосберегающие дорожно-строительные материалы на основе природного и техногенного сырья позволяют значительно снизить стоимость автомобильных дорог и улучшить экологическую обстановку районов строительства. Учитывая экономические экологические предпосылки в дорожном строительстве, для обработки минеральных материалов и грунтов дорогие вяжущие применяются в количестве, основную часть материала минимальном техногенное сырье и отходы промышленности, в том числе нефтяной Беларуси имеются значительные запасы малопрочных минеральных материалов грунтов, которые после специальной И вместо дорогостоящих обработки вяжущими онжом использовать привозных прочных материалов при строительстве автомобильных дорог.

Образование и свойства нефтяного шлама

Нефтяные шламы относятся к многотоннажным органо-минеральным отходам. Они представляют собой донные осадки механической очистки сточных вод, продукты зачистки резервуаров, а также шламы, собранные на установках флотационной и биологической очистки промстоков.

Основной причиной их образования является присутствие механических примесей, попадающих в систему нефтеотходов с плохо подготовленной к переработке нефтью, с потребляемой на технические

нужды водой, в результате коррозии технологической аппаратуры, применении коагулянтов и флокулянтов.

Нефтяные шламы на НПЗ бывают двух типов:

- постоянно образующиеся в процессе производства, в количестве примерно 0,007 т на 1 т перерабатываемой нефти;
- застаревшие, хранящиеся много лет в шламонакопителях, в количестве десятков тысяч тонн.

При хранении нефтешламы расслаиваются с образованием:

- первого (верхнего) слоя, состоящего из сырой нефти;
- второго слоя стойкой эмульсии, включающей 40% нефтепродуктов, 55% воды и 5% механических примесей;
- третьего слоя, содержащего воду, в которой 5-8% нефти и 2-3% механических примесей;
- четвертого слоя, состоящего из 50% механических примесей, 20-25% воды и 25% органической части в виде отходов тяжелой фракции перегонки нефти.

В дорожном строительстве находят применение шламы первого и четвертого слоя. Эти шламы используют при выполнении ряда дорожностроительных работ:

- активация минеральных материалов;
- приготовление органоминеральных смесей;
- стабилизация глинистых грунтов;
- обеспыливание гравийных и грунтовых дорог;
- устройство поверхностной обработки дорожных одежд переходного типа;
 - стабилизация активной зоны земляного полотна.

В данной работе рассмотрено влияние условий образования шламов, их состав и свойства. Объектом исследования служил нефтешлам – донный осадок, отобранный из шлаконакопителя НПЗ.

Начальная влажность осадка составляет 46%. Установлено, что при длительном хранении на воздухе шлам обезвоживается и превращается в комковатый порошок, пропитанный нефтепродуктами. Процесс высыхания можно ускорить сушкой при температуре $50...100\,^{\circ}$ C.

При нагревании свыше 200 °С происходит обугливание органических веществ, которые которое практически полностью завершается к температуре 500 °С. Полученный продукт представляет собой сыпучий порошок бежевого цвета с незначительным количеством твердого углерода. Дополнительный подъем температуры приводит к потерям массы шламы за счет разложения минеральных составляющих.

Прокалённый при $1000~^{\circ}$ С отход в виде желто-коричневого сыпучего порошка составляет примерно 27% от массы влажного шлама.

Состав нефтяного шлама

В сточные воды промпредприятий, связанных с очисткой нефтехимстоков попадает значительное количество органических и минеральных веществ, которые при очистке образуют сильнообводненные шламоподобные отходы различного состава.

Органическая часть нефтешлама по своему составу соответствует составу перерабатываемой нефти и содержит метановые, ароматические и амициклические углеводороды.

Химический анализ показывает, что в усредненной пробе шлама содержится от 35 до 40 % органических веществ, причем большая часть растворима в четыреххлористом углероде CCl_4 .

Минеральная часть шлама содержит следующие компоненты:

- SiO_2 (кварцевый песок) механическая примесь, приносимая извне, содержится около 20% от массы нефтешлама;
 - Fe_2O_3 и $Fe(OH)_3$ содержится в промстоке, в количестве 5% по массе;
- $Ca(OH)_2$ появляется на стадии обезвреживания стока за счет извести, применяемой для нейтрализации и частично выпадающей в осадок. При хранении осадка в шламонакопителях происходит карбонизация извести с образованием $CaCO_3$, который и составляет пятую часть всех минеральных веществ;
 - RO двухвалентные металлы, в количестве примерно 10%.

Отличительной особенностью шлама является его высокая дисперсность, которая обусловлена условием образования — выпадением осадка из раствора. По этому принципу шлам не имеет равных среди искусственных порошкообразных материалов, получаемых механическим измельчением.

Таблица

Гранулометрический состав минеральной части шлама

Размеры отверстий сит, мм	Полные остатки на ситах, %
0,14	-
0,08	4,0
<0,08	96,0

Гранулометрический состав минеральной части шламов, представленный в таблице, подтверждает вышеуказанное: до 96% частиц

проходит через сито 0,08 мм. Подобный состав характерен для высокодисперсных коллоидных масс химического происхождения.

Заключение

- 1. По условиям образования органо-минеральные шламы нефтепереработки представляют собой высокодисперсную смесь органических и минеральных веществ, выпадающих в осадок в процессе очистки сточных вод.
- 2. В химическом составе шламов преобладают минеральные вещества $CaCO_3$, SiO_2 , $Fe(OH)_3$, количество которых составляет более 50%. Органическая часть шламов состоит из разных фракций, улетучивающихся преимущественно при температурах $150...350\,^{\circ}C$.
- 3. По физическому состоянию органоминеральный шлам густая паста с водосодержанием до 50%. При хранении на воздухе она сравнительно легко теряет воду и превращается в комковатый маслянистый порошок с влажностью до 20%.
- 4. Состав, свойства и условия образования шлама позволяют характеризовать его как техническое сырье общего функционального назначения для производства дорожно-строительных материалов и применения при строительстве автомобильных дорог.
- 5. Объем шламов, накопленных на шламовых площадках и ежегодно пополняемых с очистных сооружений, исчисляется многими тысячами тонн, что позволяет классифицировать их как многотоннажное вторичное сырье, переработка которого необходима не только по экономическим, но главным образом, экологическим соображениям.