Специфика строительства автомобильных дорог на покрытых лесом территориях

Насковец М.Т.

УО «Белорусский государственный технологический университет» г. Минск, Беларусь

В статье приведены особенности выбора направления трасс автомобильных дорог при их строительстве на лесных территориях. Рассмотрены способы возведения земляного полотна и устройства дорожных одежд дорог круглогодового и временного действия на покрытых лесом площадях, характеризующихся низкой несущей способностью грунтовых оснований.

Введение

Практика эксплуатации автомобильных дорог показывает, что при их устройстве на покрытых лесом территориях существует ряд специфических особенностей, которые следует учитывать на стадии проектирования. Это касается прокладки трассы дороги в зависимости как от природно-климатических, так и грунтово-гидрологических условий местности. В данном случае немаловажным фактором служат и сроки функционирования строящихся автомобильных дорог. Все это свидетельствует о разноплановом подходе к выбору того или иного конструктивно-технологического решения дорожного коммуникационного сооружения.

Учет специфики строительства автомобильных дорог, прокладываемых в условиях лесных массивов

Автомобильные лесовозные дороги пересекают различные природные ландшафты. Они проходят по открытой местности, заболоченным участкам и по лесу. Ситуационные условия, наряду с погодно-климатическими факторами и различного рода нагрузками, оказывают существенное влияние на работоспособность дорожных конструкций, их прочность и срок службы. Действующие нормы проектирования автомобильных дорог не в полной мере учитывают влияния лесонасаждений, произрастающих в зоне прохождения трассы, на воднотепловые процессы, протекающие в земляном полотне и дорожной одежде.

Для предотвращения этих негативных явлений необходимо учитывать водно-тепловой режим земляного полотна и дорожных одежд, который зависит от количества осадков, испарения, колебания температуры воздуха и грунта, скорости и направления ветра, продолжительности морозного периода.

факторов, который оказывает большое влияние на Одним из изменение водно-теплового режима, является воздействие солнечной энергии на поверхность земляного полотна. Поверхность дороги получает большое количество солнечной радиации. Величину. характеризуют мощность потока лучистой энергии солнца, и называют интенсивностью радиации. Энергия солнца достигает земной атмосферы с интенсивностью 1,4 КДж/м с (2 кал/см мин); 48 % этой величины видимая часть спектра, 7 % – ультрафиолетовая; 45 % – инфракрасная и 1 % – рентгеновские лучи и радиоволны. Атмосфера поглощает приблизительно 20 % поступающей на ее верхнюю границу солнечной радиации. Еще 34 % радиации отражается от поверхности Земли, атмосферы, облаков и взвешенных в атмосфере примесей. Остальные 46 % поглощаются земной поверхностью [1,2].

Количество тепла, приходящегося на горизонтальную поверхность и зависящего от угла падения лучей, можно определить по формуле [2].

$$I_{i} = I \sin a, \tag{1}$$

где I — количество тепла в 1 минуту на 1 см 2 перпендикулярной к лучам поверхности, Дж;

а – угол стояния солнца над горизонтом, град.

В условиях лесистой местности угол падения лучей солнца на поверхность земляного полотна будет обуславливаться высотой деревьев и расстоянием, на котором он будет находиться от дороги (рис.1) [3].

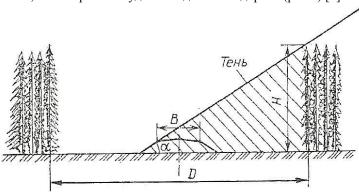


Рис. 1 – Влияние лесонасаждений на угол падения солнечных лучей

Следовательно, зная высоту H, произрастающих вдоль дороги деревьев, а также ширину полосы отвода D и земляного полотна B, можно определить tg угла a, при котором дорожная конструкция начнет получать прямую солнечную энергию по формуле:

$$\operatorname{tg} a = \frac{H}{\frac{D}{2} + B},\tag{2}$$

Определив в соответствии с формулой (2) угол a и подставив его в формулу (1), получим количество тепла, попадающего на поверхность дорожной конструкции. Таким образом, видно, что количество тепла, попадающего на дорожное полотно, будет зависеть главным образом от высоты древостоя и ширины полосы отвода.

Испарения с дорожной конструкции зависят не только от количества солнечной радиации, но и от скорости и направления ветра.

Затухание скорости ветра в насаждениях от поверхности почвы происходит неодинаково и зависит от типа леса, его состава, возраста, полноты насаждений. Особую роль в этом случае играет форма и густота крон деревьев, наличие подлеска, подроста или второго яруса. Если принять скорость ветра над пологом за 100%, то в пологе она уменьшается до 10% – 20%, далее под пологом весьма малозаметно усиливается, а с понижением к поверхности почвы постепенно затухает и не превышает 0,5–1,0 м/с. Изменение скорости ветра приводит также к изменению величины испарений с поверхности дороги. Так при снижении скорости ветра на 30% испарения с поверхности земляного полотна уменьшаются на 15%–20% [2].

Рассмотренные выше и другие погодно-климатические факторы необходимо учитывать при проектировании дорожных конструкций автомобильных дорог, проходящих через лесные массивы.

Значительное влияние на месторасположение трассы дороги оказывают и грунтово-гидрологические условия в местах ее пролегания (рис.2).

При проектировании и строительстве автомобильных дорог в лесных достаточно массивах приходится решать сложные разноплановые инженерные задачи. Среди всего многообразия имеющихся проблем обособленно стоит вопрос об обеспечении проезжаемости колесного торфяным транспорта по заболоченным **участкам** Актуальность данного направления продиктована тем обстоятельством, что прокладка трасс автомобильных дорог, главным образом, сопряжена с необходимостью их строительства на основаниях, характеризующихся низкой несущей способностью грунтов.

Рис. 2 – Вариант прохождения трассы в заболоченной местности

В настоящее время существуют различные способы, позволяющие сооружать насыпи на торфяных грунтах. К ним следует отнести также конструкторско-технологическое решение (рис. 3), в основу которого положено проведение работ по частичному выторфовыванию верхних слоев слабых грунтовых оснований.

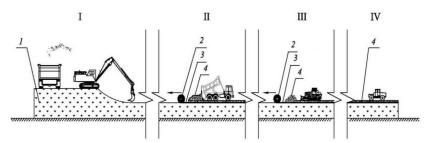


Рис. 3 — Технологические операции по сооружению насыпи на болотах с геопрослойками (I-IV):
1 — торфяной грунт; 2 — рулон;
3 — геосинтетический материал; 4 — привозной грунт

В соответствии с разработанной технологией процесс устройства насыпи следующий. Предварительно частично удаляется торфяной грунт I, с низкой несущей способностью (I). На оставшийся слой грунта I укладывается путем раскатки из рулона 2 геосинтетический материал 3 на ширину, равную ширине рулона (II). После чего привозной грунт 4 при отсыпке насыпи постепенно перемещают на прослойку из геосинтетического материала 3 (III) по всей ширине раскатанного рулона с последующим его разравниванием и уплотнением (IV).

Таким образом, устраиваемая дорожная конструкция с одной стороны формируется с учетом местности, по которой проходит автомобильная дорога, а с другой – минимизируются затраты на ее строительство.

Заключение

Предложенные подходы к строительству лесных автомобильных дорог предназначены для эффективного их практического применения и в полной мере учитывают специфические территориально-отраслевые условия, для которых осуществляется проектирование трассы дороги. При этом следует отметить, что в данном случае в значительной степени повышаются эксплуатационные качества лесных дорог. В частности, разработанные проектные мероприятия предназначены для увеличения сроков службы дорог и прочности отдельных ее конструктивных элементов, таких как земляное полотно дорожная Немаловажным является и то, что они направлены на повышение работоспособности и снижение стоимости строительства автомобильных дорог.

Список использованной литературы

- [1] Леонович И. И. Дорожная климатология. Минск: БГПА, 1994.
- [2] Костюкевич Н. И. Лесная метеорология. Изд. 2-е, переработ. и доп. Минск: Вышэйшая школа, 1975.
- [3] Способ сооружения дороги на болоте: пат. 14664 Респ. Беларусь, МПК7 Е 01 С 3/00 / М. Т. Насковец, Г. С. Корин, П. А. Лыщик; заявитель Белорус. гос. технол. ун-т. № а 20081101; заявл. 21.08.2008; опубл. 30.08.2011 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2011. № 2. С. 93.
- [4] Сухопутный транспорт леса: учебник для вузов / В. И. Алябьев, Б. А. Ильин, Б. И. Кувалдин, Г. Ф. Грехов. М.: Лесная промышленность, 1990. 416 с.